LECTURE 5: SURFACES IN PROJECTIVE SPACE

1. Projective space

Definition: The n-dimensional projective space \mathbb{P}^{n} is the set of lines through the origin in the vector space \mathbb{R}^{n+1}.
\mathbb{P}^{n} may be thought of as the quotient space $\left(\mathbb{R}^{n+1} \backslash\{0\}\right) / \sim$ where \sim represents the equivalence relation

$$
\left(x^{0}, \ldots, x^{n}\right) \sim\left(\lambda x^{0}, \ldots, \lambda x^{n}\right), \quad \lambda \in \mathbb{R}^{*}
$$

The equivalence class of the point $\left(x^{0}, \ldots, x^{n}\right)$ is denoted $\left[x^{0}, \ldots, x^{n}\right]$.
In order to describe \mathbb{P}^{n} as a homogenous space, we need to find its group of symmetries. Since the only structure on \mathbb{P}^{n} is that of lines through the origin in \mathbb{R}^{n+1}, we should begin by finding those symmetries of \mathbb{R}^{n+1} that preserve the set of lines through the origin. This is simply the matrix group $G L(n+1)$, so we might suppose that the group of symmetries of \mathbb{P}^{n} is also $G L(n+1)$.

However, there is a subtle point to consider here. While it is true that all elements of $G L(n+1)$ are symmetries of \mathbb{P}^{n}, some of them act trivially on \mathbb{P}^{n}. A matrix $g \in G L(n+1)$ fixes every line in \mathbb{R}^{n+1} if and only if $g=\lambda I$ for some $\lambda \neq 0$. Thus the most natural choice for the symmetry group of \mathbb{P}^{n} is $G L(n+1) / \mathbb{R}^{*} I$. This group is isomorphic to $S L(n+1)$ if n is even and $S L(n+1) /\{ \pm I\}$ if n is odd. In order to avoid the difficulties associated with working with a quotient group, we will take the symmetry group of \mathbb{P}^{n} to be $S L(n+1)$ in either case.

Now given a point $[x]=\left[x^{0}, \ldots, x^{n}\right] \in \mathbb{P}^{n}$, we need to find its isotropy group $H_{[x]}$. First take $\left[x_{0}\right]=[1,0, \ldots, 0]$. It is straightforward to show that for $g \in S L(n+1), g \cdot\left[x_{0}\right]=\left[x_{0}\right]$ if and only if

$$
g=\left[\begin{array}{cccc}
(\operatorname{det} A)^{-1} & r_{1} & \ldots & r_{n} \\
0 & & & \\
\vdots & & A & \\
0 & & &
\end{array}\right]
$$

where $A \in G L(n)$. Thus

$$
H_{\left[x_{0}\right]}=\left\{\left[\begin{array}{lll}
e_{0} & \ldots & e_{n}
\end{array}\right]: e_{0}=(\lambda, 0, \ldots, 0) \text { for some } \lambda \in \mathbb{R}^{*}\right\}
$$

Denote this group by H. For any other point $[x] \in \mathbb{P}^{n}, H_{[x]}$ is conjugate to H, and \mathbb{P}^{n} is isomorphic to the set of left cosets of H in $S L(n+1)$. Thus \mathbb{P}^{n} may be thought of as the homogenous space $\mathbb{P}^{n} \cong S L(n+1) / H$.

A frame on \mathbb{P}^{n} is a set of vectors $\left(e_{0}, \ldots, e_{n}\right), e_{i} \in \mathbb{R}^{n+1}$, with $\operatorname{det}\left[e_{0} \ldots e_{n}\right]=$ 1. We can regard $S L(n+1)$ as the frame bundle of \mathbb{P}^{n}; it is a principal bundle with fibers isomorphic to H. We can define a projection map π : $S L(n+1) \rightarrow \mathbb{P}^{n}$ by

$$
\pi\left(\left[e_{0} \ldots e_{n}\right]\right)=\left[e_{0}\right]
$$

The Maurer-Cartan forms $\left\{\omega_{\beta}^{\alpha}, 0 \leq \alpha, \beta \leq n\right\}$ on $S L(n+1)$ are defined by the equations

