LECTURE 6: PSEUDOSPHERICAL SURFACES AND BÄCKLUND'S THEOREM

1. Line congruences

Let $G_{1}\left(\mathbb{E}^{3}\right)$ denote the Grassmanian of lines in \mathbb{E}^{3}. A line congruence in \mathbb{E}^{3} is an immersed surface $L: U \rightarrow G_{1}\left(\mathbb{E}^{3}\right)$, where $U \subset \mathbb{R}^{2}$ is open. The points of the line $L(u, v)$ are given by

$$
L(u, v)=\{y(u, v)+\lambda w(u, v): \lambda \in \mathbb{R}\}
$$

for some $y(u, v), w(u, v) \in \mathbb{E}^{3}$ with $|w(u, v)|=1$.
A parametric curve $u=u(t), v=v(t)$ in U defines a ruled surface

$$
X(t, \lambda)=y(u(t), v(t))+\lambda w(u(t), v(t))=y(t)+\lambda w(t)
$$

belonging to the congruence. The surface is called developable if

$$
\operatorname{det}\left[\begin{array}{lll}
w(t) & w^{\prime}(t) & y^{\prime}(t)
\end{array}\right]=0 .
$$

This is a quadratic equation for $u^{\prime}(t), v^{\prime}(t)$. If it has distinct real roots, then the solutions of this equation define two distinct families of developable surfaces X. In the generic case each family consists of the tangent lines to a surface, and these two surfaces $\Sigma, \bar{\Sigma}$ are called the focal surfaces of the congruence. The congruence gives a mapping $f: \Sigma \rightarrow \bar{\Sigma}$ with the property that the congruence consists of lines which are tangent to both Σ and $\bar{\Sigma}$ and join $x \in \Sigma$ to $\bar{x}=f(x) \in \bar{\Sigma}$.

2. BÄcklund's Theorem

Definition: let L be a line congruence in \mathbb{E}^{3} with focal surfaces $\Sigma, \bar{\Sigma}$, and let $f: \Sigma \rightarrow \bar{\Sigma}$ be the function defined above. The congruence is called pseudospherical if

1. The distance $r=|\bar{x}-x|$ is a constant independent of x.
2. The angle α between the surface normals $N(x), N(\bar{x})$ is a constant independent of x.

Bäcklund's Theorem: Suppose that L is a pseudospherical line congruence in \mathbb{E}^{3} with focal surfaces $\Sigma, \bar{\Sigma}$. Then both Σ and $\bar{\Sigma}$ have constant negative Gauss curvature $K=-\frac{\sin ^{2} \alpha}{r^{2}}$. (Such surfaces are called pseudospherical surfaces.)

This theorem can be proved using local coordinates on the surfaces $\Sigma, \bar{\Sigma}$, but it is a computational mess. The proof can be greatly simplified by using the method of moving frames, because the frames can be adapted to the geometry of the problem in a way that local coordinates cannot. Whereas in previous lectures we have adapted our frames according to the geometry of a single surface, here we have to consider two surfaces and geometrical conditions relating them. We will use these considerations to choose frames on the surfaces $\Sigma, \bar{\Sigma}$.

Proof: Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame of $T_{x} \mathbb{E}^{3}$ at $x \in \Sigma$ such that e_{3} is the unit normal to Σ at x (and hence $e_{1}, e_{2} \operatorname{span} T_{x} \Sigma$) and e_{1} is the unit vector in the direction of $\bar{x}-x$. We can then define an orthonormal frame $\left\{\bar{e}_{1}, \bar{e}_{2}, \bar{e}_{3}\right\}$ of $T_{\bar{x}} \mathbb{E}^{3}$ by

$$
\begin{aligned}
& \bar{e}_{1}=e_{1} \\
& \bar{e}_{2}=(\cos \alpha) e_{2}+(\sin \alpha) e_{3} \\
& \bar{e}_{3}=(-\sin \alpha) e_{2}+(\cos \alpha) e_{3}
\end{aligned}
$$

Note that \bar{e}_{3} is the unit normal to $\bar{\Sigma}$ at \bar{x}.
A comment about the domain of definition of these frames may be in order. Since the line congruence gives a map $f: \Sigma \rightarrow \bar{\Sigma}$, we can think of the immersions $x: \Sigma \rightarrow \mathbb{E}^{3}$ and $\bar{x}=f \circ x: \Sigma \rightarrow \mathbb{E}^{3}$ as being defined on the same abstract surface Σ. Thus the pullback bundles $x^{-1}\left(T \mathbb{E}^{3}\right)$ and $\bar{x}^{-1}\left(T \mathbb{E}^{3}\right)$ are naturally isomorphic as vector bundles over Σ, and this is the setting where it makes sense to say $\bar{e}_{1}=e_{1}$, etc. We will shortly have similar relations between the Maurer-Cartan forms restricted to Σ and $\bar{\Sigma}$. These will make sense because all the forms in question are really pullbacks via x or \bar{x} and so are forms on the abstract surface Σ.

