
CHAPTER IV
DIFFERENTIATION, LOCAL BEHAVIOR

eiπ = −1.

In this chapter we will finally see why eiπ is −1. Along the way, we will give
careful proofs of all the standard theorems of Differential Calculus, and in the pro-
cess we will discover all the familiar facts about the trigonometric and exponential
functions. At this point, we only know their definitions as power series functions.
The fact that sin2 + cos2 = 1 or that ex+y = exey are not at all obvious. In fact,
we haven’t even yet defined what is meant by ex for an arbitrary number x.

The main theorems of this chapter include:
(1) The Chain Rule (Theorem 4.7),
(2) The Mean Value Theorem (Theorem 4.9),
(3) The Inverse Function Theorem (Theorem 4.10),
(4) The Laws of Exponents (Corollary to Theorem 4.11 and Exercise 4.20),

and
(5) Taylor’s Remainder Theorem (Theorem 4.19).

THE LIMIT OF A FUNCTION

The concept of the derivative of a function is what most people think of as the
beginning of calculus. However, before we can even define the derivative we must
introduce a kind of generalization of the notion of continuity. That is, we must
begin with the definition of the limit of a function.

DEFINITION. Let f : S → C be a function, where S ⊆ C, and let c be a limit
point of S that is not necessarily an element of S. We say that f has a limit L as z
approaches c, and we write

lim
z→c

f(z) = L,

if for every ε > 0 there exists a δ > 0 such that if z ∈ S and 0 < |z − c| < δ, then
|f(z)− L| < ε.

If the domain S is unbounded, we say that f has a limit L as z approaches ∞,
and we write

L = lim
z→∞

f(z),

if for every ε > 0 there exists a positive number B such that if z ∈ S and |z| ≥ B,
then |f(z)− L| < ε.

Analogously, if S ⊆ R, we say limx→∞ f(x) = L if for every ε > 0 there exists
a real number B such that if x ∈ S and x ≥ B, then |f(x) − L| < ε. And we say
that limx→−∞ f(x) = L if for every ε > 0 there exists a real number B such that if
x ∈ S and x ≤ B, then |f(x)− L| < ε.

Finally, for f : (a, b) → C a function of a real variable, and for c ∈ [a, b], we
define the one-sided (left and right) limits of f at c. We say that f has a left hand
limit of L at c, and we write L = limx→c−0 f(x), if for every ε > 0 there exists a
δ > 0 such that if x ∈ (a, b) and 0 < c − x < δ then |f(x) − L| < ε. We say that
f has a right hand limit of L at c, and write L = limx→c+0 f(x), if for every ε > 0
there exists a δ > 0 such that if x ∈ S and 0 < x− c < δ then |f(x)− L| < ε.

The first few results about limits of functions are not surprising. The analogy
between functions having limits and functions being continuous is very close, so that
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86 IV. DIFFERENTIATION, LOCAL BEHAVIOR

for every elementary result about continuous functions there will be a companion
result about limits of functions.

THEOREM 4.1. Let c be a complex number. Let f : S → C and g : S → C be
functions. Assume that both fand g have limits as x approaches c. Then:

(1) There exists a δ > 0 and a positive number M such that if z ∈ S and
0 < |z− c| < δ then |f(z)| < M. That is, if f has a limit as z approaches c,
then f is bounded near c.

(2)
lim
z→c

(f(z) + g(z)) = lim
z→c

f(z) + lim
z→c

g(z).

(3)
lim
z→c

(f(z)g(z)) = lim
z→c

f(z) lim
z→c

g(z).

(4) If limz→c g(z) 6= 0, then

lim
z→c

f(z)
g(z)

=
limz→c f(z)
limz→c g(z)

,

(5) If u and v are the real and imaginary parts of a complex-valued function f,
then u and v have limits as z approaches c if and only if f has a limit as z
approaches c. And,

lim
z→c

f(z) = lim
z→c

u(z) + i lim
z→c

v(z).

Exercise 4.1. (a) Prove Theorem 4.1.
HINT: Compare with Theorem 3.2.

(b) Prove that limx→c f(x) = L if and only if, for every sequence {xn} of elements
of S that converges to c, we have lim f(xn) = L.
HINT: Compare with Theorem 3.4.

(c) Prove the analog of Theorem 4.1 replacing the limit as z approaches c by the
limit as z approaches ∞.
Exercise 4.2. (a) Prove that a function f : S → C is continuous at a point c of S
if and only if limx→c f(x) = f(c).
HINT: Carefully write down both definitions, and observe that they are verbetim
the same.

(b) Let f be a function with domain S, and let c be a limit point of S that is not
in S. Suppose g is a function with domain S ∪ {c}, that f(x) = g(x) for all x ∈ S,
and that g is continuous at c. Prove that limx→c f(x) = g(c).

Exercise 4.3. Prove that the following functions f have the specified limits L at
the given points c.

(a) f(x) = (x3 − 8)/(x2 − 4), c = 2, and L = 3.
(b) f(x) = (x2 + 1)/(x3 + 1), c = 1, and L = 1.
(c) f(x) = (x8 − 1)/(x6 + 1), c = i, and L = −4/3.
(d) f(x) = (sin(x) + cos(x)− exp(x))/(x2) , c = 0, and L = −1.

Exercise 4.4. Define f on the set S of all nonzero real numbers by f(x) = c if
x < 0 and f(x) = d if x > 0. Show that limx→0 f(x) exists if and only if c = d.
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(b) Let f : (a, b) → C be a complex-valued function on the open interval (a, b).
Suppose c is a point of (a, b). Prove that limx→c f(x) exists if and only if the two
one-sided limits limx→c−0 f(x) and limx→c+0 f(x) exist and are equal.
Exercise 4.5. (Change of variable in a limit) Suppose f : S → C is a function,
and that limx→c f(x) = L. Define a function g by g(y) = f(y + c).

(a) What is the domain of g?
(b) Show that 0 is a limit point of the domain of g and that limy→0 g(y) =

limx→c f(x).
(c) Suppose T ⊆ C, that h : T → S, and that limy→d h(y) = c. Prove that

lim
y→d

f(h(y)) = lim
x→c

f(x) = L.

REMARK. When we use the word “ interior” in connection with a set S, it is
obviously important to understand the context; i.e., is S being thought of as a set
of real numbers or as a set of complex numbers. A point c is in the interior of a set
S of complex numbers if the entire disk Bε(c) of radius ε around c is contained in
S. While, a point c belongs to the interior of a set S of real numbers if the entire
interval (c − ε, c + ε) is contained in S. Hence, in the following definition, we will
be careful to distinguish between the cases that f is a function of a real variable or
is a function of a complex variable.

THE DERIVATIVE OF A FUNCTION

Now begins what is ordinarily thought of as the first main subject of calculus,
the derivative.

DEFINITION. Let S be a subset of R, let f : S → C be a complex-valued
function (of a real variable), and let c be an element of the interior of S. We say
that f is differentiable at c if

lim
h→0

f(c+ h)− f(c)
h

exists. (Here, the number h is a real number.)
Analogously, let S be a subset of C, let f : S → C be a complex-valued function

(of a complex variable), and let c be an element of the interior of S. We say that f
is differentiable at c if

lim
h→0

f(c+ h)− f(c)
h

exists. (Here, the number h is a complex number.)
If f : S → C is a function either of a real variable or a complex variable, and if

S′ denotes the subset of S consisting of the points c where f is differentiable, we
define a function f ′ : S′ → C by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

.

The function f ′ is called the derivative of f.
A continuous function f : [a, b]→ C that is differentiable at each point x ∈ (a, b),

and whose the derivative f ′ is continuous on (a, b), is called a smooth function on
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[a, b]. If there exists a partition {a = x0 < x1 < . . . < xn = b} of [a, b] such that f
is smooth on each subinterval [xi−1, xi], then f is called piecewise smooth on [a, b].

Higher order derivatives are defined inductively. That is, f ′′ is the derivative of
f ′, and so on. We use the symbol f (n) for the nth derivative of f.

REMARK. In the definition of the derivative of a function f, we are interested in
the limit, as h approaches 0, not of f but of the quotient q(h) = f(c+h)−f(c)

h . Notice
that 0 is not in the domain of the function q, but 0 is a limit point of that domain.
This is the reason why we had to make such a big deal above out of the limit of a
function. The function q is often called the differential quotient.

REMARK. As mentioned in Chapter III, we are often interested in solving for un-
knowns that are functions. The most common such problem is to solve a differential
equation. In such a problem, there is an unknown function for which there is some
kind of relationship between it and its derivatives. Differential equations can be
extremely complicated, and many are unsolvable. However, we will have to consider
certain relatively simple ones in this chapter, e.g., f ′ = f, f ′ = −f, and f ′

′ = ±f.
There are various equivalent ways to formulate the definition of differentiable,

and each of these ways has its advantages. The next theorem presents one of those
alternative ways.

THEOREM 4.2. Let c belong to the interior of a set S (either in R or in C),
and let f : S → C be a function. Then the following are equivalent.