$$
d e_{\alpha}=\sum_{\beta=0}^{n} e_{\beta} \omega_{\alpha}^{\beta}
$$

These forms satisfy the structure equations

$$
d \omega_{\beta}^{\alpha}=-\sum_{\gamma=0}^{n} \omega_{\gamma}^{\alpha} \wedge \omega_{\beta}^{\gamma}
$$

and the single relation

$$
\sum_{\alpha=0}^{n} \omega_{\alpha}^{\alpha}=0
$$

The forms $\omega_{0}^{1}, \ldots, \omega_{0}^{n}$ are semi-basic for the projection $\pi: S L(n+1) \rightarrow \mathbb{P}^{n}$, while the remaining ω_{β}^{α} 's form a basis for the 1 -forms on each fiber of π and so may be thought of as connection forms on the frame bundle.

2. SURFACES IN \mathbb{P}^{3}

Consider a smooth, embedded surface $[x]: \Sigma \rightarrow \mathbb{P}^{3}$, where Σ is an open set in \mathbb{R}^{2}. Because $\mathbb{P}^{3}=\mathbb{R}^{4} / \sim$ is a quotient space, it is generally easier to work with the 3 -dimensional submanifold $\tilde{\Sigma} \subset \mathbb{R}^{4} \backslash\{0\}$ defined by the property that $x \in \tilde{\Sigma}$ if and only if $[x] \in \Sigma$. Clearly $\tilde{\Sigma}$ consists of a 2 -parameter family of lines through the origin of \mathbb{R}^{4} and so may be thought of as a cone over a 2-dimensional submanifold of $\mathbb{R}^{4} \backslash\{0\}$. We will use the geometry of the surface to construct an adapted frame $\left\{e_{0}(x), e_{1}(x), e_{2}(x), e_{3}(x)\right\} \in S L(4)$ at each point $x \in \tilde{\Sigma}$.

For our first frame adaptation we will choose a frame at each point $x \in$ $\tilde{\Sigma}$ such that $e_{0}=x$ and $T_{x} \tilde{\Sigma}$ is spanned by the vectors e_{0}, e_{1}, e_{2}. These conditions are clearly invariant under the action of $S L(4)$ on \mathbb{R}^{4}, and any
other frame $\left\{\tilde{e}_{0}, \tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}\right\}$ has the form

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & s_{1} & s_{2} & s_{3} \\
0 & B & s_{4} \\
0 & B & s_{5} \\
0 & 0 & 0 & (\operatorname{det} B)^{-1}
\end{array}\right]
$$

where $B \in G L(2)$. For such a frame, $d x$ must be a linear combination of e_{0}, e_{1}, e_{2}. Therefore the structure equation

$$
d x=d e_{0}=\sum_{\beta=0}^{3} e_{\beta} \omega_{0}^{\beta}
$$

implies that $\omega_{0}^{3}=0$, while the 1 -forms $\omega_{0}^{0}, \omega_{0}^{1}, \omega_{0}^{2}$ form a basis for the 1 -forms on $\tilde{\Sigma}$. Thus we have $d \omega_{0}^{3}=0$, and so

$$
0=d \omega_{0}^{3}=-\omega_{1}^{3} \wedge \omega_{0}^{1}-\omega_{2}^{3} \wedge \omega_{0}^{2}
$$

By Cartan's Lemma, there exist functions h_{11}, h_{12}, h_{22} such that

$$
\left[\begin{array}{l}
\omega_{1}^{3} \\
\omega_{2}^{3}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]\left[\begin{array}{l}
\omega_{0}^{1} \\
\omega_{0}^{2}
\end{array}\right]
$$

In order to make our next frame adaptation we will compute how the matrix $\left[h_{i j}\right]$ varies if we choose a different frame. Suppose that $\left\{\tilde{e}_{0}, \tilde{e}_{1}, \tilde{e}_{2}, \tilde{e}_{3}\right\}$ is defined as above. Computing the Maurer-Cartan form of the new frame shows that

$$
\left[\begin{array}{c}
\tilde{\omega}_{0}^{1} \\
\tilde{\omega}_{0}^{2}
\end{array}\right]=B^{-1}\left[\begin{array}{c}
\omega_{0}^{1} \\
\omega_{0}^{2}
\end{array}\right], \quad\left[\begin{array}{c}
\tilde{\omega}_{1}^{3} \\
\tilde{\omega}_{2}^{3}
\end{array}\right]=(\operatorname{det} B) B^{t}\left[\begin{array}{c}
\omega_{1}^{3} \\
\omega_{2}^{3}
\end{array}\right]
$$

and therefore

$$
\left[\begin{array}{ll}
\tilde{h}_{11} & \tilde{h}_{12} \\
\tilde{h}_{12} & \tilde{h}_{22}
\end{array}\right]=(\operatorname{det} B) B^{t}\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right] B
$$

