LECTURE 7: MINIMALITY AND VARIATIONAL CALCULATIONS

1. MINIMAL SURFACES IN \mathbb{E}^3

We will say that a regular surface in \mathbb{E}^3 is *minimal* if it is locally area minimizing. More precisely, $\Sigma \subset \mathbb{E}^3$ is minimal if for any sufficiently small open set $U \subset \Sigma$, U has the minimum area of all surfaces in \mathbb{E}^3 with the same boundary as U. Classical examples are the plane, catenoid, and helicoid.

How would we go about finding minimal surfaces? If we define the *area* functional of a surface Σ to be

$$\mathcal{A}(\Sigma) = \int_{\Sigma} dA$$

then minimal surfaces should be critical points of this functional. But the space of surfaces in \mathbb{E}^3 is infinite-dimensional, so finding critical points of the functional \mathcal{A} is somewhat complicated. The idea goes something like this: if Σ is a critical point of \mathcal{A} , then for any smooth curve $t \to \Sigma_t$ in the space of surfaces in \mathbb{E}^3 with $\Sigma_0 = \Sigma$ we should have

$$\frac{d}{dt}|_{t=0} \mathcal{A}(\Sigma_t) = 0.$$

Conversely, if Σ is not a critical point of \mathcal{A} then there must exist a smooth curve $t \to \Sigma_t$ with $\Sigma_0 = \Sigma$ and $\frac{d}{dt}|_{t=0} \mathcal{A}(\Sigma_t) \neq 0$.

In order to make use of this idea we have to define what we mean by a smooth curve in the space of surfaces in \mathbb{E}^3 . This leads us to the notion of a variation of a surface Σ . Given a regular surface $x : \Sigma \to \mathbb{E}^3$, consider a smooth map

$$X: \Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{E}^3$$

where $\Sigma_t = X(\Sigma, t) \subset \mathbb{E}^3$ is a regular surface for all $t \in (-\varepsilon, \varepsilon)$ and $\Sigma_0 = \Sigma$. Such a map is called a *variation* of Σ . The variation is said to be *compactly* supported if there is a compact set U in the interior of Σ such that for every $t \in (-\varepsilon, \varepsilon)$,

$$X(x,t) = X(x,0)$$

for all $x \in \Sigma \setminus U$. If X is a compactly supported variation of Σ and Σ is a critical point of \mathcal{A} , then

$$\frac{d}{dt}\mid_{t=0} \mathcal{A}(\Sigma_t) = 0.$$

Conversely, if $\frac{d}{dt}|_{t=0} \mathcal{A}(\Sigma_t) = 0$ for *every* compactly supported variation of Σ , then Σ is a critical point of the functional \mathcal{A} . We will use this fact to investigate minimal surfaces.

Let $\{e_1, e_2, e_3\}$ be an orthonormal frame on Σ with e_3 normal to the tangent plane $T_x \Sigma$ at each point $x \in \Sigma$. Recall that when the Maurer-Cartan forms of \mathbb{E}^3 are restricted to this frame, we have $\omega^3 = 0$ and

$$\begin{bmatrix} \omega_1^3 \\ \omega_2^3 \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} \begin{bmatrix} \omega^1 \\ \omega^2 \end{bmatrix}.$$

Rotating the frame $\{e_1, e_2\}$ changes the matrix $[h_{ij}]$, but its determinant $K = h_{11}h_{22} - h_{12}^2$ and its trace $2H = h_{11} + h_{22}$ are invariant under such changes of frame. K is the Gauss curvature of Σ at x, and H is called the *mean curvature* of Σ at x.

Now consider a compactly supported variation

 $X: \Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{E}^3.$

Since reparametrizing the surface does not affect the area functional, we can assume that X is a normal variation of Σ . This means that the vector $\frac{\partial X}{\partial t}$ is parallel to the unit normal of the surface Σ_t at each point. In order to compute $\frac{d}{dt}|_{t=0} \mathcal{A}(\Sigma_t)$, we will define a frame on the variation X (i.e., a lifting $\tilde{X} : \Sigma \times (-\varepsilon, \varepsilon) \to E(3)$) and consider the restriction of the Maurer-Cartan forms on \mathbb{E}^3 to this frame. For each $(x,t) \in \Sigma \times (-\varepsilon, \varepsilon)$, let $\{e_1(x,t), e_2(x,t), e_3(x,t)\}$ be an orthonormal frame for the surface Σ_t at x with e_3 normal to the tangent plane $T_x \Sigma_t$. The restrictions of the forms $\omega^1, \omega^2, \omega^3$ to this frame are defined by the equation