(1) f is differentiable at c. That is,

lim
h→0

f(c+ h)− f(c)
h

exists.

(2)

lim
x→c

f(x)− f(c)
x− c

exists.

(3) There exists a number L and a function θ such that the following two con-
ditions hold:

(4.1) f(c+ h)− f(c) = Lh+ θ(h)

and

(4.2) lim
h→0

θ(h)
h

= 0.

In this case, L is unique and equals f ′(c), and the function θ is unique and
equals f(c+ h)− f(c)− f ′(c)h.

PROOF. That (1) and (2) are equivalent follows from Exercise 4.5 by writing x as
c+ h.

Suppose next that f is differentiable at c, and define

L = f ′(c) = lim
h→0

f(c+ h)− f(c)
h

.
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Set
θ(h) = f(c+ h)− f(c)− f ′(c)h.

Then clearly
f(c+ h)− f(c) = Lh+ θ(h),

which is Equation (4.1). Also

|θ(h)
h
| = |f(c+ h)− f(c)− f ′(c)h

h
|

= |f(c+ h)− f(c)
h

− f ′(c)|,

which tends to 0 as h approaches 0 because f is differentiable at c. Hence, we have
established equations (4.1) and (4.2), showing that (1) implies (3).

Finally, suppose there is a number L and a function θ satisfying Equations (4.1)
and (4.2). Then

f(c+ h)− f(c)
h

= L+
θ(h)
h

,

which converges to L as h approaches 0 by Equation (4.2) and part (2) of Theorem
4.1. Hence, L = f ′(c), and so θ(h) = f(c+h)−f(c)−f ′(c)h. Therefore, (3) implies
(1), and the theorem is proved.

REMARK. Though it seems artificial and awkward, Condition (3) of this theorem
is very convenient for many proofs. One should remember it.
Exercise 4.6. (a) What is the domain of the function θ of condition (3) in the
preceding theorem? Is 0 in this domain? Are there any points in the interior of
this domain?

(b) Let L and θ be as in part (3) of the preceding theorem. Prove that, given
an ε > 0 there exists a δ > 0 such that if |h| < δ then |θ(h)| < ε|h|.

THEOREM 4.3. If f : S → C is a function, either of a real variable or a complex
variable, and if f is differentiable at a point c of S, then f is continuous at c. That
is, differentiability implies continuity.

PROOF. We are assuming that limh→0(f(c+h)−f(c))/h = L. Hence, there exists
a positive number δ0 such that | f(c+h)−f(c)

h − L| < 1 if |h| < δ0, implying that
|f(c+ h)− f(c)| < |h|(|L|+ 1)whenever |h| < δ0. So, if ε > 0 is given, let δ be the
minimum of δ0 and ε/(|L|+1). If y ∈ S and |y− c| < δ, then, thinking of y as being
c+ h,

|f(y)− f(c)| = |f(c+ h)− f(c)| < |h|(|L|+ 1) = |y − c|(|L|+ 1) < ε.

(Every y can be written as c+ h for some h, and |y − c| = |h|.)

Exercise 4.7. Define f(z) = |z| for z ∈ C.
(a) Prove that f is continuous at every point of C.
(b) Show that, if f is differentiable at a point c, then f ′(c) = 0.

HINT: Using part (b) of Exercise 4.1, evaluate f ′(c) in the following two ways.

f ′(c) = lim
n→∞

|c+ 1
n | − |c|
1
n
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and

f ′(c) = lim
n→∞

|c+ i
n | − |c|
i
n

.

Show that the only way these two limits can be equal is for them to be 0.
(c) Conclude that f is not differentiable anywhere. Indeed, if it were, what would

the function θ have to be, and why wouldn’t it satisfy Equation 4.2?
(d) Suppose f : R → R is the function of a real variable that is defined by

f(x) = |x|. Show that f is differentiable at every point x 6= 0. How does this result
not contradict part (c)?

The following theorem generalizes the preceding exercise.

THEOREM 4.4. Suppose f : S → R is a real-valued function of a complex
variable, and assume that f is differentiable at a point c ∈ S. Then f ′(c) = 0.
That is, every real-valued, differentiable function f of a complex variable satisfies
f ′(c) = 0 for all c in the domain of f ′.

PROOF. We compute f ′(c) in two ways.

f ′(c) = lim
n

f(c+ 1
n )− f(c)
1
n

is a real number..

f ′(c) = lim
n

f(c+ i
n )− f(c)
i
n

is a purely imaginary number.

Hence, f ′(c) must be 0, as claimed.

REMARK. This theorem may come as a surprise, for it shows that there are very
few real-valued differentiable functions of a complex variable. For this reason,
whenever f : S → R is a real-valued, differentiable function, we will presume that
f is a function of a real variable; i.e., that the domain S ⊆ R.

Evaluating limh→0 q(h) in the two different ways, h real, and h pure imaginary,
led to the proof of the last theorem. It also leads us to make definitions of what
are called “partial derivatives” of real-valued functions whose domains are subsets
of C ≡ R

2. As the next exercise will show, the theory of partial derivatives of
real-valued functions is a much richer theory than that of standard derivatives of
real-valued functions of a single complex variable.

DEFINITION. Let f : S → R be defined on a set S ⊆ C ≡ R2, and let c =
(a, b) = + + bi be a point in the interior of S. We define the partial derivative of f
with respect to x at the point c = (a, b) by the formula

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h

,

and the partial derivative of f with respect to y at c = (a, b) by the formula

∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)
h

,

whenever these limits exist. (In both these limits, the variable h is a real variable.)(
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It is clear that the partial derivatives of a function arise when we fix either the real
part of the variable or the imaginary part of the variable to be a constant, and then
consider the resulting function of the other (real) variable. We will see in Exercise
4.8 that there is a definite difference between a function’s being differentiable at a
point c = (a + bi) in the complex plane C versus its having partial derivatives at
the point (a, b) in R2.

Exercise 4.8. (a) Suppose f is a complex-valued function of a complex variable,
and assume that both the real and imaginary parts of f are differentiable at a point
c. Show that f is differentiable at c and that f ′(c) = 0.

(b) Let f = u + iv be a complex-valued function of a complex variable that is
differentiable at a point c. Prove that both partial derivatives of u and v exist at
c = (a, b), and in fact that

∂u

∂x
(c) + i

∂v

∂x
(c) = f ′(c)

and

∂u

∂y
(c) + i

∂v

∂y
(c) = if ′(c).

(c) Define a complex-valued function f on C ≡ R2 by f(z) = f(x+ iy) = x− iy.
Write f = u+ iv, and show that both partial derivatives of u and v exist at every
point, but that f is not a differentiable function of the complex variable z.

The next theorem is, in part, what we call in calculus the “differentiation for-
mulas.”

THEOREM 4.5. Let f and g be functions (either of a real variable or a complex
variable), which are both differentiable at a point c. Let a and b be complex numbers.
Then:

(1) af + bg is differentiable at c, and (af + bg)′(c) = af ′(c) + bg′(c).
(2) (Product Formula) fg is differentiable at c, and (fg)′(c) = f ′(c)g(c) +

f(c)g′(c).
(3) (Quotient Formula) f/g is differentiable at c (providing that g(c) 6= 0),

and

(
f

g
)′(c) =

g(c)f ′(c)− f(c)g′(c)
(g(c))2

.

(4) If f = u+ iv is a complex-valued function, then f is differentiable at a point
c if and only if u and v are differentiable at c, and f ′(c) = u′(c) + iv′(c).

PROOF. We prove part (2) and leave parts (1), (3), and (4) for the exercises. We
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have

lim
h→0

(fg)(c+ h)− (fg)(c)
h

= lim
h→0

f(c+ h)g(c+ h)− f(c)g(c)
h

= lim
h→0

f(c+ h)g(c+ h)− f(c)g(c+ h)
h

+ lim
h→0

f(c)g(c+ h)− f(c)g(c)
h

= lim
h→0

f(c+ h)− f(c)
h

lim
h→0

g(c+ h)

+ lim
h→0

f(c) lim
h→0

g(c+ h)− g(c)
h

= f ′(c)g(c) + f(c)g′(c),

where we have used Theorems 4.1, 4.2, and 4.3.

Exercise 4.9. (a) Prove parts (1), (3), and (4) of Theorem 4.5.
(b) If f and g are real-valued functions that are differentiable at a point c, what

can be said about the differentiability of max(f, g)?
(c) Let f be a constant function f(z) ≡ k. Prove that f is differentiable every-

where and that f ′(z) = 0 for all z.
(d) Define a function f by f(z) = z. Prove that f is differentiable everywhere

and that f ′(z) = 1 for all z.
(e) Verify the usual derivative formulas for polynomial functions: If p(z) =∑n
k=0 akz

k, then p′(z) =
∑n
k=1 kakz

k−1.

What about power series functions? Are they differentiable functions? If so,
are their derivatives again power series functions? In fact, everything works as
expected.

THEOREM 4.6. Let f be a power series function f(z) =
∑∞
n=0 anz

n having
radius of convergence r > 0. Then f is differentiable at each point z in its open disk
Br(0) of convergence, and

f ′(z) =
∞∑
n=0

nanz
n−1 =

∞∑
n=1

nanz
n−1.

