LECTURE 8: WEIERSTRASS FORMULAE

1. The Weierstrass formula for minimal surfaces in \mathbb{E}^{3}

Weierstrass showed that any minimal surface in \mathbb{E}^{3} could be described in terms of holomorphic functions of a complex variable. We will use adapted frames on the surface to derive this result.

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame on a surface $\Sigma \subset \mathbb{E}^{3}$ with e_{3} normal to the surface at each point. Recall that for such a frame we have

$$
\left[\begin{array}{l}
\omega_{1}^{3} \\
\omega_{2}^{3}
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{12} & h_{22}
\end{array}\right]\left[\begin{array}{c}
\omega^{1} \\
\omega^{2}
\end{array}\right]
$$

for some functions h_{11}, h_{12}, h_{22} and that Σ is minimal if and only if $h_{11}+$ $h_{22}=0$.

Consider the complex vector-valued 1 -form

$$
\begin{aligned}
\xi & =\left(e_{1}-i e_{2}\right)\left(\omega^{1}+i \omega^{2}\right) \\
& =\left(e_{1} \omega^{1}+e_{2} \omega^{2}\right)+i\left(e_{1} \omega^{2}-e_{2} \omega^{1}\right) .
\end{aligned}
$$

ξ is well-defined independent of the choice of adapted frame, and its exterior derivative is

$$
\begin{aligned}
d \xi & =i\left(d e_{1} \wedge \omega^{2}+e_{1} d \omega^{2}-d e_{2} \wedge \omega^{1}-e_{2} d \omega^{1}\right) \\
& =i\left(h_{11}+h_{22}\right) e_{3} \omega^{1} \wedge \omega^{2} .
\end{aligned}
$$

Therefore $d \xi=0$ if and only if Σ is minimal.
Suppose that Σ is minimal and let z, f be local complex-valued functions on Σ such that

$$
\omega^{1}+i \omega^{2}=f d z .
$$

(Such functions always exist for any 1-form on a surface, although this is not true on higher-dimensional manifolds.) The function f must be everywhere nonzero, and since

$$
d z \wedge d \bar{z}=-\frac{2 i}{|f|^{2}} \omega^{1} \wedge \omega^{2} \neq 0
$$

we can regard z as a local complex coordinate on Σ; this defines a complex structure on Σ. If we define $F(z, \bar{z})$ to be the vector valued function

$$
F=\left(e_{1}-i e_{2}\right) f
$$

then

$$
\xi=F d z
$$

The fact that Σ is minimal, and hence that $d \xi=0$, implies that F is a function of z alone and so is a holomorphic function on Σ. Moreover,

$$
\langle F, F\rangle=f^{2}\left\langle e_{1}-i e_{2}, e_{1}-i e_{2}\right\rangle=0
$$

Since ξ is a closed (1,0)-form, locally there exists a holomorphic function $X(z)$ such that $\xi=d X$ (and so $X^{\prime}(z)=F(z)$), and

$$
\operatorname{Re}(d X)=\operatorname{Re}(\xi)=e_{1} \omega^{1}+e_{2} \omega^{2}=d x
$$

where x is the position vector on the surface Σ. Therefore, up to a translation in \mathbb{E}^{3} we have

$$
X(z)=x(z)+i y(z)
$$

for some real vector-valued function y on Σ. Conversely, if $X(z)$ is any holomorphic \mathbb{C}^{3}-valued function with $\left\langle X^{\prime}, X^{\prime}\right\rangle=0$, then the surface $x=$ $\operatorname{Re}(X)$ is a minimal surface in \mathbb{E}^{3}.
This gives rise to the Weierstrass representation for minimal surfaces. Let $U \subset \mathbb{C}$ be open, $g: U \rightarrow \mathbb{C}$ a meromorphic function, and $f: U \rightarrow \mathbb{C}$ a holomorphic function with the property that if g has a pole of order k at $z_{0} \in U$ then f has a zero of order $2 k$ at z_{0}. Choose $z_{0} \in U$ and define $X: U \rightarrow \mathbb{C}^{3}$ by

$$
X(z)=\int_{z_{0}}^{z}\left[\begin{array}{c}
\frac{1}{2} f(\zeta)\left(1-g(\zeta)^{2}\right) \\
\frac{i}{2} f(\zeta)\left(1+g(\zeta)^{2}\right) \\
f(\zeta) g(\zeta)
\end{array}\right] d \zeta
$$

Then $\left\langle X^{\prime}, X^{\prime}\right\rangle=0$ and so $x=\operatorname{Re}(X)$ is the position vector of a minimal surface $\Sigma \subset \mathbb{E}^{3}$. Conversely, any minimal surface has a local representation of this form (up to translation) in a neighborhood of any point.