$$dX = \sum_{i=1}^{3} e_i \,\omega^i.$$

Because $\{e_1, e_2, e_3\}$ is adapted to the surface Σ_t , the forms

$$\omega^{1} = \langle dX, e_{1} \rangle$$
$$\omega^{2} = \langle dX, e_{2} \rangle$$

are the usual dual forms on the surface Σ_t . But instead of having $\omega^3 = 0$, we have

$$\omega^3 = \langle dX, e_3 \rangle = \left| \frac{\partial X}{\partial t} \right| dt.$$

Set $f(x,t) = \left|\frac{\partial X}{\partial t}\right|$. Then $\omega^3 = f \, dt$. Differentiating this equation yields

$$-\omega_1^3 \wedge \omega^1 - \omega_2^3 \wedge \omega^2 = df \wedge dt,$$

and therefore

$$\omega_1^3 \wedge \omega^1 + \omega_2^3 \wedge \omega^2 + df \wedge dt = 0.$$

48

By Cartan's Lemma,

$$\begin{bmatrix} \omega_1^3 \\ \omega_2^2 \\ df \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & f_1 \\ h_{12} & h_{22} & f_2 \\ f_1 & f_2 & f_3 \end{bmatrix} \begin{bmatrix} \omega^1 \\ \omega^2 \\ dt \end{bmatrix}$$

for some functions $h_{11}, h_{12}, h_{22}, f_1, f_2, f_3$ on $\Sigma \times (-\varepsilon, \varepsilon)$. The h_{ij} are the coefficients of the second fundamental form of the surface Σ_t , while the f_i are the directional derivatives of f in the directions of the e_i .

Now the area form on the surface Σ_t is $dA = \omega^1 \wedge \omega^2$, so the area functional is

$$\mathcal{A}(\Sigma_t) = \int_{\Sigma_t} \omega^1 \wedge \omega^2.$$

Its derivative at t = 0 is

$$\frac{d}{dt}|_{t=0} \mathcal{A}(\Sigma_t) = \frac{d}{dt}|_{t=0} \int_{\Sigma_t} \omega^1 \wedge \omega^2
= \int_{\Sigma} \mathcal{L}_{\partial/\partial t}(\omega^1 \wedge \omega^2)
= \int_{\Sigma} \frac{\partial}{\partial t} \, \Box \, d(\omega^1 \wedge \omega^2)
= \int_{\Sigma} \frac{\partial}{\partial t} \, \Box \, (-\omega_3^1 \wedge \omega^3 \wedge \omega^2 + \omega^1 \wedge \omega_3^2 \wedge \omega^3)
= \int_{\Sigma} \frac{\partial}{\partial t} \, \Box \, (-h_{11} - h_{22}) f \, \omega^1 \wedge \omega^2 \wedge dt
= \int_{\Sigma} -2Hf \, \omega^1 \wedge \omega^2.$$

This computation shows that the derivative of the area functional at t = 0is the integral over Σ of the function $H|\frac{\partial X}{\partial t}|$. This integral vanishes for all compactly supported normal variations of Σ if and only if the mean curvature H of Σ is identically zero.

We have proved the following theorem, which is often taken as a definition of minimal surfaces:

Theorem: A regular surface in \mathbb{E}^3 is minimal if and only if its mean curvature H is identically zero.

2. Minimal surfaces in \mathbb{A}^3

Recall that for elliptic surfaces $\Sigma \subset \mathbb{A}^3$ we found adapted frames $\{e_1, e_2, e_3\}$ for which the Maurer-Cartan forms satisfy the conditions

$$\omega_1^3 = \omega^1, \qquad \omega_2^3 = \omega^2, \qquad \omega_3^3 = 0.$$

Such a frame is determined up to a transformation of the form

$$\begin{bmatrix} \tilde{e}_1 & \tilde{e}_2 & \tilde{e}_3 \end{bmatrix} = \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