PROOF. The proof will use part (3) of Theorem 4.2. Fix an z with |z| < r. Choose
r′ so that |z| < r′ < r, and write α for r′ − |z|, i.e., |z| + α = r′. Note first
that the infinite series

∑∞
n=0 |an|r′

n converges to a positive number we will call M.
Also, from the Cauchy-Hadamard Formula, we know that the power series function∑
nanw

n has the same radius of convergence as does f, and hence the infinite series∑
nanz

n−1 converges to a number we will denote by L. We define a function θ by
θ(h) = f(z + h)− f(z)− Lh from which it follows immediately that

f(z + h)− f(z) = Lh+ θ(h),

which establishes Equation (4.1). To complete the proof that f is differentiable at
z, it will suffice to establish Equation (4.2), i.e., to show that

lim
h→0

θ(h)
h

= 0.
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That is, given ε > 0 we must show that there exists a δ > 0 such that if 0 < |h| < δ
then

|θ(h)/h| = |f(z + h)− f(z)
h

− L| < ε.

Assuming, without loss of generality, that |h| < α, we have that

|f(z + h)− f(z)
h

− L| = |
∑∞
n=0 an(z + h)n −

∑∞
n=0 anz

n

h
− L|

= |
∑∞
n=0 an(

∑n
k=0

(
n
k

)
zn−khk)−

∑∞
n=0 anz

n

h
− L|

= |
∑∞
n=0 an((

∑n
k=0

(
n
k

)
zn−khk)− zn)

h
− L|

= |
∑∞
n=1 an(

∑n
k=1

(
n
k

)
zn−khk)

h
− L|

= |
∞∑
n=1

an(
n∑
k=1

(
n

k

)
zn−khk−1)−

∞∑
n=1

nanz
n−1|

= |
∞∑
n=1

an(
n∑
k=1

(
n

k

)
zn−khk−1)−

∞∑
n=1

(
n

1

)
anz

n−1|

= |
∞∑
n=2

an(
n∑
k=2

(
n

k

)
zn−khk−1)|

≤
∞∑
n=2

n∑
k=2

|an|
(
n

k

)
|z|n−k|h|k−1

≤ |h|
∞∑
n=2

|an|
n∑
k=2

(
n

k

)
|z|n−k|h|k−2

≤ |h|
∞∑
n=2

|an|
n∑
k=2

(
n

k

)
|z|n−k|α|k−2

≤ |h| 1
α2

∞∑
n=0

|an|
n∑
k=0

(
n

k

)
|z|n−kαk

= |h| 1
α2

∞∑
n=0

|an|(|z|+ α)n

= |h| 1
α2

∞∑
n=0

|an|r′
n

= |h|M
α2
,

so that if δ = ε/Mα2 , then |θ(h)/h| < ε, whenever |h| < δ, as desired.

REMARK. Theorem 4.6 shows that indeed power series functions are differentiable,
and in fact their derivatives can be computed, just like polynomials, by differenti-
ating term by term. This is certainly a result we would have hoped was true, but
the proof is not trivial.
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The next theorem, the Chain Rule, is another nontrivial one. It deals with the
differentiability of the composition of two differentiable functions. Again, the result
is what we would have wanted, the composition of two differentiable functions is
itself differentiable, but the argument required to prove it is tricky.

THEOREM 4.7. (Chain Rule) Let f : S → C be a function, and assume that f
is differentiable at a point c. Suppose g : T → C is a function, that T ⊆ C, that the
number f(c) ∈ T, and that g is differentiable at f(c). Then the composition g ◦ f
is differentiable at c and

(g ◦ f)′(c) = g′(f(c))f ′(c).

PROOF. Using part (3) of Theorem 4.2, write

g(f(c) + k)− g(f(c)) = Lgk + θg(k)

and
f(c+ h)− f(c) = Lfh+ θf (h).

We know from that theorem that Lg = g′(f(c)) and Lf = f ′(c). And, we also know
that

lim
k→0

θg(k)
k

= 0 and lim
h→0

θf (h)
h

= 0.

Define a function k(h) = f(c + h) − f(c). Then, by Theorem 4.3, we have that
limh→0 k(h) = 0. We will show that g ◦ f is differentiable at c by showing that
there exists a number L and a function θ satisfying the two conditions of part (3)
of Theorem 4.2. Thus, we have that

g ◦ f(c+ h)− g ◦ f(c) = g(f(c+ h))− g(f(c))

= g(f(c) + k(h))− g(f(c))

= Lgk(h) + θg(k(h))

= Lg(f(c+ h)− f(c)) + θg(k(h))

= Lg(Lfh+ θf (h)) + θg(k(h))

= LgLfh+ Lgθf (h) + θg(k(h)).

We define L = Lglf = g′(f(c))f ′(c), and we define the function θ by

θ(h) = Lgθf (h) + θg(k(h)).

By our definitions, we have established Equation (4.1)

g ◦ f(c+ h)− g ◦ f(c) = Lh+ θ(h),

so that it remains to verify Equation (4.2).
We must show that, given ε > 0, there exists a δ > 0 such that if 0 < |h| < δ

then |θ(h)/h| < ε. First, choose an ε′ > 0 so that

(4.3). |Lg|ε′ + |Lf |ε′ + ε′
2
< ε
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Next, using part (b) of Exercise 4.6, choose a δ′ > 0 such that if |k| < δ′ then
|θg(k)| < ε′|k|. Finally, choose δ > 0 so that if 0 < |h| < δ, then the following two
inequalities hold. |k(h)| < δ′ and |θf (h)| < ε′|h|. The first can be satisfied because
f is continuous at c, and the second is a consequence of part (b) of Exercise 4.6.
Then: if 0 < |h| < δ,

|θ(h)| = |Lgθf (h) + θg(k(h))|
≤ |Lg||θf (h)|+ |θg(k(h))|
< |Lg|ε′|h|+ ε′|k(h)|
= |Lg|ε′|h|+ ε′|f(c+ h)− f(c)|
= |Lg|ε′|h|+ ε′|Lfh+ θf (h)|
≤ |Lg|ε′|h|+ ε′|Lf ||h|+ ε′|θf (h)|
< |Lg|ε′|h|+ ε′|Lf ||h|+ ε′ε′|h|

= (|Lg|ε′ + |Lf |ε′ + ε′
2)|h|,

whence
|θ(h)/h| < (|Lg|ε′ + |Lf |ε′ + ε′

2) < ε,

as desired.

Exercise 4.10. (a) Derive the familiar formulas for the derivatives of the elemen-
tary transcendental functions:

exp′ = exp, sin′ = cos, , sinh′ = cosh, cosh′ = sinh and cos′ = − sin .

(b) Define a function f as follows. f(z) = cos2(z)+sin2(z). Use part (a) and the
Chain Rule to show that f ′(z) = 0 for all z ∈ C. Does this imply that cos2(z) +
sin2(z) = 1 for all complex numbers z?

(c) Suppose f is expandable in a Taylor series around the point c : f(z) =∑∞
n=0 an(z − c)n for all z ∈ Br(c). Prove that f is differentiable at each point of

the open disk Br(c), and show that

f ′(z) =
∞∑
n=1

nan(z − c)n−1.

HINT: Use Theorem 4.6 and the chain rule.

CONSEQUENCES OF DIFFERENTIABILITY, THE MEAN VALUE THEOREM

DEFINITION. Let f : S → R be a real-valued function of a real variable, and
let c be an element of the interior of S. Then f is said to attain a local maximum
at c if there exists a δ > 0 such that (c − δ, c + δ) ⊆ S and f(c) ≥ f(x) for all
x ∈ (c− δ, c+ δ).

The function f is said to attain a local minimum at c if there exists an interval
(c− δ, c+ δ) ⊆ S such that f(c) ≤ f(x) for all x ∈ (c− δ, c+ δ).

The next theorem should be a familiar result from calculus.
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THEOREM 4.8. (First Derivative Test for Extreme Values) Let f : S → R be a
real-valued function of a real variable, and let c ∈ S be a point at which f attains
a local maximum or a local minimum. If f is differentiable at c, then f ′(c) must
be 0.

PROOF. We prove the theorem when f attains a local maximum at c. The proof
for the case when f attains a local minimum is completely analogous.

Thus, let δ > 0 be such that f(c) ≥ f(x) for all x such that |x − c| < δ. Note
that, if n is sufficiently large, then both c + 1

n and c − 1
n belong to the interval

(c− δ, c+ δ). We evaluate f ′(c) in two ways. First,

f ′(c) = lim
n

f(c+ 1
n )− f(c)
1
n

≤ 0

because the numerator is always nonpositive and the denominator is always positive.
On the other hand,

f ′(c) = lim
n

f(c− 1
n )− f(c)
−1
n

≥ 0

since both numerator and denominator are nonpositive. Therefore, f ′(c) must be
0, as desired.

