
LECTURE 5: SURFACES IN PROJECTIVE SPACE

1. Projective space

Definition: The n-dimensional projective space Pn is the set of lines through
the origin in the vector space Rn+1.

Pn may be thought of as the quotient space (Rn+1 \ {0})/ ∼ where ∼ rep-
resents the equivalence relation

(x0, . . . , xn) ∼ (λx0, . . . , λxn), λ ∈ R∗.

The equivalence class of the point (x0, . . . , xn) is denoted [x0, . . . , xn].

In order to describe Pn as a homogenous space, we need to find its group
of symmetries. Since the only structure on Pn is that of lines through the
origin in Rn+1, we should begin by finding those symmetries of Rn+1 that
preserve the set of lines through the origin. This is simply the matrix group
GL(n + 1), so we might suppose that the group of symmetries of Pn is also
GL(n + 1).

However, there is a subtle point to consider here. While it is true that all
elements of GL(n + 1) are symmetries of Pn, some of them act trivially on
Pn. A matrix g ∈ GL(n + 1) fixes every line in Rn+1 if and only if g = λI
for some λ 6= 0. Thus the most natural choice for the symmetry group of
Pn is GL(n + 1)/R∗I. This group is isomorphic to SL(n + 1) if n is even
and SL(n+1)/{±I} if n is odd. In order to avoid the difficulties associated
with working with a quotient group, we will take the symmetry group of Pn

to be SL(n + 1) in either case.

Now given a point [x] = [x0, . . . , xn] ∈ Pn, we need to find its isotropy group
H[x]. First take [x0] = [1, 0, . . . , 0]. It is straightforward to show that for
g ∈ SL(n + 1), g · [x0] = [x0] if and only if

g =


(detA)−1 r1 . . . rn

0
...
0

A


where A ∈ GL(n). Thus

H[x0] = {
[
e0 . . . en

]
: e0 = (λ, 0, . . . , 0) for some λ ∈ R∗}.
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Denote this group by H. For any other point [x] ∈ Pn, H[x] is conjugate to
H, and Pn is isomorphic to the set of left cosets of H in SL(n + 1). Thus
Pn may be thought of as the homogenous space Pn ∼= SL(n + 1)/H.

A frame on Pn is a set of vectors (e0, . . . , en), ei ∈ Rn+1, with det[e0 . . . en] =
1. We can regard SL(n + 1) as the frame bundle of Pn; it is a principal
bundle with fibers isomorphic to H. We can define a projection map π :
SL(n + 1) → Pn by

π([e0 . . . en]) = [e0].

The Maurer-Cartan forms {ωα
β , 0 ≤ α, β ≤ n} on SL(n + 1) are defined by

the equations

deα =
n∑

β=0

eβ ωβ
α.

These forms satisfy the structure equations

dωα
β = −

n∑
γ=0

ωα
γ ∧ ωγ

β

and the single relation
n∑

α=0

ωα
α = 0.

The forms ω1
0, . . . , ωn

0 are semi-basic for the projection π : SL(n + 1) → Pn,
while the remaining ωα

β ’s form a basis for the 1-forms on each fiber of π and
so may be thought of as connection forms on the frame bundle.

2. Surfaces in P3

Consider a smooth, embedded surface [x] : Σ → P3, where Σ is an open set
in R2. Because P3 = R4/ ∼ is a quotient space, it is generally easier to work
with the 3-dimensional submanifold Σ̃ ⊂ R4 \ {0} defined by the property
that x ∈ Σ̃ if and only if [x] ∈ Σ. Clearly Σ̃ consists of a 2-parameter family
of lines through the origin of R4 and so may be thought of as a cone over
a 2-dimensional submanifold of R4 \ {0}. We will use the geometry of the
surface to construct an adapted frame {e0(x), e1(x), e2(x), e3(x)} ∈ SL(4)
at each point x ∈ Σ̃.