The first fundamental form of Σ may be written as

$$
\begin{aligned}
I & =\frac{1}{2}\langle\xi, \bar{\xi}\rangle \\
& =\frac{1}{2}\langle d X, d \bar{X}\rangle \\
& =\left(\omega^{1}+i \omega^{2}\right)\left(\omega^{1}-i \omega^{2}\right) \\
& =\left(\omega^{1}\right)^{2}+\left(\omega^{2}\right)^{2}
\end{aligned}
$$

This leads to the following observation. Let $t \in \mathbb{R}$, and set

$$
X_{t}=e^{i t} X
$$

The family of minimal surfaces Σ_{t} with position vector $x_{t}=\operatorname{Re}\left(X_{t}\right)$ is called the associated family of Σ. All the surfaces in this family clearly have the same first fundamental form and so are isometric. In particular, the surface $\Sigma_{3 \pi / 2}$ with position vector $y=\operatorname{Im}(X)$ is isometric to Σ; this surface is called the conjugate surface of Σ.
2. A Weierstrass-type formula for minimal surfaces in \mathbb{A}^{3}

Now let $\Sigma \subset \mathbb{A}^{3}$ be an elliptic surface, and let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame on Σ for which the Maurer-Cartan forms satisfy the conditions

$$
\omega_{1}^{3}=\omega^{1}, \quad \omega_{2}^{3}=\omega^{2}, \quad \omega_{3}^{3}=0
$$

Recall that for such a frame we have

$$
\begin{gathered}
{\left[\begin{array}{l}
\omega_{3}^{1} \\
\omega_{3}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\ell_{11} & \ell_{12} \\
\ell_{12} & \ell_{22}
\end{array}\right]\left[\begin{array}{l}
\omega^{1} \\
\omega^{2}
\end{array}\right]} \\
{\left[\begin{array}{c}
2 \omega_{1}^{1} \\
\omega_{2}^{1}+\omega_{1}^{2} \\
2 \omega_{2}^{2}
\end{array}\right]=\left[\begin{array}{cc}
h_{1} & -h_{2} \\
-h_{2} & -h_{1} \\
-h_{1} & h_{2}
\end{array}\right]\left[\begin{array}{c}
\omega^{1} \\
\omega^{2}
\end{array}\right]}
\end{gathered}
$$

where $h_{1}=h_{111}=-h_{122}, h_{2}=h_{222}=-h_{112}$, and that Σ is affine minimal if and only if $\ell_{11}+\ell_{22}=0$.

Let $\mathbb{A}_{\mathbb{C}}^{3}$ denote the complexified affine space $\mathbb{A}^{3} \otimes \mathbb{C}$, and consider the $\Lambda^{2} \mathbb{A}_{\mathbb{C}^{-}}^{3}$ valued 1-form

$$
\begin{aligned}
\xi & =\frac{1}{2} e_{3} \wedge\left(e_{1}-i e_{2}\right)\left(\omega^{1}+i \omega^{2}\right) \\
& =\frac{1}{2} e_{3} \wedge\left[\left(e_{1} \omega^{1}+e_{2} \omega^{2}\right)+i\left(e_{1} \omega^{2}-e_{2} \omega^{1}\right)\right]
\end{aligned}
$$

ξ is well-defined independent of the choice of adapted frame, and a straightforward computation shows that its exterior derivative is

$$
d \xi=\frac{1}{2}\left(\ell_{11}+\ell_{22}\right)\left(e_{1} \wedge e_{2}\right) \omega^{1} \wedge \omega^{2}
$$

Therefore $d \xi=0$ if and only if Σ is affine minimal.
Suppose that Σ is affine minimal and let z, f be complex-valued functions on Σ such that

$$
\omega^{1}+i \omega^{2}=f d z
$$

By the same reasoning as in the Euclidean case, z can be thought of as a local complex coordinate on Σ, and locally there exists a holomorphic $\Lambda^{2} \mathbb{A}_{\mathbb{C}}^{3}$-valued function $X(z)$ on Σ such that $\xi=d X$.

For ease of notation, let

$$
\begin{gathered}
e=\frac{1}{2}\left(e_{1}-i e_{2}\right) \\
\omega=\omega^{1}+i \omega^{2}
\end{gathered}
$$

Then $d X=\xi=e_{3} \wedge e \omega$, and by conjugation $d \bar{X}=\bar{\xi}=e_{3} \wedge \bar{e} \bar{\omega}$. A computation shows that

$$
d(e \wedge \bar{e})=\frac{1}{2}\left(e_{3} \wedge \bar{e} \bar{\omega}-e_{3} \wedge e \omega\right)=\frac{1}{2}(d \bar{X}-d X)
$$

It follows that

$$
\bar{X}-X=2 e \wedge \bar{e}+2 i c
$$

for some real-valued constant $c \in \Lambda^{2} \mathbb{A}^{3}$. By adding an imaginary constant to X, we can assume that $c=0$.