Of course we do not need a result like Theorem 4.8 for functions of a complex
variable, since the derivative of every real-valued function of a complex variable
necessarily is 0, independent of whether or not the function attains an extreme
value.

REMARK. As mentioned earlier, the zeroes of a function are often important num-
bers. The preceding theorem shows that the zeroes of the derivative f ′ of a function
f are intimately related to finding the extreme values of the function f. The ze-
roes of f ′ are often called the critical points for f. Part (a) of the next exercise
establishes the familiar procedure from calculus for determining the maximum and
minimum of a continuous real-valued function on a closed interval.

Exercise 4.11. (a) Let f be a continuous real-valued function on a closed interval
[a, b], and assume that f is differentiable at each point x in the open interval (a, b).
Let M be the maximum value of f on this interval, and m be its minimum value on
this interval. Write S for the set of all x ∈ (a, b) for which f ′(x) = 0. Suppose x is
a point of [a, b] for which f(x) is either M or m. Prove that x either is an element
of the set S, or x is one of the endpoints a or b.

(b) Let f be the function defined on [0, 1/2) by f(t) = t/(1 − t). Show that
f(t) < 1 for all t ∈ [0, 1/2).

(c) Let t ∈ (−1/2, 1/2) be given. Prove that there exists an r < 1, depending on
t, such that |t/(1 + y)| < r for all y between 0 and t.

(d) Let t be a fixed number for which 0 < t < 1. Show that, for all 0 ≤ s ≤ t,
(t− s)/(1 + s) ≤ t.

Probably the most powerful theorem about differentiation is the next one. It is
stated as an equation, but its power is usually as an inequality; i.e., the absolute
value of the left hand side is less than or equal to the absolute value of the right
hand side.
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THEOREM 4.9. (Mean Value Theorem) Let f be a real-valued continuous func-
tion on a closed bounded interval [a, b], and assume that f is differentiable at each
point x in the open interval (a, b). Then there exists a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

PROOF. This proof is tricky. Define a function h on [a, b] by

h(x) = x(f(b)− f(a))− f(x)(b− a).

Clearly, h is continuous on [a, b] and is differentiable at each point x ∈ (a, b). Indeed,

h′(x) = f(b)− f(a)− f ′(x)(b− a).

It follows from this equation that the theorem will be proved if we can show that
there exists a point c ∈ (a, b) for which h′(c) = 0. Note also that

h(a) = a(f(b)− f(a))− f(a)(b− a) = af(b)− bf(a)

and
h(b) = b(f(b)− f(a))− f(b)(b− a) = af(b)− bf(a),

showing that h(a) = h(b).
Let m be the minimum value attained by the continuous function h on the

compact interval [a, b] and let M be the maximum value attained by h on [a, b]. If
m = M, then h is a constant on [a, b] and h′(c) = 0 for all c ∈ (a, b). Hence, the
theorem is true if M = m, and we could use any c ∈ (a, b). If m 6= M, then at least
one of these two extreme values is not equal to h(a). Suppose m 6= h(a). Of course,
m is also not equal to h(b). Let c ∈ [a, b] be such that h(c) = m. Then, in fact,
c ∈ (a, b). By Theorem 4.8, h′(c) = 0.

We have then that in every case there exists a point c ∈ (a, b) for which h′(c) = 0.
This completes the proof.

REMARK. The Mean Value Theorem is a theorem about real-valued functions
of a real variable, and we will see later that it fails for complex-valued functions
of a complex variable. (See part (f) of Exercise 4.16.) In fact, it can fail for
a complex-valued function of a real variable. Indeed, if f(x) = u(x) + iv(x) is
a continuous complex-valued function on the interval [a, b], and differentiable on
the open interval (a, b), then the Mean Value Theorem certainly holds for the two
real-valued functions u and v, so that we would have

f(b)− f(a) = u(b)− u(a) + i(v(b)− v(a)) = u′(c1)(b− a) + iv′(c2)(b− a),

which is not f ′(c)(b − a) unless we can be sure that the two points c1 and c2 can
be chosen to be equal. This simply is not always possible. Look at the function
f(x) = x2 + ix3 on the interval [0, 1].

On the other hand, if f is a real-valued function of a complex variable (two real
variables), then a generalized version of the Mean Value Theorem does hold. See
part (c) of Exercise 4.35.
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One of the first applications of the Mean Value Theorem is to show that a
function whose derivative is identically 0 is necessarily a constant function. This
seemingly obvious fact is just not obvious. The next exercise shows that this result
holds for complex-valued functions of a complex variable, even though the Mean
Value Theorem does not.

Exercise 4.12. (a) Suppose f is a continuous real-valued function on (a, b) and
that f ′(x) = 0 for all x ∈ (a, b). Prove that f is a constant function on (a, b).
HINT: Show that f(x) = f(a) for all x ∈ [a, b] by using the Mean Value Theorem
applied to the interval [a, x].

(b) Let f be a complex-valued function of a real variable. Suppose f is differen-
tiable at each point x in an open interval (a, b), and assume that f ′(x) = 0 for all
x ∈ (a, b). Prove that f is a constant function.
HINT: Use the real and imaginary parts of f.

(c) Let f be a complex-valued function of a complex variable, and suppose that
f is differentiable on a disk Br(c) ⊆ C, and that f ′(z) = 0 for all z ∈ Br(c). Prove
that f(z) is constant on Br(c).
HINT: Let z be an arbitrary point in Br(c), and define a function h : [0, 1]→ C by
h(t) = f((1− t)c+ tz). Apply part (b) to h.

The next exercise establishes, at last, two important identities.

Exercise 4.13.) (cos2 + sin2 = 1 and exp(iπ = −1.)
(a) Prove that cos2(z) + sin2(z) = 1 for all complex numbers z.
(b) Prove that cos(π) = −1.

HINT: We know from part (a) that cos(π) = ±1. Using the Mean Value Theorem for
the cosine function on the interval [0, π], derive a contradiction from the assumption
that cos(π) = 1.

(c) Prove that exp(iπ) = −1.
HINT: Recall that exp(iz) = cos(z)+ i sin(z) for all complex z. (Note that this does
not yet tell us that eiπ = −1. We do not yet know that exp(z) = ez.)

(d) Prove that cosh2 z − sinh2 z = 1 for all complex numbers z.
(e) Compute the derivatives of the tangent and hyperbolic tangent functions

tan = sin / cos and tanh = sinh / cosh . Show in fact that

tan′ =
1

cos2
and tanh′ =

1
cosh2 .

Here are two more elementary consequences of the Mean Value Theorem.

Exercise 4.14. (a) Suppose f and g are two complex-valued functions of a real (or
complex) variable, and suppose that f ′(x) = g′(x) for all x ∈ (a, b) (or x ∈ Br(c).)
Prove that there exists a constant k such that f(x) = g(x) + k for all x ∈ (a, b) (or
x ∈ Br(c).)

(b) Suppose f ′(z) = c exp(az) for all z, where c and a are complex constants
with a 6= 0. Prove that there exists a constant c′ such that f(z) = c

a exp(az) + c′.
What if a = 0?

(c) (A generalization of part (a)) Suppose f and g are continuous real-valued
functions on the closed interval [a, b], and suppose there exists a partition {x0 <
x1 < . . . < xn} of [a, b] such that both f and g are differentiable on each subinterval
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(xi−1, xi). (That is, we do not assume that f and g are differentiable at the end-
points.) Suppose that f ′(x) = g′(x) for every x in each open subinterval (xi−1, xi).
Prove that there exists a constant k such that f(x) = g(x) + k for all x ∈ [a, b].
HINT: Use part (a) to conclude that f = g+h where h is a step function, and then
observe that h must be continuous and hence a constant.

(d) Suppose f is a differentiable real-valued function on (a, b) and assume that
f ′(x) 6= 0 for all x ∈ (a, b). Prove that f is 1-1 on (a, b).

Exercise 4.15. Let f : [a, b] → R be a function that is continuous on its domain
[a, b] and differentiable on (a, b). (We do not suppose that f ′ is continuous on (a, b).)

(a) Prove that f is nondecreasing on [a, b] if and only if f ′(x) ≥ 0 for all x ∈ (a, b).
Show also that f is nonincreasing on [a, b] if and only if f ′(x) ≤ 0 for all x ∈ (a, b).

(b) Conclude that, if f ′ takes on both positive and negative values on (a, b), then
f is not 1-1. (See the proof of Theorem 3.11.)

(c) Show that, if f ′ takes on both positive and negative values on (a, b), then
there must exist a point c ∈ (a, b) for which f ′(c) = 0. (If f ′ were continuous, this
would follow from the Intermediate Value Theorem. But, we are not assuming here
that f ′ is continuous.)

(d) Prove the Intermediate Value Theorem for Derivatives: Suppose f is contin-
uous on the closed bounded interval [a, b] and differentiable on the open interval
(a, b). If f ′ attains two distinct values v1 = f ′(x1) < v2 = f ′(x2), then f ′ attains
every value v between v1 and v2.

HINT: Suppose v is a value between v1 and v2. Define a function g on [a, b] by
g(x) = f(x)− vx. Now apply part (c) to g.

