LECTURE 7: MINIMALITY AND VARIATIONAL CALCULATIONS

1. Minimal surfaces in \mathbb{E}^{3}

We will say that a regular surface in \mathbb{E}^{3} is minimal if it is locally area minimizing. More precisely, $\Sigma \subset \mathbb{E}^{3}$ is minimal if for any sufficiently small open set $U \subset \Sigma, U$ has the minimum area of all surfaces in \mathbb{E}^{3} with the same boundary as U. Classical examples are the plane, catenoid, and helicoid.

How would we go about finding minimal surfaces? If we define the area functional of a surface Σ to be

$$
\mathcal{A}(\Sigma)=\int_{\Sigma} d A
$$

then minimal surfaces should be critical points of this functional. But the space of surfaces in \mathbb{E}^{3} is infinite-dimensional, so finding critical points of the functional \mathcal{A} is somewhat complicated. The idea goes something like this: if Σ is a critical point of \mathcal{A}, then for any smooth curve $t \rightarrow \Sigma_{t}$ in the space of surfaces in \mathbb{E}^{3} with $\Sigma_{0}=\Sigma$ we should have

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right)=0
$$

Conversely, if Σ is not a critical point of \mathcal{A} then there must exist a smooth curve $t \rightarrow \Sigma_{t}$ with $\Sigma_{0}=\Sigma$ and $\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right) \neq 0$.

In order to make use of this idea we have to define what we mean by a smooth curve in the space of surfaces in \mathbb{E}^{3}. This leads us to the notion of a variation of a surface Σ. Given a regular surface $x: \Sigma \rightarrow \mathbb{E}^{3}$, consider a smooth map

$$
X: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{E}^{3}
$$

where $\Sigma_{t}=X(\Sigma, t) \subset \mathbb{E}^{3}$ is a regular surface for all $t \in(-\varepsilon, \varepsilon)$ and $\Sigma_{0}=\Sigma$. Such a map is called a variation of Σ. The variation is said to be compactly supported if there is a compact set U in the interior of Σ such that for every $t \in(-\varepsilon, \varepsilon)$,

$$
X(x, t)=X(x, 0)
$$

for all $x \in \Sigma \backslash U$. If X is a compactly supported variation of Σ and Σ is a critical point of \mathcal{A}, then

$$
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right)=0 .
$$

Conversely, if $\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right)=0$ for every compactly supported variation of Σ, then Σ is a critical point of the functional \mathcal{A}. We will use this fact to investigate minimal surfaces.

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame on Σ with e_{3} normal to the tangent plane $T_{x} \Sigma$ at each point $x \in \Sigma$. Recall that when the Maurer-Cartan forms of \mathbb{E}^{3} are restricted to this frame, we have $\omega^{3}=0$ and

$$
\left[\begin{array}{l}
\omega_{1}^{3} \\
\omega_{2}^{3}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]\left[\begin{array}{l}
\omega^{1} \\
\omega^{2}
\end{array}\right] .
$$

Rotating the frame $\left\{e_{1}, e_{2}\right\}$ changes the matrix $\left[h_{i j}\right]$, but its determinant $K=h_{11} h_{22}-h_{12}^{2}$ and its trace $2 H=h_{11}+h_{22}$ are invariant under such changes of frame. K is the Gauss curvature of Σ at x, and H is called the mean curvature of Σ at x.

Now consider a compactly supported variation

$$
X: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{E}^{3}
$$

Since reparametrizing the surface does not affect the area functional, we can assume that X is a normal variation of Σ. This means that the vector $\frac{\partial X}{\partial t}$ is parallel to the unit normal of the surface Σ_{t} at each point. In order to compute $\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right)$, we will define a frame on the variation X (i.e., a lifting $\tilde{X}: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow E(3))$ and consider the restriction of the Maurer-Cartan forms on \mathbb{E}^{3} to this frame. For each $(x, t) \in \Sigma \times(-\varepsilon, \varepsilon)$, let $\left\{e_{1}(x, t), e_{2}(x, t), e_{3}(x, t)\right\}$ be an orthonormal frame for the surface Σ_{t} at x with e_{3} normal to the tangent plane $T_{x} \Sigma_{t}$. The restrictions of the forms $\omega^{1}, \omega^{2}, \omega^{3}$ to this frame are defined by the equation

$$
d X=\sum_{i=1}^{3} e_{i} \omega^{i}
$$

Because $\left\{e_{1}, e_{2}, e_{3}\right\}$ is adapted to the surface Σ_{t}, the forms

$$
\begin{aligned}
\omega^{1} & =\left\langle d X, e_{1}\right\rangle \\
\omega^{2} & =\left\langle d X, e_{2}\right\rangle
\end{aligned}
$$

are the usual dual forms on the surface Σ_{t}. But instead of having $\omega^{3}=0$, we have

$$
\omega^{3}=\left\langle d X, e_{3}\right\rangle=\left|\frac{\partial X}{\partial t}\right| d t
$$