At this point we need the "special linear cross product". This is the unique skew-symmetric bilinear map

$$
\times: \Lambda^{2} \mathbb{A}^{3} \times \Lambda^{2} \mathbb{A}^{3} \rightarrow \mathbb{A}^{3}
$$

that is $S L(3)$-equivariant and satisfies

$$
\left(e_{1} \wedge e_{2}\right) \times\left(e_{1} \wedge e_{3}\right)=e_{1}
$$

for any unimodular basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of \mathbb{A}^{3}. Geometrically, we can think of $v_{1} \wedge v_{2} \in \Lambda^{2} \mathbb{A}^{3}$ as the plane spanned by v_{1} and v_{2}. The cross product of $v_{1} \wedge v_{2}$ and $w_{1} \wedge w_{2}$ is a vector which spans the line of intersection of the two planes. It can be computed using the ordinary cross product formula in \mathbb{R}^{3} by

$$
\left(v_{1} \wedge v_{2}\right) \times\left(w_{1} \wedge w_{2}\right)=\left(v_{1} \times v_{2}\right) \times\left(w_{1} \times w_{2}\right)
$$

This cross product can be extended in the obvious way to $\Lambda^{2} \mathbb{A}_{\mathbb{C}}^{3}$.
Now, using this formula for the cross product we compute that

$$
(\bar{X}-X) \times d(\bar{X}+X)=-i(e \omega+\bar{e} \bar{\omega})=-i d x
$$

where x is the position vector of Σ. Therefore

$$
\begin{aligned}
d x & =i[(\bar{X}-X) \times d(\bar{X}+X)] \\
& =i[\bar{X} \times d \bar{X}-X \times d X+d(\bar{X} \times X)]
\end{aligned}
$$

and so the position vector x of the surface Σ is given by
$x(z)=x\left(z_{0}\right)+i\left[\overline{X(z)} \times X(z)-\overline{X\left(z_{0}\right)} \times X\left(z_{0}\right)+\int_{z_{0}}^{z}(\bar{X} \times d \bar{X}-X \times d X)\right]$.
for some $z_{0} \in \Sigma$.
Conversely, let $U \subset \mathbb{C}$ be open, and let $X: U \rightarrow \Lambda^{2} \mathbb{A}_{\mathbb{C}}^{3}$ be a holomorphic function that satisfies the open conditions $d X \neq 0$ and $\bar{X} \neq X$. Then the formula above gives the position vector x of an affine minimal surface Σ. This Weierstrass-type representation for affine minimal surfaces is due to Blaschke.

Exercises

1. In the Weierstrass representation for surfaces in \mathbb{E}^{3}, let $f(z)=2$ and $g(z)=z$. Show that the resulting minimal surface is parametrized by

$$
x(u, v)=\left[\begin{array}{c}
u-\frac{1}{3} u^{3}+u v^{2} \\
-v+\frac{1}{3} v^{3}-v u^{2} \\
u^{2}-v^{2}
\end{array}\right]
$$

where $z=u+i v$. This is called Enneper's surface. If you have access to a software package such as Maple, try sketching the surface over various intervals in u and v.
2. Recall from Lecture 7, Exercise 1 that the catenoid is parametrized by

$$
x(u, v)=\left[\begin{array}{c}
\cos u \cosh v \\
\sin u \cosh v \\
v
\end{array}\right] .
$$

Show that the Weierstrass representation of the catenoid is obtained by taking $f(z)=-i e^{-i z}, g(z)=e^{i z}$, and that its conjugate surface is the helicoid. (Hint: the formula you'll find for the conjugate surface will require a change of parameters before it looks like the parametrization for the helicoid from Lecture 7, Exercise 2.)
3. Consider the affine elliptic paraboloid $z=\frac{1}{2}\left(x^{2}+y^{2}\right)$ with its adapted frame

$$
\begin{aligned}
& e_{1}=(1,0, x) \\
& e_{2}=(0,1, y) \\
& e_{3}=(0,0,1) .
\end{aligned}
$$

Show that its Weierstrass-type representation is obtained by taking

$$
X(z)=-\frac{i}{2} \varepsilon_{1} \wedge \varepsilon_{2}+\frac{i}{2} z \varepsilon_{2} \wedge \varepsilon_{3}+\frac{1}{2} z \varepsilon_{3} \wedge \varepsilon_{1}
$$

where $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ represents the standard basis of \mathbb{A}^{3}. (Hint: Write the e_{i} as

$$
\begin{aligned}
& e_{1}=\varepsilon_{1}+x \varepsilon_{3} \\
& e_{2}=\varepsilon_{2}+y \varepsilon_{3} \\
& e_{3}=\varepsilon_{3}
\end{aligned}
$$

and note that, since $\left\{\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right\}$ is a unimodular basis,

$$
\begin{aligned}
& \left(\varepsilon_{1} \wedge \varepsilon_{2}\right) \times\left(\varepsilon_{1} \wedge \varepsilon_{3}\right)=\varepsilon_{1} \\
& \left(\varepsilon_{2} \wedge \varepsilon_{3}\right) \times\left(\varepsilon_{2} \wedge \varepsilon_{1}\right)=\varepsilon_{2} \\
& \left.\left(\varepsilon_{3} \wedge \varepsilon_{1}\right) \times\left(\varepsilon_{3} \wedge \varepsilon_{2}\right)=\varepsilon_{3} .\right)
\end{aligned}
$$