This transformation has the property that $\operatorname{det}\left[\tilde{h}_{i j}\right]=(\operatorname{det} B)^{4} \operatorname{det}\left[h_{i j}\right]$, so the sign of the determinant is fixed. We will assume that $\operatorname{det}\left[h_{i j}\right]>0$; in this case the surface is said to be elliptic. Then we can choose the matrix B so that $\left[h_{i j}\right]$ is the identity matrix. This determines the frame up to a transformation of the form

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & s_{1} & s_{2} & s_{3} \\
0 & & & s_{4} \\
0 & B & & s_{5} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with $B \in S O(2)$.
The quadratic form

$$
I=\omega_{1}^{3} \omega_{0}^{1}+\omega_{2}^{3} \omega_{0}^{2}=\left(\omega_{0}^{1}\right)^{2}+\left(\omega_{0}^{2}\right)^{2}
$$

is now well-defined on $\tilde{\Sigma}$, but it is not well-defined on Σ; it varies by a constant multiple as we move along the fibers of the projection $\tilde{\Sigma} \rightarrow \Sigma$. Thus I determines a conformal structure on Σ which is invariant under the action of $S L(4)$.

The restricted Maurer-Cartan forms on our frame now have the property that $\omega_{1}^{3}=\omega_{0}^{1}, \omega_{2}^{3}=\omega_{0}^{2}$. Differentiating these equations yields

$$
\begin{aligned}
& \left(2 \omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3}\right) \wedge \omega_{0}^{1}+\left(\omega_{2}^{1}+\omega_{1}^{2}\right) \wedge \omega_{0}^{2}=0 \\
& \left(\omega_{2}^{1}+\omega_{1}^{2}\right) \wedge \omega_{0}^{1}+\left(2 \omega_{2}^{2}-\omega_{0}^{0}-\omega_{3}^{3}\right) \wedge \omega_{0}^{2}=0
\end{aligned}
$$

By Cartan's Lemma, there exist functions $h_{111}, h_{112}, h_{122}, h_{222}$ such that

$$
\left[\begin{array}{c}
2 \omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3} \\
\omega_{2}^{1}+\omega_{1}^{2} \\
2 \omega_{2}^{2}-\omega_{0}^{0}-\omega_{3}^{3}
\end{array}\right]=\left[\begin{array}{ll}
h_{111} & h_{112} \\
h_{112} & h_{122} \\
h_{122} & h_{222}
\end{array}\right]\left[\begin{array}{c}
\omega_{0}^{1} \\
\omega_{0}^{2}
\end{array}\right] .
$$

In order to make further adaptations we need to compute how the $h_{i j k}$'s vary under a change of frame. This computation gets rather complicated, but we can make it simpler by breaking it down into two steps. Any two adapted frames at this stage vary by a composition of transformations of the form

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{2.1}\\
0 & B & 0 \\
0 & B & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

with $B \in S O(2)$ and

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & s_{1} & s_{2} & s_{3} \tag{2.2}\\
0 & & & s_{4} \\
0 & I & & s_{5} \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

First consider a change of frame of the form (2.2). It is left as an exercise that under such a change of frame,

$$
\begin{aligned}
& \tilde{h}_{111}=h_{111}+3\left(s_{1}-s_{4}\right) \\
& \tilde{h}_{112}=h_{112}+\left(s_{2}-s_{5}\right) \\
& \tilde{h}_{122}=h_{122}+\left(s_{1}-s_{4}\right) \\
& \tilde{h}_{222}=h_{222}+3\left(s_{2}-s_{5}\right) .
\end{aligned}
$$