For our first frame adaptation we will choose a frame at each point x ∈
Σ̃ such that e0 = x and TxΣ̃ is spanned by the vectors e0, e1, e2. These
conditions are clearly invariant under the action of SL(4) on R4, and any
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other frame {ẽ0, ẽ1, ẽ2, ẽ3} has the form

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

]


1 s1 s2 s3

0
0

B
s4

s5

0 0 0 (detB)−1


where B ∈ GL(2). For such a frame, dx must be a linear combination of
e0, e1, e2. Therefore the structure equation

dx = de0 =
3∑

β=0

eβ ωβ
0

implies that ω3
0 = 0, while the 1-forms ω0

0, ω
1
0, ω

2
0 form a basis for the 1-forms

on Σ̃. Thus we have dω3
0 = 0, and so

0 = dω3
0 = −ω3

1 ∧ ω1
0 − ω3

2 ∧ ω2
0.

By Cartan’s Lemma, there exist functions h11, h12, h22 such that[
ω3

1

ω3
2

]
=

[
h11 h12

h12 h22

] [
ω1

0

ω2
0

]
.

In order to make our next frame adaptation we will compute how the matrix
[hij ] varies if we choose a different frame. Suppose that {ẽ0, ẽ1, ẽ2, ẽ3} is
defined as above. Computing the Maurer-Cartan form of the new frame
shows that [

ω̃1
0

ω̃2
0

]
= B−1

[
ω1

0

ω2
0

]
,

[
ω̃3

1

ω̃3
2

]
= (det B)Bt

[
ω3

1

ω3
2

]
and therefore [

h̃11 h̃12

h̃12 h̃22

]
= (det B)Bt

[
h11 h12

h12 h22

]
B.

This transformation has the property that det[h̃ij ] = (det B)4 det[hij ], so
the sign of the determinant is fixed. We will assume that det[hij ] > 0; in
this case the surface is said to be elliptic. Then we can choose the matrix
B so that [hij ] is the identity matrix. This determines the frame up to a
transformation of the form

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

]


1 s1 s2 s3

0
0

B
s4

s5

0 0 0 1


with B ∈ SO(2).

The quadratic form

I = ω3
1 ω1

0 + ω3
2 ω2

0 = (ω1
0)

2 + (ω2
0)

2
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is now well-defined on Σ̃, but it is not well-defined on Σ; it varies by a
constant multiple as we move along the fibers of the projection Σ̃ → Σ.
Thus I determines a conformal structure on Σ which is invariant under the
action of SL(4).

The restricted Maurer-Cartan forms on our frame now have the property
that ω3

1 = ω1
0, ω3

2 = ω2
0. Differentiating these equations yields

(2ω1
1 − ω0

0 − ω3
3) ∧ ω1

0 + (ω1
2 + ω2

1) ∧ ω2
0 = 0

(ω1
2 + ω2

1) ∧ ω1
0 + (2ω2

2 − ω0
0 − ω3

3) ∧ ω2
0 = 0.

By Cartan’s Lemma, there exist functions h111, h112, h122, h222 such that2ω1
1 − ω0

0 − ω3
3

ω1
2 + ω2

1

2ω2
2 − ω0

0 − ω3
3

 =

h111 h112

h112 h122

h122 h222

[
ω1

0

ω2
0

]
.

In order to make further adaptations we need to compute how the hijk’s
vary under a change of frame. This computation gets rather complicated,
but we can make it simpler by breaking it down into two steps. Any two
adapted frames at this stage vary by a composition of transformations of
the form

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

] 
1 0 0 0
0
0 B

0
0

0 0 0 1

(2.1)

with B ∈ SO(2) and

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

]


1 s1 s2 s3

0
0

I
s4

s5

0 0 0 1

 .(2.2)

First consider a change of frame of the form (2.2). It is left as an exercise
that under such a change of frame,

h̃111 = h111 + 3(s1 − s4)

h̃112 = h112 + (s2 − s5)

h̃122 = h122 + (s1 − s4)

h̃222 = h222 + 3(s2 − s5).

Thus we can choose the si so that h122 = −h111, h112 = −h222. For such
a frame we have ω0

0 + ω3
3 = ω1

1 + ω2
2 = 0. (Exercise: why?) This condition

is preserved under transformations of the form (2.1) and transformations of



LIE GROUPS AND THE METHOD OF THE MOVING FRAME 35

the form (2.2) with s4 = s1, s5 = s2. Transformations of the latter form fix
all the hijk’s, while under a transformation of the form (2.1) we have[

h̃111

h̃222

]
= B3

[
h111

h222

]
so the quantity h2

111 + h2
222 is invariant.