Set $f(x, t)=\left|\frac{\partial X}{\partial t}\right|$. Then $\omega^{3}=f d t$. Differentiating this equation yields

$$
-\omega_{1}^{3} \wedge \omega^{1}-\omega_{2}^{3} \wedge \omega^{2}=d f \wedge d t
$$

and therefore

$$
\omega_{1}^{3} \wedge \omega^{1}+\omega_{2}^{3} \wedge \omega^{2}+d f \wedge d t=0
$$

By Cartan's Lemma,

$$
\left[\begin{array}{l}
\omega_{1}^{3} \\
\omega_{2}^{3} \\
d f
\end{array}\right]=\left[\begin{array}{ccc}
h_{11} & h_{12} & f_{1} \\
h_{12} & h_{22} & f_{2} \\
f_{1} & f_{2} & f_{3}
\end{array}\right]\left[\begin{array}{c}
\omega^{1} \\
\omega^{2} \\
d t
\end{array}\right]
$$

for some functions $h_{11}, h_{12}, h_{22}, f_{1}, f_{2}, f_{3}$ on $\Sigma \times(-\varepsilon, \varepsilon)$. The $h_{i j}$ are the coefficients of the second fundamental form of the surface Σ_{t}, while the f_{i} are the directional derivatives of f in the directions of the e_{i}.
Now the area form on the surface Σ_{t} is $d A=\omega^{1} \wedge \omega^{2}$, so the area functional is

$$
\mathcal{A}\left(\Sigma_{t}\right)=\int_{\Sigma_{t}} \omega^{1} \wedge \omega^{2} .
$$

Its derivative at $t=0$ is

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right) & =\left.\frac{d}{d t}\right|_{t=0} \int_{\Sigma_{t}} \omega^{1} \wedge \omega^{2} \\
& =\int_{\Sigma} \mathcal{L}_{\partial / \partial t}\left(\omega^{1} \wedge \omega^{2}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner d\left(\omega^{1} \wedge \omega^{2}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner\left(-\omega_{3}^{1} \wedge \omega^{3} \wedge \omega^{2}+\omega^{1} \wedge \omega_{3}^{2} \wedge \omega^{3}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner\left(-h_{11}-h_{22}\right) f \omega^{1} \wedge \omega^{2} \wedge d t \\
& =\int_{\Sigma}-2 H f \omega^{1} \wedge \omega^{2} .
\end{aligned}
$$

This computation shows that the derivative of the area functional at $t=0$ is the integral over Σ of the function $H\left|\frac{\partial X}{\partial t}\right|$. This integral vanishes for all compactly supported normal variations of Σ if and only if the mean curvature H of Σ is identically zero.

We have proved the following theorem, which is often taken as a definition of minimal surfaces:

Theorem: A regular surface in \mathbb{E}^{3} is minimal if and only if its mean curvature H is identically zero.

2. Minimal surfaces in \mathbb{A}^{3}

Recall that for elliptic surfaces $\Sigma \subset \mathbb{A}^{3}$ we found adapted frames $\left\{e_{1}, e_{2}, e_{3}\right\}$ for which the Maurer-Cartan forms satisfy the conditions

$$
\omega_{1}^{3}=\omega^{1}, \quad \omega_{2}^{3}=\omega^{2}, \quad \omega_{3}^{3}=0 .
$$