With frames chosen as above, the immersions $x: \Sigma \rightarrow \mathbb{E}^{3}$ and $\bar{x}: \bar{\Sigma} \rightarrow \mathbb{E}^{3}$ are related by the equation

$$
\bar{x}=x+r e_{1} .
$$

Taking the exterior derivative of this equation yields

$$
\begin{aligned}
d \bar{x} & =d x+r d e_{1} \\
& =e_{1} \omega^{1}+e_{2} \omega^{2}+r\left(e_{2} \omega_{1}^{2}+e_{3} \omega_{1}^{3}\right) \\
& =e_{1} \omega^{1}+e_{2}\left(\omega^{2}+r \omega_{1}^{2}\right)+e_{3}\left(r \omega_{1}^{3}\right) .
\end{aligned}
$$

On the other hand, we also have

$$
\begin{aligned}
d \bar{x} & =\bar{e}_{1} \bar{\omega}^{1}+\bar{e}_{2} \bar{\omega}^{2} \\
& =e_{1} \bar{\omega}^{1}+e_{2}\left(\cos \alpha \bar{\omega}^{2}\right)+e_{3}\left(\sin \alpha \bar{\omega}^{2}\right) .
\end{aligned}
$$

Comparing these equations yields

$$
\begin{align*}
\bar{\omega}^{1} & =\omega^{1} \\
\cos \alpha \bar{\omega}^{2} & =\omega^{2}+r \omega_{1}^{2} \tag{2.1}\\
\sin \alpha \bar{\omega}^{2} & =r \omega_{1}^{3} .
\end{align*}
$$

The last two of these equations imply that

$$
\begin{equation*}
\omega^{2}+r \omega_{1}^{2}=r \cot \alpha \omega_{1}^{3} . \tag{2.2}
\end{equation*}
$$

We will use the fact that the Gauss curvature \bar{K} of $\bar{\Sigma}$ satisfies the equation

$$
\bar{\omega}_{1}^{3} \wedge \bar{\omega}_{2}^{3}=\bar{K} \bar{\omega}^{1} \wedge \bar{\omega}^{2}
$$

to compute \bar{K}. Recall that for an adapted frame with $e_{3}=0$ on a surface $\Sigma \subset \mathbb{E}^{3}$ we have

$$
\begin{aligned}
& \omega_{1}^{3}=h_{11} \omega^{1}+h_{12} \omega^{2} \\
& \omega_{2}^{3}=h_{12} \omega^{1}+h_{22} \omega^{2}
\end{aligned}
$$

for some functions h_{11}, h_{12}, h_{22}. (We will denote the corresponding functions for $\bar{\Sigma}$ by $\bar{h}_{11}, \bar{h}_{12}, \bar{h}_{22}$.) Since $\bar{\omega}^{1}, \bar{\omega}^{2}$ are linearly independent forms, the first and third equations of (2.1) imply that $h_{12} \neq 0$. Using equation (2.2) we compute that

$$
\begin{aligned}
\bar{\omega}_{1}^{3} & =\left\langle d \overline{e_{1}}, \overline{e_{3}}\right\rangle \\
& =\left\langle d e_{1},(-\sin \alpha) e_{2}+(\cos \alpha) e_{3}\right\rangle \\
& =(\cos \alpha) \omega_{1}^{3}-(\sin \alpha) \omega_{1}^{2} \\
& =\frac{\sin \alpha}{r} \omega^{2} \\
\bar{\omega}_{2}^{3} & =\left\langle d \bar{e}_{2}, \bar{e}_{3}\right\rangle \\
& =\left\langle(\cos \alpha) d e_{2}+(\sin \alpha) d e_{3},(-\sin \alpha) e_{2}+(\cos \alpha) e_{3}\right\rangle \\
& =\left(\cos ^{2} \alpha\right) \omega_{2}^{3}-\left(\sin ^{2} \alpha\right) \omega_{3}^{2} \\
& =\omega_{2}^{3}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\bar{\omega}_{1}^{3} \wedge \bar{\omega}_{2}^{3} & =\frac{\sin \alpha}{r} \omega^{2} \wedge \omega_{2}^{3} \\
& =-\frac{\sin \alpha}{r} h_{12} \omega^{1} \wedge \omega^{2} .
\end{aligned}
$$