3. The case hijk = 0

Now suppose that h2
111 + h2

222 ≡ 0. Then we have

ω1
1 = ω2

2 = ω1
2 + ω2

1 = ω0
0 + ω3

3 = 0.

Differentiating these equations yields

(ω0
1 − ω1

3) ∧ ω1
0 = 0

(ω0
2 − ω2

3) ∧ ω2
0 = 0

(ω0
2 − ω2

3) ∧ ω1
0 + (ω0

1 − ω1
3) ∧ ω2

0 = 0

−(ω0
1 − ω1

3) ∧ ω1
0 − (ω0

2 − ω2
3) ∧ ω2

0 = 0.

The fourth equation is obviously a consequence of the first two. Applying
Cartan’s lemma to the first three of these equations shows that there exists
a function λ such that

ω0
1 − ω1

3 = λ ω1
0

ω0
2 − ω2

3 = λ ω2
0.

Now consider a change of frame of the form

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

] 
1 0 0 s3

0
0 I

0
0

0 0 0 1

 .

It is left as an exercise that under this change of frame,

λ̃ = λ− 2s3.

Thus we can choose a frame with λ = 0, and for such a frame we have

ω1
3 = ω0

1, ω2
3 = ω0

2.

Differentiating these equations yields

2ω0
3 ∧ ω1

0 = 0

2ω0
3 ∧ ω2

0 = 0.

By Cartan’s lemma we have ω0
3 = 0. Finally, differentiating this equation

yields an identity.
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At this point the Maurer-Cartan form for the reduced frame bundle is

ω =


ω0

0 ω0
1 ω0

2 0

ω1
0 0 ω1

2 ω0
1

ω2
0 −ω1

2 0 ω0
2

0 ω1
0 ω2

0 −ω0
0

 .

We have not found a unique frame over each point of Σ̃, but since differ-
entiating the structure equations yields no further relations, this is as far
as the frame bundle can be reduced. What this means is that Σ̃ is itself a
homogenous space G/H where G is the Lie group whose Lie algebra g is the
set of matrices with the symmetries of the Maurer-Cartan form above. All
that remains is to identify this group G and to describe Σ̃ as a homogenous
space G/H. Because Σ̃ is a homogenous space, perhaps it will not come as
a surprise that Σ̃ is, up to a projective transformation, the cone over the
sphere S2. The details will be left to the exercises.

Exercises

1. Suppose that instead of being elliptic, Σ̃ has hij = 0. Prove that Σ is
a plane in P3. (Hint: Σ is a plane if and only if Σ̃ is a hyperplane in R4.
Show that the plane spanned by the vectors e0, e1, e2 is constant, and that
therefore Σ̃ must be contained in this plane.)

2. Suppose that Σ ⊂ P3 is elliptic and that we have adapted our frames so
that ω3

1 = ω1
0, ω3

2 = ω2
0. Show that

a) The quadratic form I is well-defined on Σ̃.

b) Iλx = λ2Ix, where Ix denotes the quadratic form I based at the point
x ∈ Σ̃. (Hint: moving from x to λx corresponds to making a change of frame
with ẽ0 = λe0. Since I is well-defined, the change of frame can otherwise be
made as simple as possible for ease of computation. Set

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

]


λ 0 0 0
0 µ 0 0
0 0 µ 0

0 0 0
1

λµ2


and show that in order to preserve the condition that ω3

i = ωi
0, i = 1, 2,

we must have µ = ±1. Now show that under this change of frame, ω̃i
0 =

λωi
0, i = 1, 2 so that Iλx = λ2Ix.)

3. Fill in the details of the frame computations:
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a) Suppose that the surface Σ ⊂ P2 is elliptic and that we have restricted
to frames for which ω3

1 = ω1
0, ω3

2 = ω2
0. Show that differentiating these

equations yields

(2ω1
1 − ω0

0 − ω3
3) ∧ ω1

0 + (ω1
2 + ω2

1) ∧ ω2
0 = 0

(ω1
2 + ω2

1) ∧ ω1
0 + (2ω2

2 − ω0
0 − ω3

3) ∧ ω2
0 = 0

and that Cartan’s Lemma implies that there exist functions h111, h112, h122,
h222 such that 2ω1

1 − ω0
0 − ω3

3

ω1
2 + ω2

1

2ω2
2 − ω0

0 − ω3
3

 =

h111 h112

h112 h122

h122 h222

[
ω1

0

ω2
0

]
.

b) Show that under a change of frame of the form (2.2),

h̃111 = h111 + 3(s1 − s4)

h̃112 = h112 + (s2 − s5)

h̃122 = h122 + (s1 − s4)

h̃222 = h222 + 3(s2 − s5).