Here is another perfectly reasonable and expected theorem, but one whose proof
is tough.

THEOREM 4.10. (Inverse Function Theorem) Suppose f : (a, b)→ R is a func-
tion that is continuous and 1-1 from (a, b) onto the interval (a′, b′). Assume that f
is differentiable at a point c ∈ (a, b) and that f ′(c) 6= 0. Then f−1 is differentiable
at the point f(c), and

f−1′(f(c)) =
1

f ′(c)
.

PROOF. The formula f−1′(f(c)) = 1/f ′(c) is no surprise. This follows directly
from the Chain Rule. For, if f−1(f(x)) = x, and f and f−1 are both differentiable,
then f−1′(f(c))f ′(c) = 1, which gives the formula. The difficulty with this theorem
is in proving that the inverse function f−1 of f is differentiable at f(c). In fact, the
first thing to check is that the point f(c) belongs to the interior of the domain of
f−1, for that is essential if f−1 is to be differentiable there, and here is where the
hypothesis that f is a real-valued function of a real variable is important. According
to Exercise 3.12, the 1-1 continuous function f maps [a, b] onto an interval [a′, b′],
and f(c) is in the open interval (a′, b′), i.e., is in the interior of the domain of f−1.

According to part (2) of Theorem 4.2, we can prove that f−1 is differentiable at
f(c) by showing that

lim
x→f(c)

f−1(x)− f−1(f(c))
x− f(c)

=
1

f ′(c)
.
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That is, we need to show that, given an ε > 0, there exists a δ > 0 such that if
0 < |x− f(c)| < δ then

|f
−1(x)− f−1(f(c))

x− f(c)
− 1
f ′(c)

| < ε.

First of all, because the function 1/q is continuous at the point f ′(c), there exists
an ε′ > 0 such that if |q − f ′(c)| < ε′, then

(4.4). |1
q
− 1
f ′(c)

| < ε

Next, because f is differentiable at c, there exists a δ′ > 0 such that if 0 < |y−c| < δ′

then

(4.5). |f(y)− f(c)
y − c

− f ′(c)| < ε′

Now, by Theorem 3.10, f−1 is continuous at the point f(c), and therefore there
exists a δ > 0 such that if |x− f(c)| < δ then

(4.6). |f−1(x)− f−1(f(c)| < δ′

So, if |x− f(c)| < δ, then

|f−1(x)− c| = |f−1(x)− f−1(f(c))| < δ′.

But then, by Inequality 4.5,

|f(f−1(x))− f(c)
f−1(x)− c

− f ′(c)| < ε′,

from which it follows, using Inequality 4.4, that

|f
−1(x)− f−1(f(c))

x− f(c)
− 1
f ′(c)

| < ε,

as desired.

REMARK. A result very like Theorem 4.10 is actually true for complex-valued
functions of a complex variable. We will have to show that if c is in the interior of
the domain S of a one-to-one, continuously differentiable, complex-valued function
f of a complex variable, then f(c) is in the interior of the domain f(S) of f−1. But,
in the complex variable case, this requires a somewhat more difficult argument.
Once that fact is established, the proof that f−1 is differentiable at f(c) will be
the same for complex-valued functions of complex variables as it is here for real-
valued functions of a real variable. Though the proof of Theorem 4.10 is reasonably
complicated for real-valued functions of a real variable, the corresponding result for
complex functions is much more deep, and that proof will have to be postponed to
a later chapter. See Theorem 7.10.



IV. DIFFERENTIATION, LOCAL BEHAVIOR 101

THE EXPONENTIAL AND LOGARITHM FUNCTIONS

We derive next the elementary properties of the exponential and logarithmic
functions. Of course, by “exponential function,” we mean the power series function
exp . And, as yet, we have not even defined a logarithm function.
Exercise 4.16. (a) Define a complex-valued function f : C → C by f(z) =
exp(z) exp(−z). Prove that f(z) = 1 for all z ∈ C.

(b) Conclude from part (a) that the exponential function is never 0, and that
exp(−z) = 1/ exp(z).

(c) Show that the exponential function is always positive on R, and
that limx→−∞ exp(x) = 0.

(d) Prove that exp is continuous and 1-1 from (−∞,∞) onto (0,∞).
(e) Show that the exponential function is not 1-1 on C.
(f) Use parts b and e to show that the Mean Value Theorem is not in any way

valid for complex-valued functions of a complex variable.

Using part (d) of the preceding exercise, we make the following important defi-
nition.

DEFINITION. We call the inverse exp−1 of the restriction of the exponential
function to R the (natural) logarithm function, and we denote this function by ln .

The properties of the exponential and logarithm functions are strongly tied to
the simplest kinds of differential equations. The connection is suggested by the
fact, we have already observed, that exp′ = exp . The next theorem, corollary, and
exercises make these remarks more precise.

THEOREM 4.11. Suppose f : C → C is differentiable everywhere and satisfies
the differential equation f ′ = af, where a is a complex number. Then f(z) =
c exp(az), where c = f(0).

PROOF. Consider the function h(z) = f(z)/ exp(az). Using the Quotient Formula,
we have that

h′(z) =
exp(az)f ′(z)− a exp(az)f(z)

[exp(az)]2
=

exp(az)(f ′(z)− af(z))
[exp(z)]2

= 0.

Hence, there exists a complex number c such that h(z) = c for all z. Therefore,
f(z) = c exp(az) for all z. Setting z = 0 gives f(0) = c, as desired.

COROLLARY. (Law of Exponents) For all complex numbers z and w, exp(z +
w) = exp(z) exp(w).

PROOF OF THE COROLLARY. Fix w, define f(z) = exp(z +w), and apply the
preceding theorem. We have f ′(z) = exp(z + w) = f(z), so we get

exp(z + w) = f(z) = f(0) exp(z) = exp(w) exp(z).

Exercise 4.17. (a) If n is a positive integer and z is any complex number, show
that exp(nz) = (exp(z))n.

(b) If r is a rational number and x is any real number, show that exp(rx) =
(exp(x))r.
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Exercise 4.18. (a) Show that ln is continuous and 1-1 from (0,∞) onto R.
(b) Prove that the logarithm function ln is differentiable at each point y ∈ (0,∞)

and that ln′(y) = 1/y.
HINT: Write y = exp(c) and use Theorem 4.10.

(c) Derive the first law of logarithms: ln(xy) = ln(x) + ln(y).
(d) Derive the second law of logarithms: That is, if r is a rational number and

x is a positive real number, show that ln(xr) = r ln(x).

We are about to make the connection between the number e and the exponential
function. The next theorem is the first step.

THEOREM 4.12. ln(1) = 0 and ln(e) = 1.

PROOF. If we write 1 = exp(t), then t = ln(1). But exp(0) = 1, so that ln(1) = 0,
which establishes the first assertion.

Recall that
e = lim

n
(1 +

1
n

)n.

Therefore,

ln(e) = ln(lim
n

(1 +
1
n

)n)

= lim
n

ln((1 +
1
n

)n)

= lim
n
n ln(1 +

1
n

)

= lim
n

ln(1 + 1
n )

1
n

= lim
n

ln(1 + 1
n )− ln(1)
1
n

= ln′(1)

= 1/1

= 1.
This establishes the second assertion of the theorem.

Exercise 4.19. (a) Prove that

e =
∞∑
n=0

1
n!
.

HINT: Use the fact that the logarithm function is 1-1.
(b) For r a rational number, show that exp(r) = er.
(c) If a is a positive number and r = p/q is a rational number, show that

ar = exp(r ln(a)).

(d) Prove that e is irrational.
HINT: Let pn/qn be the nth partial sum of the series in part (a). Show that qn ≤ n!,
and that lim qn(e− pn/qn) = 0. Then use Theorem 2.19.

We have finally reached a point in our development where we can make sense of
raising any positive number to an arbitrary complex exponent. Of course this in-
cludes raising positive numbers to irrational powers. We make our general definition
based on part (c) of the preceding exercise.
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DEFINITION. For a a positive real number and z an arbitrary complex number,
define az by

az = exp(z ln(a)).

REMARK. The point is that our old understanding of what ar means, where a > 0
and r is a rational number, coincides with the function exp(r ln(a)). So, this new
definition of az coincides and is consistent with our old definition. And, it now
allows us to raies a positive number a to an arbitrary complex exponent.

REMARK. Let the bugles sound!! Now, having made all the appropriate definitions
and derived all the relevant theorems, we can finally prove that eiπ = −1. From
the definition above, we see that if a = e, then we have ez = exp(z). Then, from
part (c) of Exercise 4.13, we have what we want:

eiπ = −1.

Exercise 4.20. (a) Prove that, for all complex numbers z and w, ez+w = ezew.
(b) If x is a real number and z is any complex number, show that

(ex)z = exz.

(c) Let a be a fixed positive number, and define a function f : C → C by
f(z) = az. Show that f is differentiable at every z ∈ C and that f ′(z) = ln(a)az.