Such a frame is determined up to a transformation of the form

$$
\left[\begin{array}{lll}
\tilde{e}_{1} & \tilde{e}_{2} & \tilde{e}_{3}
\end{array}\right]=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]\left[\begin{array}{cc}
B & 0 \\
0 & 0
\end{array} 1\right]
$$

with $B \in S O(2)$, and we also have

$$
\left[\begin{array}{l}
\omega_{3}^{1} \\
\omega_{3}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\ell_{11} & \ell_{12} \\
\ell_{12} & \ell_{22}
\end{array}\right]\left[\begin{array}{l}
\omega^{1} \\
\omega^{2}
\end{array}\right]
$$

for some functions $\ell_{11}, \ell_{12}, \ell_{22}$. The quadratic forms

$$
\begin{gathered}
I=\omega_{1}^{3} \omega^{1}+\omega_{2}^{3} \omega^{2}=\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2} \\
I I=\omega_{3}^{1} \omega^{1}+\omega_{3}^{2} \omega^{1}=\ell_{11}\left(\omega^{1}\right)^{2}+2 \ell_{12} \omega^{1} \omega^{2}+\ell_{22}\left(\omega^{2}\right)^{2}
\end{gathered}
$$

are well-defined; the affine first fundamental form I defines a metric on Σ, and the affine second fundamental form $I I$ is the analog of the second fundamental form for surfaces in \mathbb{E}^{3}. Its trace

$$
2 L=\ell_{11}+\ell_{22}
$$

is well-defined, and the quantity L is called the affine mean curvature of Σ.
The affine first fundamental form gives rise to a well-defined affine area form $d A=\omega^{1} \wedge \omega^{2}$ on Σ, and we define the affine area of Σ to be

$$
\mathcal{A}(\Sigma)=\int_{\Sigma} \omega^{1} \wedge \omega^{2}
$$

By analogy with the Euclidean case, we can ask what properties a surface $\Sigma \subset \mathbb{A}^{3}$ must satisfy in order to be a critical point of this area functional. Such surfaces are called affine minimal surfaces.

We proceed as in the Euclidean case by considering a compactly supported normal variation

$$
X: \Sigma \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{A}^{3}
$$

Here "normal" means that the vector $\frac{\partial X}{\partial t}$ is parallel to the affine normal of the surface $\Sigma_{t}=X(\Sigma, t)$ at each point. For each $(x, t) \in \Sigma \times(-\varepsilon, \varepsilon)$ let $\left\{e_{1}(x, t), e_{2}(x, t), e_{3}(x, t)\right\}$ be a frame for the surface Σ_{t} at x which is adapted as described above. As in the Euclidean case, the Maurer-Cartan forms ω^{1}, ω^{2} are the usual dual forms on the surface Σ_{t}, while $\omega^{3}=f d t$ where $f(x, t)=\left|\frac{\partial X}{\partial t}\right|$. The derivative of the affine area functional at $t=0$
is

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0} \mathcal{A}\left(\Sigma_{t}\right) & =\left.\frac{d}{d t}\right|_{t=0} \int_{\Sigma_{t}} \omega^{1} \wedge \omega^{2} \\
& =\int_{\Sigma} \mathcal{L}_{\partial / \partial t}\left(\omega^{1} \wedge \omega^{2}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner d\left(\omega^{1} \wedge \omega^{2}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner\left(-\omega_{1}^{1} \wedge \omega^{1} \wedge \omega^{2}-\omega_{3}^{1} \wedge \omega^{3} \wedge \omega^{2}\right. \\
& \left.+\omega^{1} \wedge \omega_{2}^{2} \wedge \omega^{2}+\omega^{1} \wedge \omega_{3}^{2} \wedge \omega^{3}\right) \\
& \left.=\int_{\Sigma} \frac{\partial}{\partial t}\right\lrcorner\left(\ell_{11}+\ell_{22}\right) f \omega^{1} \wedge \omega^{2} \wedge d t \\
& 2 L \omega^{1} \wedge \omega^{2}
\end{aligned}
$$

This integral vanishes for all compactly supported normal variations of Σ if and only if the affine mean curvature L of Σ is identically zero. Thus we have proved the following theorem:

Theorem: A regular surface in \mathbb{A}^{3} is affine minimal if and only if its affine mean curvature L is identically zero.