When we restrict to those frames for which h122 = −h111, h112 = −h222,
why do we have ω0

0 + ω3
3 = ω1

1 + ω2
2 = 0?

c) Suppose that the invariant h2
111 + h2

222 vanishes identically. Show that
differentiating the equations

ω1
1 = ω2

2 = ω1
2 + ω2

1 = ω0
0 + ω3

3 = 0

yields

(ω0
1 − ω1

3) ∧ ω1
0 = 0

(ω0
2 − ω2

3) ∧ ω2
0 = 0

(ω0
2 − ω2

3) ∧ ω1
0 + (ω0

1 − ω1
3) ∧ ω2

0 = 0

−(ω0
1 − ω1

3) ∧ ω1
0 − (ω0

2 − ω2
3) ∧ ω2

0 = 0.

Use Cartan’s lemma to conclude that there exists a function λ such that

ω0
1 − ω1

3 = λ ω1
0

ω0
2 − ω2

3 = λ ω2
0.

d) Show that under a change of frame of the form

[
ẽ0 ẽ1 ẽ2 ẽ3

]
=

[
e0 e1 e2 e3

] 
1 0 0 s3

0
0 I

0
0

0 0 0 1
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we have

λ̃ = λ− 2s3

so we can choose a frame for which λ = 0.

e) Show that differentiating the equations ω1
3 = ω0

1, ω2
3 = ω0

1 yields

2ω0
3 ∧ ω1

0 = 0

2ω0
3 ∧ ω2

0 = 0.

Use Cartan’s lemma to conclude that ω0
3 = 0. Show that differentiating this

equation yields no further relations among the ωα
β ’s.

4. In this exercise we will show that when h2
111 + h2

222 = 0, Σ is a sphere in
P2.

Let Q be the matrix

Q =


0 0 0 −1
0 1 0 0
0 0 1 0
−1 0 0 0

 .

Q represents the quadratic form

q = (x1)2 + (x2)2 − 2x0x3

which is a Lorentzian metric on R4. The Lie Group O(Q) is the group of
matrices which preserves this metric; it is defined by

O(Q) = {A ∈ GL(4) : tAQA = Q}
and is isomorphic to the Lie group O(3, 1).

a) Differentiate the equation
tAQA = Q

to show that the Lie algebra o(Q) is defined by

o(Q) = {a ∈ gl(4) : taQ + Qa = 0.

b) Show that o(Q) consists of the matrices of the form
a0

0 a0
1 a0

2 0

a1
0 0 a1

2 a0
1

a2
0 −a1

2 0 a0
2

0 a1
0 a2

0 −a0
0

 .

Conclude that the reduced Maurer-Cartan form at the end of the lecture
takes values in o(Q).
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c) Recall that for a given reduced frame

g(x) =
[
e0(x) e1(x) e2(x) e3(x)

]
the Maurer-Cartan form is ω = g−1dg. Show that any reduced frame has
the form

g(x) = CA(x)

where C ∈ SL(4) is a constant matrix and A(x) ∈ O(Q). C may be thought
of as a symmetry of P3, so the surface Σ̃ is equivalent to the surface C−1 · Σ̃.
Thus we can assume that g(x) ∈ O(Q).

d) Define a projection map π : O(Q) → R4 \ {0} by

π(
[
e0 e1 e2 e3

]
) = e0.

Show that in the Lorentzian metric defined by Q, e0 is a null vector, i.e.,
〈e0, e0〉 = 0. Since the set of null vectors in R4\{0} is 3-dimensional, Σ̃ must
be an open subset of the hypersurface defined by the equation 〈x, x〉 = 0.
This hypersurface is the cone over the unit sphere S2 of the hyperplane
{x0 = 1} ⊂ R4; therefore Σ is an open subset of the sphere in P3.