But by the last equation in (2.1) we also have

$$
\begin{aligned}
\bar{\omega}_{1}^{3} \wedge \bar{\omega}_{2}^{3} & =\bar{K} \bar{\omega}^{1} \wedge \bar{\omega}^{2} \\
& =\bar{K} \omega^{1} \wedge\left(\frac{r}{\sin \alpha} \omega_{1}^{3}\right) \\
& =\bar{K} \frac{r}{\sin \alpha} h_{12} \omega^{1} \wedge \omega^{2}
\end{aligned}
$$

Since $h_{12} \neq 0$, comparing coefficients yields

$$
\bar{K}=-\frac{\sin ^{2} \alpha}{r^{2}}
$$

An analogous argument shows that $K=-\frac{\sin ^{2} \alpha}{r^{2}}$ as well.
The map $f: \Sigma \rightarrow \bar{\Sigma}$ given by the line congruence is called a Bäcklund transformation of the surface Σ.

3. Pseudospherical surfaces and the sine-Gordon equation

Let Σ be a pseudospherical surface, and for simplicity assume that its Gauss curvature is $K=-1$. Since the Gauss curvature of Σ is negative, Σ must have no umbilic points. Therefore every point $x \in \Sigma$ has a neighborhood on which there exists a local coordinate chart whose coordinate curves are principal curves in Σ. In such a coordinate system $\left(u^{1}, u^{2}\right)$ we can choose an orthonormal frame $\left\{\underline{e}_{1}, \underline{e}_{2}\right\}$ with

$$
\underline{e}_{1}=\frac{1}{a_{1}} \frac{\partial}{\partial u^{1}} \underline{e}_{2}=\frac{1}{a_{2}} \frac{\partial}{\partial u^{2}}
$$

for some nonvanishing functions a_{1}, a_{2} on Σ. Then we have

$$
\underline{\omega}^{1}=a_{1} d u^{1}, \quad \underline{\omega}^{2}=a_{2} d u^{2}, \quad \underline{\omega}_{1}^{3}=\kappa_{1} a_{1} d u^{1}, \quad \underline{\omega}_{2}^{3}=\kappa_{2} a_{2} d u^{2}
$$

where κ_{1}, κ_{2} are the principal curvatures of Σ. The first and second fundamental forms of Σ are

$$
\begin{gathered}
I=\left(\underline{\omega}^{1}\right)^{2}+\left(\underline{\omega}^{2}\right)^{2}=\left(a_{1}\right)^{2}\left(d u^{1}\right)^{2}+\left(a_{2}\right)^{2}\left(d u^{2}\right)^{2} \\
I I=\underline{\omega}_{1}^{3} \underline{\omega}^{1}+\underline{\omega}_{2}^{3} \underline{\omega}^{2}=\kappa_{1}\left(a_{1}\right)^{2}\left(d u^{1}\right)^{2}+\kappa_{2}\left(a_{2}\right)^{2}\left(d u^{2}\right)^{2} .
\end{gathered}
$$

The structure equations of the Maurer-Cartan forms imply that

$$
\underline{\omega}_{2}^{1}=\frac{1}{a_{2}} \frac{\partial a_{1}}{\partial u^{2}} d u^{1}-\frac{1}{a_{1}} \frac{\partial a_{2}}{\partial u^{1}} d u^{2}
$$

and the Codazzi equations take the form

$$
\begin{aligned}
& \frac{1}{\kappa_{1}-\kappa_{2}} \frac{\partial \kappa_{1}}{\partial u^{2}}=-\frac{\partial\left(\ln a_{1}\right)}{\partial u^{2}} \\
& \frac{1}{\kappa_{2}-\kappa_{1}} \frac{\partial \kappa_{2}}{\partial u^{1}}=-\frac{\partial\left(\ln a_{2}\right)}{\partial u^{1}}
\end{aligned}
$$