Exercises

1. The catenoid is the surface $\Sigma \subset \mathbb{E}^{3}$ obtained by rotating the curve $x=\cosh z$ about the z axis. It can be parametrized by

$$
x(u, v)=(\cos (u) \cosh (v), \sin (u) \cosh (v), v)
$$

a) Show that the frame

$$
\begin{aligned}
e_{1} & =\frac{x_{u}}{\left|x_{u}\right|}=(-\sin (u), \cos (u), 0) \\
e_{2} & =\frac{x_{v}}{\left|x_{v}\right|}=\frac{1}{\cosh (v)}(\cos (u) \sinh (v), \sin (u) \sinh (v), 1) \\
e_{3} & =e_{1} \times e_{2}=\frac{1}{\cosh (v)}(\cos (u), \sin (u),-\sinh (v))
\end{aligned}
$$

is orthonormal and that e_{1}, e_{2} span the tangent space to Σ at each point.
b) Show that the dual forms of this frame are

$$
\omega^{1}=\cosh (v) d u, \quad \omega^{2}=\cosh (v) d v
$$

c) Compute $d e_{3}$ and show that

$$
\omega_{1}^{3}=-\frac{1}{\cosh (v)} d u, \quad \omega_{2}^{3}=\frac{1}{\cosh (v)} d v .
$$

Use this to compute the matrix $\left[h_{i j}\right]$ and show that the mean curvature of Σ is $H \equiv 0$.
2. Repeat the computation of Exercise 1 for an arbitrary surface of revolution parametrized by

$$
x(u, v)=(f(v) \cos (u), f(v) \sin (u), v)
$$

(you may want to use a computer algebra package such as Maple to assist with part c) and show that the surface is minimal if and only if f satisfies the differential equation

$$
f f^{\prime \prime}=\left(f^{\prime}\right)^{2}+1 .
$$

Show that the only solutions of this equation are

$$
f(v)=\frac{1}{a} \cosh (a v+b)
$$

where a, b are constants. Conclude that catenoids are the only non-planar minimal surfaces of revolution.
3. The helicoid is the ruled surface $\Sigma \subset \mathbb{E}^{3}$ parametrized by

$$
x(u, v)=(v \cos (u), v \sin (u), u) .
$$

a) Show that the frame

$$
\begin{aligned}
& e_{1}=\frac{x_{u}}{\left|x_{u}\right|}=\frac{1}{\sqrt{v^{2}+1}}(-v \sin (u), v \cos (u), 1) \\
& e_{2}=\frac{x_{v}}{\left|x_{v}\right|}=(\cos (u), \sin (u), 0) \\
& e_{3}=e_{1} \times e_{2}=\frac{1}{\sqrt{v^{2}+1}}(-\sin (u), \cos (u),-v)
\end{aligned}
$$

is orthonormal and that e_{1}, e_{2} span the tangent space to Σ at each point.
b) Show that the dual forms of this frame are

$$
\omega^{1}=\sqrt{v^{2}+1} d u, \quad \omega^{2}=d v .
$$

c) Compute $d e_{3}$ and show that

$$
\omega_{1}^{3}=\frac{1}{v^{2}+1} d v, \quad \omega_{2}^{3}=\frac{1}{\sqrt{v^{2}+1}} d u .
$$

Use this to compute the matrix $\left[h_{i j}\right]$ and show that the mean curvature of Σ is $H \equiv 0$.
4. a) Show that for any values of a, b, c with $a c-b^{2}>0$ the elliptic paraboloid $z=a x^{2}+b x y+c y^{2}$ is affinely equivalent to the paraboloid $\Sigma \subset \mathbb{A}^{3}$ given by $z=\frac{1}{2}\left(x^{2}+y^{2}\right)$.
b) Show that the affine frame

$$
\begin{aligned}
& e_{1}=(1,0, x) \\
& e_{2}=(0,1, y) \\
& e_{3}=(0,0,1)
\end{aligned}
$$

is adapted to Σ. Compute its dual and connection forms and show that they satisfy the conditions

$$
\begin{aligned}
\omega_{1}^{3} & =\omega^{1} \\
\omega_{2}^{3} & =\omega^{2} \\
\omega_{3}^{3} & =0
\end{aligned}
$$

c) Show that the affine mean curvature of Σ is identically zero. Conclude that any elliptic paraboloid is affine minimal.
5. (This exercise should be done with the aid of a computer algebra package such as Maple.) Suppose that a surface $\Sigma \subset \mathbb{A}^{3}$ is described by a graph $z=f(x, y)$. Consider the affine frame

$$
\begin{aligned}
& \underline{e}_{1}=\left(1,0, f_{x}\right) \\
& \underline{e}_{2}=\left(0,1, f_{y}\right) \\
& \underline{e}_{3}=(0,0,1)
\end{aligned}
$$

a) Show that the dual forms of this frame are

$$
\underline{\omega}^{1}=d x, \quad \underline{\omega}^{2}=d y, \quad \underline{\omega}^{3}=0
$$

and that the only nonzero connection forms are

$$
\begin{aligned}
\underline{\omega}_{1}^{3} & =f_{x x} d x+f_{x y} d y \\
\underline{\omega}_{2}^{3} & =f_{x y} d x+f_{y y} d y
\end{aligned}
$$