with $B \in SO(2)$, and we also have

$$\begin{bmatrix} \omega_3^1 \\ \omega_3^2 \end{bmatrix} = \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{12} & \ell_{22} \end{bmatrix} \begin{bmatrix} \omega^1 \\ \omega^2 \end{bmatrix}$$

for some functions $\ell_{11}, \ell_{12}, \ell_{22}$. The quadratic forms

$$I = \omega_1^3 \,\omega^1 + \omega_2^3 \,\omega^2 = (\omega^1)^2 + (\omega^2)^2$$
$$II = \omega_3^1 \,\omega^1 + \omega_3^2 \,\omega^1 = \ell_{11}(\omega^1)^2 + 2\ell_{12} \,\omega^1 \,\omega^2 + \ell_{22}(\omega^2)^2$$

are well-defined; the affine first fundamental form I defines a metric on Σ , and the affine second fundamental form II is the analog of the second fundamental form for surfaces in \mathbb{E}^3 . Its trace

$$2L = \ell_{11} + \ell_{22}$$

is well-defined, and the quantity L is called the *affine mean curvature* of Σ .

The affine first fundamental form gives rise to a well-defined affine area form $dA = \omega^1 \wedge \omega^2$ on Σ , and we define the affine area of Σ to be

$$\mathcal{A}(\Sigma) = \int_{\Sigma} \omega^1 \wedge \omega^2.$$

By analogy with the Euclidean case, we can ask what properties a surface $\Sigma \subset \mathbb{A}^3$ must satisfy in order to be a critical point of this area functional. Such surfaces are called *affine minimal surfaces*.

We proceed as in the Euclidean case by considering a compactly supported normal variation

$$X: \Sigma \times (-\varepsilon, \varepsilon) \to \mathbb{A}^3.$$

Here "normal" means that the vector $\frac{\partial X}{\partial t}$ is parallel to the affine normal of the surface $\Sigma_t = X(\Sigma, t)$ at each point. For each $(x, t) \in \Sigma \times (-\varepsilon, \varepsilon)$ let $\{e_1(x, t), e_2(x, t), e_3(x, t)\}$ be a frame for the surface Σ_t at x which is adapted as described above. As in the Euclidean case, the Maurer-Cartan forms ω^1, ω^2 are the usual dual forms on the surface Σ_t , while $\omega^3 = f dt$ where $f(x, t) = |\frac{\partial X}{\partial t}|$. The derivative of the affine area functional at t = 0

$$\mathbf{is}$$

$$\begin{aligned} \frac{d}{dt} \mid_{t=0} \mathcal{A}(\Sigma_t) &= \frac{d}{dt} \mid_{t=0} \int_{\Sigma_t} \omega^1 \wedge \omega^2 \\ &= \int_{\Sigma} \mathcal{L}_{\partial/\partial t}(\omega^1 \wedge \omega^2) \\ &= \int_{\Sigma} \frac{\partial}{\partial t} \, \lrcorner \, d(\omega^1 \wedge \omega^2) \\ &= \int_{\Sigma} \frac{\partial}{\partial t} \, \lrcorner \, (-\omega_1^1 \wedge \omega^1 \wedge \omega^2 - \omega_3^1 \wedge \omega^3 \wedge \omega^2 \\ &\quad + \omega^1 \wedge \omega_2^2 \wedge \omega^2 + \omega^1 \wedge \omega_3^2 \wedge \omega^3) \\ &= \int_{\Sigma} \frac{\partial}{\partial t} \, \lrcorner \, (\ell_{11} + \ell_{22}) f \, \omega^1 \wedge \omega^2 \wedge dt \\ &= \int_{\Sigma} 2Lf \, \omega^1 \wedge \omega^2. \end{aligned}$$

This integral vanishes for all compactly supported normal variations of Σ if and only if the affine mean curvature L of Σ is identically zero. Thus we have proved the following theorem:

Theorem: A regular surface in \mathbb{A}^3 is affine minimal if and only if its affine mean curvature L is identically zero.