Now since $K=-1$, we have $\kappa_{1} \kappa_{2}=-1$. Thus the Codazzi equations can be written as

$$
\begin{aligned}
& \frac{\kappa_{1}}{\kappa_{1}\left(\kappa_{1}-\kappa_{2}\right)} \frac{\partial \kappa_{1}}{\partial u^{2}}=-\frac{\partial\left(\ln a_{1}\right)}{\partial u^{2}} \\
& \frac{\kappa_{2}}{\kappa_{2}\left(\kappa_{2}-\kappa_{1}\right)} \frac{\partial \kappa_{2}}{\partial u^{1}}=-\frac{\partial\left(\ln a_{2}\right)}{\partial u^{1}}
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{1}{2} \frac{\partial\left(\ln \left(\kappa_{1}^{2}+1\right)\right)}{\partial u^{2}}=-\frac{\partial\left(\ln a_{1}\right)}{\partial u^{2}} \\
& \frac{1}{2} \frac{\partial\left(\ln \left(\kappa_{2}^{2}+1\right)\right)}{\partial u^{1}}=-\frac{\partial\left(\ln a_{2}\right)}{\partial u^{1}}
\end{aligned}
$$

Therefore there must exist functions $c_{1}\left(u^{1}\right), c_{2}\left(u^{2}\right)$ such that

$$
\kappa_{i}^{2}+1=\frac{c_{i}\left(u^{i}\right)}{a_{i}^{2}}, \quad i=1,2 .
$$

Making a change of coordinates of the form $\tilde{u}^{1}=\tilde{u}^{1}\left(u^{1}\right), \tilde{u}^{2}=\tilde{u}^{2}\left(u^{2}\right)$, we can assume that $c_{i} \equiv 1$. Then there exists a function ψ such that

$$
\kappa_{1}=\tan \psi, \quad \kappa_{2}=-\cot \psi, \quad a_{1}=\cos \psi, \quad a_{2}=\sin \psi
$$

so the first and second fundamental forms of Σ are

$$
\begin{gathered}
I=\cos ^{2} \psi\left(d u^{1}\right)^{2}+\sin ^{2} \psi\left(d u^{2}\right)^{2} \\
I I=\sin \psi \cos \psi\left(\left(d u^{1}\right)^{2}-\left(d u^{2}\right)^{2}\right)
\end{gathered}
$$

From this we can compute that the angle between the asymptotic directions at any point is 2ψ. The connection form is

$$
\underline{\omega}_{2}^{1}=-\frac{\partial \psi}{\partial u^{2}} d u^{1}-\frac{\partial \psi}{\partial u^{1}} d u^{2}
$$

and the Gauss equation is equivalent to

$$
\frac{\partial^{2} \psi}{\partial\left(u^{1}\right)^{2}}-\frac{\partial^{2} \psi}{\partial\left(u^{2}\right)^{2}}=\sin \psi \cos \psi
$$

In other words, the angle $\phi=2 \psi$ between the asymptotic directions satisfies the sine-Gordon equation

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial\left(u^{1}\right)^{2}}-\frac{\partial^{2} \phi}{\partial\left(u^{2}\right)^{2}}=\sin \phi \tag{3.1}
\end{equation*}
$$

In fact, there is a one-to-one correspondence between local solutions ϕ of the sine-Gordon equation with $0<\phi<\pi$ and local surfaces of constant Gauss curvature $K=-1$ in \mathbb{E}^{3} up to rigid motion.

Exercises

1. Consider the change of coordinates

$$
x=\frac{1}{2}\left(u^{1}+u^{2}\right), \quad y=\frac{1}{2}\left(u^{1}-u^{2}\right)
$$

where u^{1}, u^{2} are the coordinates for which

$$
\begin{aligned}
& I=\cos ^{2} \psi\left(d u^{1}\right)^{2}+\sin ^{2} \psi\left(d u^{2}\right)^{2} \\
& I I=\sin \psi \cos \psi\left(\left(d u^{1}\right)^{2}-\left(d u^{2}\right)^{2}\right)
\end{aligned}
$$

on the surface Σ with $K=-1$.
a) Show that x, y are asymptotic coordinates on Σ (this is equivalent to the statement that $I I=f d x d y$ for some function f on Σ) and that the first and second fundamental forms on Σ are

$$
\begin{gathered}
I=d x^{2}+2 \cos (2 \psi) d x d y+d y^{2} \\
I I=2 \sin (2 \psi) d x d y
\end{gathered}
$$

b) Show that the Maurer-Cartan forms corresponding to the principal frame $\left\{\underline{e}_{1}, \underline{e}_{2}, \underline{e}_{3}\right\}$ are