Thus we have

$$
\left[\begin{array}{ll}
\underline{h}_{11} & \underline{h}_{12} \\
\underline{h}_{12} & \underline{h}_{22}
\end{array}\right]=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right] .
$$

Assume that $f_{x x} f_{y y}-f_{x y}^{2}>0$, so that Σ is elliptic, and for simplicity assume that $f_{x x}>0$. In order to decide whether Σ is affine minimal, we must adapt frames so that

$$
\begin{aligned}
\omega_{1}^{3} & =\omega^{1} \\
\omega_{2}^{3} & =\omega^{2} \\
\omega_{3}^{3} & =0
\end{aligned}
$$

Consider an affine change of frame

$$
\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
\underline{e}_{1} & \underline{e}_{2} & \underline{e}_{3}
\end{array}\right]\left[\begin{array}{cc}
B & r_{1} \\
0 & 0
\end{array}\left(\begin{array}{c}
r_{2} \\
\operatorname{det} B)^{-1}
\end{array}\right]\right.
$$

with $B \in G L(2)$.
b) Show that if we take

$$
B=\left[\begin{array}{cc}
\frac{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 8}}{\sqrt{f_{x x}}} & -\frac{f_{x y}}{\sqrt{f_{x x}}\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{3 / 8}} \\
0 & \frac{\sqrt{f_{x x}}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{3 / 8}}
\end{array}\right]
$$

then

$$
\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so $\omega_{1}^{3}=\omega^{1}, \omega_{2}^{3}=\omega^{2}$.
c) Show that under this change of basis (with r_{1}, r_{2} still arbitrary),

$$
\begin{aligned}
\omega_{3}^{3} & =\left[\frac{f_{x x} r_{1}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 4}}+\frac{f_{x y} r_{2}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 4}}+\frac{f_{x x} f_{x y y}-2 f_{x y} f_{x x y}+f_{y y} f_{x x x}}{4\left(f_{x x} f_{y y}-f_{x y}^{2}\right)}\right] d x \\
& +\left[\frac{f_{x y} r_{1}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 4}}+\frac{f_{y y} r_{2}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 4}}+\frac{f_{x x} f_{y y y}-2 f_{x y} f_{x y y}+f_{y y} f_{x x y}}{4\left(f_{x x} f_{y y}-f_{x y}^{2}\right)}\right] d y .
\end{aligned}
$$

Conclude that by choosing

$$
\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]=-\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]^{-1}\left[\begin{array}{l}
\frac{f_{x x} f_{x y y}-2 f_{x y} f_{x x y}+f_{y y} f_{x x x}}{4\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{3 / 4}} \\
\frac{f_{x x} f_{y y y}-2 f_{x y} f_{x y y}+f_{y y} f_{x x y}}{4\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{3 / 4}}
\end{array}\right]
$$

we can arrange that $\omega_{3}^{3}=0$.
d) Show that under this change of frame we have

$$
\begin{gathered}
\omega^{1}=\frac{\sqrt{f_{x x}}}{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 8}} d x+\frac{f_{x y}}{\sqrt{f_{x x}}\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{1 / 8}} d y \\
\omega^{2}=\frac{\left(f_{x x} f_{y y}-f_{x y}^{2}\right)^{3 / 8}}{\sqrt{f_{x x}}} d y
\end{gathered}
$$

Also compute $\omega_{3}^{1}, \omega_{3}^{2}$ and find the functions $\ell_{i j}$ such that

$$
\left[\begin{array}{l}
\omega_{3}^{1} \\
\omega_{3}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\ell_{11} & \ell_{12} \\
\ell_{12} & \ell_{22}
\end{array}\right]\left[\begin{array}{l}
\omega^{1} \\
\omega^{2}
\end{array}\right] .
$$

Show that the affine mean curvature equation

$$
L=\ell_{11}+\ell_{22}=0
$$

is a fourth-order differential equation for f. Pretty messy, huh?