(d) Prove the general laws of exponents: If a and b are positive real numbers
and z and w are complex numbers,

az+w = azaw,

azbz = (ab)z,

and, if x is real,
axw = (ax)w.

(e) If y is a real number, show that |eiy| = 1. If z = x+ iy is a complex number,
show that |ez| = ex.

(f) Let α = a + bi be a complex number, and define a function f : (0,∞) → C

by f(x) = xα = eα ln(x). Prove that f is differentiable at each point x of (0,∞) and
that f ′(x) = αxα−1.

(g) Let α = a+ bi be as in part (f). For x > 0, show that |xα| = xa.

THE TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS

The laws of exponents and the algebraic connections between the exponential
function and the trigonometric and hyperbolic functions, give the following “addi-
tion formulas:”

THEOREM 4.13. The following identities hold for all complex numbers z and
w.

sin(z + w) = sin(z) cos(w) + cos(z) sin(w).

cos(z + w) = cos(z) cos(w)− sin(z) sin(w).

sinh(z + w) = sinh(z) cosh(w) + cosh(z) sinh(w).
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cosh(z + w) = cosh(z) cosh(w) + sinh(z) sinh(w).

PROOF. We derive the first formula and leave the others to an exercise.
First, for any two real numbers x and y, we have

cos(x+ y) + i sin(x+ y) = ei(x+y)

= eixeiy

= (cosx+ i sinx)× (cos y + i sin y)

= cosx cos y − sinx sin y + i(cosx sin y + sinx cos y),

which, equating real and imaginary parts, gives that

cos(x+ y) = cosx cos y − sinx sin y

and
sin(x+ y) = sinx cos y + cosx sin y.

The second of these equations is exactly what we want, but this calculation only
shows that it holds for real numbers x and y. We can use the Identity Theorem to
show that in fact this formula holds for all complex numbers z and w. Thus, fix a
real number y. Let f(z) = sin z cos y + cos z sin y, and let

g(z) = sin(z + y) =
1
2i

(ei(z+y) − e−i(z+y) =
1
2i

(eizeiy − e−ize−iy).

Then both f and g are power series functions of the variable z. Furthermore, by
the previous calculation, f(1/k) = g(1/k) for all positive integers k. Hence, by the
Identity Theorem, f(z) = g(z) for all complex z. Hence we have the formula we
want for all complex numbers z and all real numbers y.

To finish the proof, we do the same trick one more time. Fix a complex number
z. Let f(w) = sin z cosw + cos z sinw, and let

g(w) = sin(z + w) =
1
2i

(ei(z+w) − e−i(z+w) =
1
2i

(eizeiw − e−ize−iw).

Again, both f and g are power series functions of the variable w, and they agree
on the sequence {1/k}. Hence they agree everywhere, and this completes the proof
of the first addition formula.

Exercise 4.21. (a) Derive the remaining three addition formulas of the preceding
theorem.

(b) From the addition formulas, derive the two “half angle” formulas for the
trigonometric functions:

sin2(z) =
1− cos(2z)

2
,

and

cos2(z) =
1 + cos(2z)

2
.
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THEOREM 4.14. The trigonometric functions sin and cos are periodic with pe-
riod 2π; i.e., sin(z+ 2π) = sin(z) and cos(z+ 2π) = cos(z) for all complex numbers
z.

PROOF. We have from the preceding exercise that sin(z + 2π) = sin(z) cos(2π) +
cos(z) sin(2π), so that the periodicity assertion for the sine function will follow if
we show that cos(2π) = 1 and sin(2π) = 0. From part (b) of the preceding exercise,
we have that

0 = sin2(π) =
1− cos(2π)

2

which shows that cos(2π) = 1. Since cos2 + sin2 = 1, it then follows that sin(2π) =
0.

The periodicity of the cosine function is proved similarly.

Exercise 4.22. (a) Prove that the hyperbolic functions sinh and cosh are periodic.
What is the period?

(b) Prove that the hyperbolic cosine cosh(x) is never 0 for x a real number, that
the hyperbolic tangent tanh(x) = sinh(x)/ cosh(x) is bounded and increasing from
R onto (−1, 1), and that the inverse hyperbolic tangent has derivative given by
tanh−1′(y) = 1/(1− y2).

(c) Verify that for all y ∈ (−1, 1)

tanh−1(y) = ln(
√

1 + y

1− y
).

Exercise 4.23. (Polar coordinates) Let z be a nonzero complex number. Prove
that there exists a unique real number 0 ≤ θ < 2π such that z = reiθ, where r = |z|.
HINT: If z = a+ bi, then z = r(ar + b

r i. Observe that −1 ≤ a
r ≤ 1, −1 ≤ b

r ≤ 1, and
(ar )2 + ( br )2 = 1. Show that there exists a unique 0 ≤ θ < 2π such that a

r = cos θ
and b

r = sin θ.

L’Hopital’s Rule

Many limits of certain combinations of functions are difficult to evaluate because
they lead to what’s known as “indeterminate forms.” These are expressions of the
form 0/0, ∞/∞, 00, ∞ −∞, 1∞, and the like. They are precisely combinations
of functions that are not covered by our limit theorems. See Theorem 4.1. The
very definition of the derivative itself is such a case: limh→0(f(c+ h)− f(c)) = 0,
limh→0 h = 0, and we are interested in the limit of the quotient of these two
functions, which would lead us to the indeterminate form 0/0. The definition of the
number e is another example: lim(1 + 1/n) = 1, limn =∞, and we are interested
in the limit of (1 + 1/n)n, which leads to the indeterminate form 1∞. L’Hopital’s
Rule, Theorem 4.16 below, is our strongest tool for handling such indeterminate
forms.

To begin with, here is a useful generalization of the Mean Value Theorem.

THEOREM 4.15. (Cauchy Mean Value Theorem) Let f and g be continuous
real-valued functions on a closed interval [a, b], suppose g(a) 6= g(b), and assume
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that both f and g are differentiable on the open interval (a, b). Then there exists a
point c ∈ (a, b) such that

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

.

Exercise 4.24. Prove the preceding theorem.
HINT: Define an auxiliary function h as was done in the proof of the original Mean
Value Theorem.

The following theorem and exercise comprise what is called L’Hopital’s Rule.

THEOREM 4.16. Suppose f and g are differentiable real-valued functions on the
bounded open interval (a, b) and assume that

lim
x→a+0

f ′(x)
g′(x)

= L,

where L is a real number. (Implicit in this hypothesis is that g′(x) 6= 0 for x in
some interval (a, a+ α).) Suppose further that either

lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0

or
lim

x→a+0
f(x) = lim

x→a+0
g(x) =∞.

then

lim
x→a+0

f(x)
g(x)

= L.

PROOF. Suppose first that

lim
x→a+0

f(x) = lim
x→a+0

g(x) = 0.

Observe first that, because g′(x) 6= 0 for all x in some interval (a, a + α), g′(x) is
either always positive or always negative on that interval. (This follows from part
(d) of Exercise 4.15.) Therefore the function g must be strictly monotonic on the
interval (a, a+ α). Hence, since limx→a+0 g(x) = 0, we must have that g(x) 6= 0 on
the interval (a, a+ α).

Now, given an ε > 0, choose a positive δ < α such that if a < c < a + δ then
| f
′(c)
g′(c) − L| < ε. Then, for every natural number n for which 1/n < δ, and every
a < x < a + δ, we have by the Cauchy Mean Value Theorem that there exists a
point c between a+ 1/n and x such that

|f(x)− f(a+ 1/n)
g(x)− g(a+ 1/n)

− L| = |f
′(c)
g′(c)

− L| < ε.

Therefore, taking the limit as n approaches ∞, we obtain

|f(x)
g(x)

− L| = lim
n→∞

|f(x)− f(a+ 1/n)
g(x)− g(a+ 1/n)

− L| ≤ ε



IV. DIFFERENTIATION, LOCAL BEHAVIOR 107

for all x for which a < x < a+ δ. This proves the theorem in this first case.
Next, suppose that

lim
x→a+0

f(x) = lim
x→a+0

g(x) =∞.

This part of the theorem is a bit more complicated to prove. First, choose a positive
α so that f(x) and g(x) are both positive on the interval (a, a+α). This is possible
because both functions are tending to infinity as x approaches a. Now, given an
ε > 0, choose a positive number β < α such that

|f
′(c)
g′(c)

− L| < ε

2

for all a < c < a + β. We express this absolute value inequality as the following
pair of ordinary inequalities:

L− ε

2
<
f ′(c)
g′(c)

< L+
ε

2
.

Set y = a+ β. Using the Cauchy Mean Value Theorem, and the preceding inequal-
ities, we have that for all a < x < y

L− ε

2
<
f(x)− f(y)
g(x)− g(y)

< L+
ε

2
,

implying that

(L− ε

2
)(g(x)− g(y)) + f(y) < f(x) < (L+

ε

2
)(g(x)− g(y)) + f(y).

Dividing through by g(x) and simplifying we obtain

L− ε

2
−

(L− ε
2 )g(y)

g(x)
+
f(y)
g(x)

<
f(x)
g(x)

< L+
ε

2
−

(L+ ε
2 )g(y)

g(x)
+
f(y)
g(x)

.