Thus we can choose the s_{i} so that $h_{122}=-h_{111}, h_{112}=-h_{222}$. For such a frame we have $\omega_{0}^{0}+\omega_{3}^{3}=\omega_{1}^{1}+\omega_{2}^{2}=0$. (Exercise: why?) This condition is preserved under transformations of the form (2.1) and transformations of
the form (2.2) with $s_{4}=s_{1}, s_{5}=s_{2}$. Transformations of the latter form fix all the $h_{i j k}$'s, while under a transformation of the form (2.1) we have

$$
\left[\begin{array}{l}
\tilde{h}_{111} \\
\tilde{h}_{222}
\end{array}\right]=B^{3}\left[\begin{array}{l}
h_{111} \\
h_{222}
\end{array}\right]
$$

so the quantity $h_{111}^{2}+h_{222}^{2}$ is invariant.

$$
\text { 3. THE CASE } h_{i j k}=0
$$

Now suppose that $h_{111}^{2}+h_{222}^{2} \equiv 0$. Then we have

$$
\omega_{1}^{1}=\omega_{2}^{2}=\omega_{2}^{1}+\omega_{1}^{2}=\omega_{0}^{0}+\omega_{3}^{3}=0
$$

Differentiating these equations yields

$$
\begin{gathered}
\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{1}=0 \\
\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{2}=0 \\
\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{1}+\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{2}=0 \\
-\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{1}-\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{2}=0
\end{gathered}
$$

The fourth equation is obviously a consequence of the first two. Applying Cartan's lemma to the first three of these equations shows that there exists a function λ such that

$$
\begin{aligned}
& \omega_{1}^{0}-\omega_{3}^{1}=\lambda \omega_{0}^{1} \\
& \omega_{2}^{0}-\omega_{3}^{2}=\lambda \omega_{0}^{2}
\end{aligned}
$$

Now consider a change of frame of the form

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & s_{3} \\
0 & & 0 \\
0 & I & & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

It is left as an exercise that under this change of frame,

$$
\tilde{\lambda}=\lambda-2 s_{3}
$$

Thus we can choose a frame with $\lambda=0$, and for such a frame we have

$$
\omega_{3}^{1}=\omega_{1}^{0}, \quad \omega_{3}^{2}=\omega_{2}^{0}
$$

Differentiating these equations yields

$$
\begin{aligned}
& 2 \omega_{3}^{0} \wedge \omega_{0}^{1}=0 \\
& 2 \omega_{3}^{0} \wedge \omega_{0}^{2}=0
\end{aligned}
$$

By Cartan's lemma we have $\omega_{3}^{0}=0$. Finally, differentiating this equation yields an identity.

At this point the Maurer-Cartan form for the reduced frame bundle is

$$
\omega=\left[\begin{array}{cccc}
\omega_{0}^{0} & \omega_{1}^{0} & \omega_{2}^{0} & 0 \\
\omega_{0}^{1} & 0 & \omega_{2}^{1} & \omega_{1}^{0} \\
\omega_{0}^{2} & -\omega_{2}^{1} & 0 & \omega_{2}^{0} \\
0 & \omega_{0}^{1} & \omega_{0}^{2} & -\omega_{0}^{0}
\end{array}\right]
$$

We have not found a unique frame over each point of $\tilde{\Sigma}$, but since differentiating the structure equations yields no further relations, this is as far as the frame bundle can be reduced. What this means is that $\tilde{\Sigma}$ is itself a homogenous space G / H where G is the Lie group whose Lie algebra \mathfrak{g} is the set of matrices with the symmetries of the Maurer-Cartan form above. All that remains is to identify this group G and to describe $\tilde{\Sigma}$ as a homogenous space G / H. Because $\tilde{\Sigma}$ is a homogenous space, perhaps it will not come as a surprise that $\tilde{\Sigma}$ is, up to a projective transformation, the cone over the sphere S^{2}. The details will be left to the exercises.

Exercises

1. Suppose that instead of being elliptic, $\tilde{\Sigma}$ has $h_{i j}=0$. Prove that Σ is a plane in \mathbb{P}^{3}. (Hint: Σ is a plane if and only if $\tilde{\Sigma}$ is a hyperplane in \mathbb{R}^{4}. Show that the plane spanned by the vectors e_{0}, e_{1}, e_{2} is constant, and that therefore $\tilde{\Sigma}$ must be contained in this plane.)
2. Suppose that $\Sigma \subset \mathbb{P}^{3}$ is elliptic and that we have adapted our frames so that $\omega_{1}^{3}=\omega_{0}^{1}, \omega_{2}^{3}=\omega_{0}^{2}$. Show that
a) The quadratic form I is well-defined on $\tilde{\Sigma}$.
b) $I_{\lambda x}=\lambda^{2} I_{x}$, where I_{x} denotes the quadratic form I based at the point $x \in \tilde{\Sigma}$. (Hint: moving from x to λx corresponds to making a change of frame with $\tilde{e}_{0}=\lambda e_{0}$. Since I is well-defined, the change of frame can otherwise be made as simple as possible for ease of computation. Set