$$
\begin{aligned}
& \underline{\omega}^{1}=\cos \psi(d x+d y) \\
& \underline{\omega}^{2}=\sin \psi(d x-d y) \\
& \underline{\omega}_{1}^{3}=\sin \psi(d x+d y) \\
& \underline{\omega}_{2}^{3}=-\cos \psi(d x-d y) \\
& \underline{\omega}_{2}^{1}=\frac{\partial \psi}{\partial y} d y-\frac{\partial \psi}{\partial x} d x
\end{aligned}
$$

c) Show that in these coordinates, the sine-Gordon equation takes the form

$$
\frac{\partial^{2} \phi}{\partial x \partial y}=\sin \phi
$$

2. Suppose that we have a Bäcklund transformation between two pseudospherical surfaces $\Sigma, \bar{\Sigma}$ with $K=-1$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the frame adapted to the transformation as in the lecture, and let η denote the angle between e_{1} and \underline{e}_{1}. Then we have

$$
\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]=\left[\begin{array}{ll}
\underline{e}_{1} & \underline{e}_{2}
\end{array}\right]\left[\begin{array}{cc}
\cos \eta & -\sin \eta \\
\sin \eta & \cos \eta
\end{array}\right] .
$$

a) Show that

$$
\begin{aligned}
& {\left[\begin{array}{c}
\omega^{1} \\
\omega^{2}
\end{array}\right]=} {\left[\begin{array}{cc}
\cos \eta & \sin \eta \\
-\sin \eta & \cos \eta
\end{array}\right]\left[\begin{array}{l}
\underline{\omega}^{1} \\
\underline{\omega}^{2}
\end{array}\right] } \\
& {\left[\begin{array}{c}
\omega_{1}^{3} \\
\omega_{2}^{3}
\end{array}\right]=\left[\begin{array}{cc}
\cos \eta & \sin \eta \\
-\sin \eta & \cos \eta
\end{array}\right]\left[\begin{array}{l}
\underline{\omega}_{1}^{3} \\
\underline{\omega}_{2}^{3}
\end{array}\right] } \\
& \omega_{2}^{1}=\underline{\omega}_{2}^{1}-d \eta .
\end{aligned}
$$

b) Show that the Bäcklund equation (2.2) is equivalent to the first-order system of partial differential equations

$$
\begin{aligned}
& \psi_{x}+\eta_{x}=\lambda \sin (\psi-\eta) \\
& \psi_{y}-\eta_{y}=\frac{1}{\lambda} \sin (\psi+\eta)
\end{aligned}
$$

where $\lambda=\cot \alpha-\csc \alpha$ is constant.
3. Suppose that $\psi(x, y), \eta(x, y)$ are any two solutions of the PDE system

$$
\begin{align*}
& \psi_{x}+\eta_{x}=\lambda \sin (\psi-\eta) \tag{3.2}\\
& \psi_{y}-\eta_{y}=\frac{1}{\lambda} \sin (\psi+\eta)
\end{align*}
$$

where $\lambda \neq 0$ is constant.
a) Show that the functions $2 \psi, 2 \eta$ must both be solutions of the sine-Gordon equation

$$
\frac{\partial^{2} \phi}{\partial x \partial y}=\sin \phi
$$

b) If 2ψ is any known solution of the sine-Gordon equation, then the system (3.2) is a compatible, overdetermined system for the unknown function η. Therefore it can be solved using only techniques of ordinary differential equations. The system (3.2) is called a Bäcklund transformation for the sine-Gordon solution. Suppose that ψ is the trivial solution $\psi(x, y) \equiv 0$. Show that the corresponding solutions η are

$$
\eta(x, y)=2 \tan ^{-1}\left(C e^{-\left(\lambda x+\frac{1}{\lambda} y\right)}\right)
$$

where $C \neq 0$ is constant. (Hint: you may find the trig identity $\csc \eta+\cot \eta=$ $\cot \left(\frac{1}{2} \eta\right)$ useful.) The functions

$$
2 \eta=4 \tan ^{-1}\left(C e^{-\left(\lambda x+\frac{1}{\lambda} y\right)}\right)
$$

are called the 1 -soliton solutions of the sine-Gordon equation. Iterating this procedure gives the 2 -solitons, etc. The trivial solution $\psi=0$ corresponds to the degenerate "surface" consisting of a straight line in \mathbb{E}^{3}, while the family of surfaces corresponding to the 1 -solitons includes the classical pseudosphere.