Finally, using the hypothesis that limx→a+0 g(x) =∞, and the fact that L, ε, g(y),
and f(y) are all constants, choose a δ > 0, with δ < β, such that if a < x < a+ δ,
then

| −
(L− ε

2 )g(y)
g(x)

+
f(y)
g(x)

| < ε

2

and

| −
(L+ ε

2 )g(y)
g(x)

+
f(y)
g(x)

| < ε

2
.

Then, for all a < x < a+ δ, we would have

L− ε < f(x)
g(x)

< L+ ε,

implying that

|f(x)
g(x)

− L| < ε,
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and the theorem is proved.

Exercise 4.25. (a) Show that the conclusions of the preceding theorem also hold
if we assume that

lim
x→a+0

f ′(x)
g′(x)

=∞.

HINT: Replace ε by a large real number B and show that f(x)/g(x) > B if 0 <
x− a < δ.

(b) Show that the preceding theorem, as well as part (a) of this exercise, also
holds if we replace the (finite) endpoint a by −∞.
HINT: Replace the δ’s by negative numbers B.

(c) Show that the preceding theorem, as well as parts a and b of this exercise,
hold if the limit as x approaches a from the right is replaced by the limit as x
approaches b from the left.
HINT: Replace f(x) by f(−x) and g(x) by g(−x).

(d) Give an example to show that the converse of L’Hopital’s Rule need not hold;
i.e., find functions f and g for which limx→a+0 f(x) = limx→a+0 g(x) = 0,

lim
x→a+0

f(x)
g(x)

exists, but lim
x→a+0

f ′(x)
g′(x)

does not exist.

(e) Deduce from the proof given above that if limx→a+0 f
′(x)/g′(x) = L and

limx→a+0 g(x) = ∞, then limx→a+0 f(x)/g(x) = L independent of the behavior of
f.

(f) Evaluate limx→∞ x1/x, and limx→0(1− x)1/x.
HINT: Take logarithms.

HIGHER ORDER DERIVATIVES

DEFINITION. Let S be a subset of R (or C), and Let f : S → C be a function
of a real (or complex) variable. We say that f is continuously differentiable on S0

if f is differentiable at each point x of S0 and the function f ′ is continuous on S0.
We say that f ∈ C1(S) if f is continuous on S and continuously differentiable on
S0. We say that f is 2-times continuously differentiable on S0 if the first derivative
f ′ is itself continuously differentiable on S0. And, inductively, we say that f is
k-times continuously differentiable on S0 if the k − 1st derivative of f is itself
continuously differentiable on S0. We write f (k) for the kth derivative of f, and we
write f ∈ Ck(S) if f is continuous on S and is k times continuously differentiable
on S0. Of course, if f ∈ Ck(S), then all the derivatives f (j), for j ≤ k, exist nd are
continuous on S0. (Why?)

For completeness, we define f (0) to be f itself, and we say that f ∈ C∞(S) if f
is continuous on S and has infinitely many continuous derivatives on S0; i.e., all of
its derivatives exist and are continuous on S0.

As in Chapter III, we say that f is real-analytic (or complex-analytic) on S if it
is expandable in a Taylor series around each point c ∈ S0

REMARK. Keep in mind that the definition above, as applied to functions whose
domain S is a nontrivial subset of C, has to do with functions of a complex variable
that are continuously differentiable on the set S0. We have seen that this is quite
different from a function having continuous partial derivatives on S0. We will return
to partial derivatives at the end of this chapter.
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THEOREM 4.17. Let S be an open subset of R (or C).
(1) Suppose WS is a subset of R. Then, for each k ≥ 1, there exists a function

in Ck(S) that is not in Ck+1(S). That is, Ck+1(S) is a proper subset of
Ck(S).

(2) If f is real-analytic (or complex-analytic) on S, then f ∈ C∞(S).
(3) There exists a function in C∞(R) that is not real-analytic on R. That is,

the set of real-analytic functions on R is a proper subset of the set C∞(R).

REMARK. Suppose S is an open subset of C. It is a famous result from the Theory
of Complex Variables that if f is in C1(S), then f is necessarily complex analytic
on S. We will prove this amazing result in Theorem 7.5. Part (3) of the theorem
shows that the situation is quite different for real-valued functions of a real variable.

PROOF. For part (1), see the exercise below. Part (2) is immediate from part (c)
of Exercise 4.10. Before finishing the proof of part (3), we present the following
lemma:

LEMMA. Let f be the function defined on all of R as follows.

f(x) =

{
0 x ≤ 0
p(x)e−1/x

xn x > 0

where p(x) is a fixed polynomial function and n is a fixed nonnegative integer. Then
f is continuous at each point x of R.

PROOF OF THE LEMMA. The assertion of the lemma is clear if x 6= 0. To see
that f is continuous at 0, it will suffice to prove that

lim
x→0+0

p(x)e−1/x

xn
= 0.

(Why?) But, for x > 0, we know from part (b) of Exercise 3.22 that e1/x >
1/(xn+1(n+ 1)!), implying that e−1/x < xn+1(n+ 1)!. Hence, for x > 0,

|f(x)| = |p(x)|e−1/x

xn
< (n+ 1)!x|p(x)|,

and this tends to 0 as x approaches 0 from the right, as desired.

. Returning to the proof of Theorem 4.17, we verify part (3) by observing that if f
is as in the preceding lemma then f is actually differentiable, and its derivative f ′

is a function of the same sort. (Why?) It follows that any such function belongs to
C∞(R). On the other hand, a nontrivial such f cannot be expandable in a Taylor
series around 0 because of the Identity Theorem. (Take xk = −1/k.) This completes
the proof.

Exercise 4.26. (a) Prove part (1) of Theorem 4.17. Use functions of the form
xn sin(1/x).

(b) Prove that any function of the form of the f in the lemma above is everywhere
differentiable on R, and its derivative has the same form. Conclude that any such
function belongs to C∞(R).



110 IV. DIFFERENTIATION, LOCAL BEHAVIOR

(c) For each positive integer n, define a function fn on the interval (−1, 1 by
fn(x) = |x|1+1/n. Prove that each fn is differentiable at every point in (−1, 1),
including 0. Prove also that the sequence {fn} converges uniformly to the function
f(x) = |x|. (See part (h) of Exercise 3.28.) Conclude that the uniform limit of
differentiable functions of a real variable need not be differentiable. (Again, for
functions of a complex variable, the situation is very different. In that case, the
uniform limit of differentiable functions is differentiable. See Theorem 7.11.)
Exercise 4.27. (A smooth approximation to a step function.) Suppose a < b <
c < d are real numbers. Show that there exists a function χ in C∞(R) such that
0 ≤ χ(x) ≤ 1 for all x, χ(x) ≡ 1 for x ∈ [b, c], and χ(x) ≡ 0 for x /∈ (a, d). (If a is
close to b and c is close to d, then this function is a C∞ approximation to the step
function that is 1 on the interval [b, c] and 0 elsewhere.)

(a) Let f be a function like the one in the lemma. Think about the graphs of
the functions f(x− c) and f(b− x). Construct a C∞ function g that is 0 between
b and c and positive everywhere else.

(b) Construct a C∞ function h that is positive between a and d and 0 everywhere
else.

(c) Let g and h be as in parts (a) and (b). If j = g + h, show that j is never 0,
and write k for the C∞ function k = 1/j.

(d) Examine the function hk, and show that it is the desired function χ.

THEOREM 4.18. (Formula for the coefficients of a Taylor Series function) Let
f be expandable in a Taylor series around a point c :

f(x) =
∑

an(x− c)n.

Then for each n, an = f (n)(c)/n!.

PROOF. Because each derivative of a Taylor series function is again a Taylor series
function, and because the value of a Taylor series function at the point c is equal
to its constant term a0, we have that a1 = f ′(c). Computing the derivative of the
derivative, we see that 2a2 = f ′

′(c) = f (2)(c). Continuing this, i.e., arguing by
induction, we find that n!an = f (n)(c), which proves the theorem.

TAYLOR POLYNOMIALS AND TAYLOR’S REMAINDER THEOREM

DEFINITION. Let f be in Cn(Br(c)) for c a fixed complex number, r > 0, and
n a positive integer. Define the Taylor polynomial of degree n for f at c to be the
polynomial Tn ≡ Tn(f,c) given by the formula:

(Tn(f,c))(z) =
n∑
j=0

aj(z − c)j ,

where aj = f (j)(c)/j!.

REMARK. If f is expandable in a Taylor series on Br(c), then the Taylor poly-
nomial for f of degree n is nothing but the nth partial sum of the Taylor series
for f on Br(c). However, any function that is n times differentiable at a point c
has a Taylor polynomial of order n. Functions that are infinitely differentiable have
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Taylor polynomials of all orders, and we might suspect that these polynomials are
some kind of good approximation to the function itself.
Exercise 4.28. Prove that f is expandable in a Taylor series function around a
point c (with radius of convergence r > 0) if and only if the sequence {Tn(f,c)} of
Taylor polynomials converges pointwise to f ; i.e.,

f(z) = lim(Tn(f,c))(z)

for all z in Br(c).
Exercise 4.29. Let f ∈ Cn(Br(c)). Prove that f ′ ∈ Cn−1(Br(c)). Prove also that
(Tn(f,c))

′ = Tn−1
(f ′,c).