Exercises

1. The *catenoid* is the surface $\Sigma \subset \mathbb{E}^3$ obtained by rotating the curve $x = \cosh z$ about the z axis. It can be parametrized by

$$x(u, v) = (\cos(u)\cosh(v), \sin(u)\cosh(v), v).$$

a) Show that the frame

$$e_{1} = \frac{x_{u}}{|x_{u}|} = (-\sin(u), \cos(u), 0)$$

$$e_{2} = \frac{x_{v}}{|x_{v}|} = \frac{1}{\cosh(v)}(\cos(u)\sinh(v), \sin(u)\sinh(v), 1)$$

$$e_{3} = e_{1} \times e_{2} = \frac{1}{\cosh(v)}(\cos(u), \sin(u), -\sinh(v))$$

is orthonormal and that e_1, e_2 span the tangent space to Σ at each point.

b) Show that the dual forms of this frame are

$$\omega^1 = \cosh(v) \, du, \qquad \omega^2 = \cosh(v) \, dv.$$

c) Compute de_3 and show that

$$\omega_1^3 = -\frac{1}{\cosh(v)} \, du, \qquad \omega_2^3 = \frac{1}{\cosh(v)} \, dv.$$

Use this to compute the matrix $[h_{ij}]$ and show that the mean curvature of Σ is $H \equiv 0$.

2. Repeat the computation of Exercise 1 for an arbitrary surface of revolution parametrized by

$$x(u,v) = (f(v)\cos(u), f(v)\sin(u), v)$$

(you may want to use a computer algebra package such as Maple to assist with part c) and show that the surface is minimal if and only if f satisfies the differential equation

$$ff'' = (f')^2 + 1.$$

Show that the only solutions of this equation are

$$f(v) = \frac{1}{a}\cosh(av+b)$$

where a, b are constants. Conclude that catenoids are the only non-planar minimal surfaces of revolution.

3. The *helicoid* is the ruled surface $\Sigma \subset \mathbb{E}^3$ parametrized by

 $x(u,v) = (v\cos(u), v\sin(u), u).$

a) Show that the frame

$$e_{1} = \frac{x_{u}}{|x_{u}|} = \frac{1}{\sqrt{v^{2} + 1}} (-v\sin(u), v\cos(u), 1)$$

$$e_{2} = \frac{x_{v}}{|x_{v}|} = (\cos(u), \sin(u), 0)$$

$$e_{3} = e_{1} \times e_{2} = \frac{1}{\sqrt{v^{2} + 1}} (-\sin(u), \cos(u), -v)$$

is orthonormal and that e_1, e_2 span the tangent space to Σ at each point.

b) Show that the dual forms of this frame are

$$\omega^1 = \sqrt{v^2 + 1} \, du, \qquad \omega^2 = dv.$$

c) Compute de_3 and show that

$$\omega_1^3 = \frac{1}{v^2 + 1} dv, \qquad \omega_2^3 = \frac{1}{\sqrt{v^2 + 1}} du.$$

Use this to compute the matrix $[h_{ij}]$ and show that the mean curvature of Σ is $H \equiv 0$.

4. a) Show that for any values of a, b, c with $ac-b^2 > 0$ the elliptic paraboloid $z = a x^2 + b xy + c y^2$ is affinely equivalent to the paraboloid $\Sigma \subset \mathbb{A}^3$ given by $z = \frac{1}{2}(x^2 + y^2)$.

52

b) Show that the affine frame

$$e_1 = (1, 0, x)$$

 $e_2 = (0, 1, y)$
 $e_3 = (0, 0, 1)$

is adapted to Σ . Compute its dual and connection forms and show that they satisfy the conditions

$$\omega_1^3 = \omega^1$$
$$\omega_2^3 = \omega^2$$
$$\omega_3^3 = 0.$$

c) Show that the affine mean curvature of Σ is identically zero. Conclude that any elliptic paraboloid is affine minimal.

5. (This exercise should be done with the aid of a computer algebra package such as Maple.) Suppose that a surface $\Sigma \subset \mathbb{A}^3$ is described by a graph z = f(x, y). Consider the affine frame

$$\underline{e}_1 = (1, 0, f_x)$$

 $\underline{e}_2 = (0, 1, f_y)$
 $\underline{e}_3 = (0, 0, 1).$

a) Show that the dual forms of this frame are

$$\underline{\omega}^1 = dx, \qquad \underline{\omega}^2 = dy, \qquad \underline{\omega}^3 = 0$$

and that the only nonzero connection forms are

$$\underline{\omega}_1^3 = f_{xx} \, dx + f_{xy} \, dy$$
$$\underline{\omega}_2^3 = f_{xy} \, dx + f_{yy} \, dy.$$