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
\lambda & 0 & 0 & 0 \\
0 & \mu & 0 & 0 \\
0 & 0 & \mu & 0 \\
0 & 0 & 0 & \frac{1}{\lambda \mu^{2}}
\end{array}\right]
$$

and show that in order to preserve the condition that $\omega_{i}^{3}=\omega_{0}^{i}, i=1,2$, we must have $\mu= \pm 1$. Now show that under this change of frame, $\tilde{\omega}_{0}^{i}=$ $\lambda \omega_{0}^{i}, i=1,2$ so that $\left.I_{\lambda x}=\lambda^{2} I_{x}.\right)$
3. Fill in the details of the frame computations:
a) Suppose that the surface $\Sigma \subset \mathbb{P}^{2}$ is elliptic and that we have restricted to frames for which $\omega_{1}^{3}=\omega_{0}^{1}, \omega_{2}^{3}=\omega_{0}^{2}$. Show that differentiating these equations yields

$$
\begin{aligned}
& \left(2 \omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3}\right) \wedge \omega_{0}^{1}+\left(\omega_{2}^{1}+\omega_{1}^{2}\right) \wedge \omega_{0}^{2}=0 \\
& \left(\omega_{2}^{1}+\omega_{1}^{2}\right) \wedge \omega_{0}^{1}+\left(2 \omega_{2}^{2}-\omega_{0}^{0}-\omega_{3}^{3}\right) \wedge \omega_{0}^{2}=0
\end{aligned}
$$

and that Cartan's Lemma implies that there exist functions $h_{111}, h_{112}, h_{122}$, h_{222} such that

$$
\left[\begin{array}{c}
2 \omega_{1}^{1}-\omega_{0}^{0}-\omega_{3}^{3} \\
\omega_{2}^{1}+\omega_{1}^{2} \\
2 \omega_{2}^{2}-\omega_{0}^{0}-\omega_{3}^{3}
\end{array}\right]=\left[\begin{array}{ll}
h_{111} & h_{112} \\
h_{112} & h_{122} \\
h_{122} & h_{222}
\end{array}\right]\left[\begin{array}{c}
\omega_{0}^{1} \\
\omega_{0}^{2}
\end{array}\right]
$$

b) Show that under a change of frame of the form (2.2),

$$
\begin{aligned}
& \tilde{h}_{111}=h_{111}+3\left(s_{1}-s_{4}\right) \\
& \tilde{h}_{112}=h_{112}+\left(s_{2}-s_{5}\right) \\
& \tilde{h}_{122}=h_{122}+\left(s_{1}-s_{4}\right) \\
& \tilde{h}_{222}=h_{222}+3\left(s_{2}-s_{5}\right)
\end{aligned}
$$

When we restrict to those frames for which $h_{122}=-h_{111}, h_{112}=-h_{222}$, why do we have $\omega_{0}^{0}+\omega_{3}^{3}=\omega_{1}^{1}+\omega_{2}^{2}=0$?
c) Suppose that the invariant $h_{111}^{2}+h_{222}^{2}$ vanishes identically. Show that differentiating the equations

$$
\omega_{1}^{1}=\omega_{2}^{2}=\omega_{2}^{1}+\omega_{1}^{2}=\omega_{0}^{0}+\omega_{3}^{3}=0
$$

yields

$$
\begin{gathered}
\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{1}=0 \\
\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{2}=0 \\
\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{1}+\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{2}=0 \\
-\left(\omega_{1}^{0}-\omega_{3}^{1}\right) \wedge \omega_{0}^{1}-\left(\omega_{2}^{0}-\omega_{3}^{2}\right) \wedge \omega_{0}^{2}=0
\end{gathered}
$$

Use Cartan's lemma to conclude that there exists a function λ such that

$$
\begin{aligned}
& \omega_{1}^{0}-\omega_{3}^{1}=\lambda \omega_{0}^{1} \\
& \omega_{2}^{0}-\omega_{3}^{2}=\lambda \omega_{0}^{2}
\end{aligned}
$$

d) Show that under a change of frame of the form

$$
\left[\begin{array}{llll}
\tilde{e}_{0} & \tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & s_{3} \\
0 & & 0 \\
0 & I & & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

we have

$$
\tilde{\lambda}=\lambda-2 s_{3}
$$

so we can choose a frame for which $\lambda=0$.
e) Show that differentiating the equations $\omega_{3}^{1}=\omega_{1}^{0}, \omega_{3}^{2}=\omega_{1}^{0}$ yields

$$
\begin{aligned}
& 2 \omega_{3}^{0} \wedge \omega_{0}^{1}=0 \\
& 2 \omega_{3}^{0} \wedge \omega_{0}^{2}=0
\end{aligned}
$$

Use Cartan's lemma to conclude that $\omega_{3}^{0}=0$. Show that differentiating this equation yields no further relations among the ω_{β}^{α} 's.
4. In this exercise we will show that when $h_{111}^{2}+h_{222}^{2}=0, \Sigma$ is a sphere in \mathbb{P}^{2}.

Let Q be the matrix

$$
Q=\left[\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]
$$

Q represents the quadratic form

$$
q=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}-2 x^{0} x^{3}
$$

which is a Lorentzian metric on \mathbb{R}^{4}. The Lie Group $O(Q)$ is the group of matrices which preserves this metric; it is defined by

$$
O(Q)=\left\{A \in G L(4):^{t} A Q A=Q\right\}
$$

and is isomorphic to the Lie group $O(3,1)$.
a) Differentiate the equation

$$
{ }^{t} A Q A=Q
$$

to show that the Lie algebra $\mathfrak{o}(Q)$ is defined by

$$
\mathfrak{o}(Q)=\left\{a \in \mathfrak{g l}(4):^{t} a Q+Q a=0 .\right.
$$

b) Show that $\mathfrak{o}(Q)$ consists of the matrices of the form

$$
\left[\begin{array}{cccc}
a_{0}^{0} & a_{1}^{0} & a_{2}^{0} & 0 \\
a_{0}^{1} & 0 & a_{2}^{1} & a_{1}^{0} \\
a_{0}^{2} & -a_{2}^{1} & 0 & a_{2}^{0} \\
0 & a_{0}^{1} & a_{0}^{2} & -a_{0}^{0}
\end{array}\right] .
$$

Conclude that the reduced Maurer-Cartan form at the end of the lecture takes values in $\mathfrak{o}(Q)$.
c) Recall that for a given reduced frame

$$
g(x)=\left[\begin{array}{llll}
e_{0}(x) & e_{1}(x) & e_{2}(x) & e_{3}(x)
\end{array}\right]
$$

the Maurer-Cartan form is $\omega=g^{-1} d g$. Show that any reduced frame has the form

$$
g(x)=C A(x)
$$

where $C \in S L(4)$ is a constant matrix and $A(x) \in O(Q)$. C may be thought of as a symmetry of \mathbb{P}^{3}, so the surface $\tilde{\Sigma}$ is equivalent to the surface $C^{-1} \cdot \tilde{\Sigma}$. Thus we can assume that $g(x) \in O(Q)$.
d) Define a projection map $\pi: O(Q) \rightarrow \mathbb{R}^{4} \backslash\{0\}$ by

$$
\pi\left(\left[\begin{array}{llll}
e_{0} & e_{1} & e_{2} & e_{3}
\end{array}\right]\right)=e_{0} .
$$

Show that in the Lorentzian metric defined by Q, e_{0} is a null vector, i.e., $\left\langle e_{0}, e_{0}\right\rangle=0$. Since the set of null vectors in $\mathbb{R}^{4} \backslash\{0\}$ is 3-dimensional, $\tilde{\Sigma}$ must be an open subset of the hypersurface defined by the equation $\langle x, x\rangle=0$. This hypersurface is the cone over the unit sphere S^{2} of the hyperplane $\left\{x^{0}=1\right\} \subset \mathbb{R}^{4}$; therefore Σ is an open subset of the sphere in \mathbb{P}^{3}.