Thus we have

$$\begin{bmatrix} \underline{h}_{11} & \underline{h}_{12} \\ \underline{h}_{12} & \underline{h}_{22} \end{bmatrix} = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}.$$

Assume that $f_{xx}f_{yy}-f_{xy}^2>0$, so that Σ is elliptic, and for simplicity assume that $f_{xx}>0$. In order to decide whether Σ is affine minimal, we must adapt frames so that

$$\begin{split} \omega_1^3 &= \omega^1 \\ \omega_2^3 &= \omega^2 \\ \omega_3^3 &= 0. \end{split}$$

Consider an affine change of frame

$$\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} = \begin{bmatrix} \underline{e}_1 & \underline{e}_2 & \underline{e}_3 \end{bmatrix} \begin{bmatrix} B & r_1 \\ B & r_2 \\ 0 & 0 & (\det B)^{-1} \end{bmatrix}$$

with $B \in GL(2)$.

b) Show that if we take

$$B = \begin{bmatrix} \frac{(f_{xx}f_{yy} - f_{xy}^2)^{1/8}}{\sqrt{f_{xx}}} & -\frac{f_{xy}}{\sqrt{f_{xx}}(f_{xx}f_{yy} - f_{xy}^2)^{3/8}} \\ 0 & \frac{\sqrt{f_{xx}}}{(f_{xx}f_{yy} - f_{xy}^2)^{3/8}} \end{bmatrix}$$

then

$$\begin{bmatrix} h_{11} & h_{12} \\ h_{12} & h_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

so $\omega_1^3 = \omega^1$, $\omega_2^3 = \omega^2$.

c) Show that under this change of basis (with r_1, r_2 still arbitrary),

$$\omega_3^3 = \left[\frac{f_{xx}r_1}{(f_{xx}f_{yy} - f_{xy}^2)^{1/4}} + \frac{f_{xy}r_2}{(f_{xx}f_{yy} - f_{xy}^2)^{1/4}} + \frac{f_{xx}f_{xyy} - 2f_{xy}f_{xxy} + f_{yy}f_{xxx}}{4(f_{xx}f_{yy} - f_{xy}^2)} \right] dx \\ + \left[\frac{f_{xy}r_1}{(f_{xx}f_{yy} - f_{xy}^2)^{1/4}} + \frac{f_{yy}r_2}{(f_{xx}f_{yy} - f_{xy}^2)^{1/4}} + \frac{f_{xx}f_{yyy} - 2f_{xy}f_{xyy} + f_{yy}f_{xxy}}{4(f_{xx}f_{yy} - f_{xy}^2)} \right] dy.$$

Conclude that by choosing

$$\begin{bmatrix} r_1 \\ r_2 \end{bmatrix} = -\begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix}^{-1} \begin{bmatrix} \frac{f_{xx}f_{xyy} - 2f_{xy}f_{xxy} + f_{yy}f_{xxx}}{4(f_{xx}f_{yy} - f_{xy}^2)^{3/4}} \\ \frac{f_{xx}f_{yyy} - 2f_{xy}f_{xyy} + f_{yy}f_{xxy}}{4(f_{xx}f_{yy} - f_{xy}^2)^{3/4}} \end{bmatrix}$$

we can arrange that $\omega_3^3 = 0$.

d) Show that under this change of frame we have

$$\omega^{1} = \frac{\sqrt{f_{xx}}}{(f_{xx}f_{yy} - f_{xy}^{2})^{1/8}} dx + \frac{f_{xy}}{\sqrt{f_{xx}}(f_{xx}f_{yy} - f_{xy}^{2})^{1/8}} dy$$
$$\omega^{2} = \frac{(f_{xx}f_{yy} - f_{xy}^{2})^{3/8}}{\sqrt{f_{xx}}} dy$$

Also compute ω_3^1, ω_3^2 and find the functions ℓ_{ij} such that

$$\begin{bmatrix} \omega_3^1 \\ \omega_3^2 \end{bmatrix} = \begin{bmatrix} \ell_{11} & \ell_{12} \\ \ell_{12} & \ell_{22} \end{bmatrix} \begin{bmatrix} \omega^1 \\ \omega^2 \end{bmatrix}.$$

54

Show that the affine mean curvature equation

$L = \ell_{11} + \ell_{22} = 0$

is a fourth-order differential equation for f. Pretty messy, huh?