The next theorem is, in many ways, the fundamental theorem of numerical anal-
ysis. It clearly has to do with approximating a general function by polynomials. It
is a generalization of the Mean Value Theorem, and as in that case this theorem
holds only for real-valued functions of a real variable.

THEOREM 4.19. (Taylor’s Remainder Theorem) Let f be a real-valued function
on an interval (c− r, c+ r), and assume that f ∈ Cn((c− r, c+ r)), and that f (n)

is differentiable on (c − r, c + r). Then, for each x in (c − r, c + r) there exists a y
between c and x such that

(4.7) f(x)− (Tn(f,c))(x) =
f (n+1)(y)
(n+ 1)!

(x− c)n+1.

REMARK. If we write f(x) = Tnf,c)(x) + Rn+1(x), where Rn+1(x) is the error or
remainder term, then this theorem gives a formula, and hence an estimate, for that
remainder term. This is the evident connection with Numerical Analysis.

PROOF. We prove this theorem by induction on n. For n = 0, this is precisely the
Mean Value Theorem. Thus,

f(x)− T 0
f,c(x) = f(x)− f(c) = f ′(y)(x− c.

Now, assuming the theorem is true for all functions in Cn−1((c − r, c + r)),
let us show it is true for the given function f ∈ Cn((c − r, c + r)). Set g(x) =
f(x) − (Tn(f,c))(x) and let h(x) = (x − c)n+1. Observe that both g(c) = 0 and
h(c) = 0. Also, if x 6= c, then h(x) 6= 0. So, by the Cauchy Mean Value Theorem,
we have that

g(x)
h(x)

=
g(x)− g(c)
h(x)− h(c)

=
g′(w)
h′(w)

for some w between c and x. Now

g′(w) = f ′(w)− (tn(f,c))
′(w) = f ′(w)− (Tn−1

(f ′,c))(w)

(See the preceding exercise.), and h′(w) = (n+ 1)(w − c)n. Therefore,

f(x)− (Tn(f,c))(x)

(x− c)n+1
=
g(x)
h(x)

=
g′(w)
h′(w)

=
f ′(w)− (Tn−1

(f ′,c))(w)

(n+ 1)(w − c)n
.
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We apply the inductive hypotheses to the function f ′ (which is in Cn−1((c−r, c+r)))
and obtain

f(x)− (Tn(f,c))(x)

(x− c)n+1
=
f ′(w)− (Tn−1

(f ′,c))(w)

(n+ 1)(w − c)n

=
f ′(n)(y)
n! (w − c)n

(n+ 1)(w − c)n

=
f ′

(n)(y)
(n+ 1)!

=
f (n+1)(y)
(n+ 1)!

for some y between c and w. But this implies that

f(x)− (Tn(f,c))(x) =
f (n+1)(y)(x− c)n+1

(n+ 1)!
,

for some y between c and x, which finishes the proof of the theorem.

Exercise 4.30. Define f(x) = 0 for x ≤ 0 and f(x) = e−1/x for x > 0. Verify that
f ∈ C∞(R), that f (n)(0) = 0 for all n, and yet f is not expandable in a Taylor
series around 0. Interpret Taylor’s Remainder Theorem for this function. That is,
describe the remainder Rn+1(x).

As a first application of Taylor’s Remainder Theorem we give the following result,
which should be familiar from calculus. It is the generalized version of what’s
ordinarily called the “second derivative test.”

THEOREM 4.20. (Test for Local Maxima and Minima) Let f be a real-valued
function in Cn(c− r, c + r), suppose that the n + 1st derivative f (n+1) of f exists
everywhere on (c − r, c + r) and is continuous at c, and suppose that f (k)(c) = 0
for all 1 ≤ k ≤ n and that f (n+1)(c) 6= 0. Then:

(1) If n is even, f attains neither a local maximum nor a local minimum at c.
In this case, c is called an inflection point.

(2) If n is odd and f (n+1)(c) < 0, then f attains a local maximum at c.
(3) If n is odd and f (n+1)(c) > 0, then f attains a local minimum at c.

PROOF. Since f (n+1) is continuous at c, there exists a δ > 0 such that f (n+1)(y)
has the same sign as f (n+1)(c) for all y ∈ (c−δ, c+δ). We have by Taylor’s Theorem
that if x ∈ (c− δ, c+ δ) then there exists a y between x and c such that

f(x) = (Tn(f,c))(x) +
f (n+1)(y)
(n+ 1)!

(x− c)n+1,

from which it follows that

f(x)− f(c) =
n∑
k=1

f (k)(c)k!(x− c)k +
f (n+1)(y)
(n+ 1)!

(x− c)n+1

=
f (n+1)(y)
(n+ 1)!

(x− c)n+1.
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Suppose n is even. It follows then that if x < c, the sign of (x−c)n+1 is negative,
so that the sign of f(x)− f(c) is the opposite of the sign of f (n+1)(c). On the other
hand, if x > c, then (x − c)n+1 > 0, so that the sign of f(x) − f(c) is the same
as the sign of f (n+1)(c). So, f(x) > f(c) for all nearby x on one side of c, while
f(x) < f(c) for all nearby x on the other side of c. Therefore, f attains neither a
local maximum nor a local minimum at c. This proves part (1).

Now, if n is odd, the sign of f(x) − f(c) is the same as the sign of f (n+1)(y),
which is the same as the sign of f (n+1)(c), for all x ∈ (c − δ, c + δ). Hence, if
f (n+1)(c) < 0, then f(x)− f(c) < 0 for all x ∈ (c− δ, c+ δ), showing that f attains
a local maximum at c. And, if f (n+1)(c) > 0, then the sign of f(x)−f(c) is positive
for all x ∈ (c− δ, c+ δ), showing that f attains a local minimum at c. This proves
parts (2) and (3).

The General Binomial Theorem

We use Taylor’s Remainder Theorem to derive a generalization of the Binomial
Theorem to nonintegral exponents. First we must generalize the definition of bino-
mial coefficient.

DEFINITION. Let α be a complex number, and let k be a nonnegative integer.
We define the general binomial coefficient

(
α
k

)
by(

α

k

)
=
α(α− 1) . . . (α− k + 1)

k!
.

If α is itself a positive integer and k ≤ α, then
(
α
k

)
agrees with the earlier

definition of the binomial coefficient, and
(
α
k

)
= 0 when k > α. However, if α is not

an integer, but just an arbitrary complex number, then every
(
α
k

)
6= 0.

Exercise 4.31. Estimates for the size of binomial coefficients. Let α be a fixed
complex number.

(a) Show that

|
(
α

k

)
| ≤

k∏
j=1

(1 +
|α|
j

)

for all nonnegative integers k.
HINT: Note that

|
(
α

k

)
| ≤ |α|(|alpha|+ 1)(|alpha|+ 2) . . . (|α|+ k − 1)

k!
.

(b) Use part (a) to prove that there exists a constant C such that

|
(
α

k

)
| ≤ C2k

for all nonnegative integers k.
HINT: Note that (1 + |α|/j) < 2 for all j > |α|.
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(c) Show in fact that for each ε > 0 there exists a constant Cε such that

|
(
α

k

)
| ≤ Cε(1 + ε)k

for all nonnegative integers k.
(d) Let h(t) be the power series function given by h(t) =

∑∞
k=0

(
α
k

)
tk. Use the

ratio test to show that the radius of convergence for h equals 1.

REMARK. The general Binomial Theorem, if there is one, should be something
like the following:

(x+ y)α =
∞∑
k=0

(
α

k

)
xα−kyk.

The problem is to determine when this infinite series converges, i.e., for what values
of the three variables x, y, and α does it converge. It certainly is correct if x = 0,
so we may as well assume that x 6= 0, in which case we are considering the validity
of the formula

(x+ y)α = xα(1 + t)α = xα
∞∑
k=0

(
α

k

)
tk,

where t = y/x. Therefore, it will suffice to determine for what values of t and α
does the infinite series

∞∑
k=0

(
α

k

)
tk

equal
(1 + t)α.

The answer is that, for n arbitrary complex number α, this series converges to
the correct value for all t ∈ (−1, 1). (Of course, t must be larger than −1 for the
expression (1+ t)α even to be defined.) However, the next theorem only establishes
this equality for t’s in the subinterval (−1/2, 1/2). As mentioned earlier, its proof
is based on Taylor’s Remainder Theorem. We must postpone the complete proof
to the next chapter, where we will have a better version of Taylor’s Theorem.

THEOREM 4.21. Let α = a+ bi be a fixed complex number. Then

(1 + t)α =
∞∑
k=0

(
α

k

)
tk

for all t ∈ (−1/2, 1/2).

PROOF. Of course, this theorem is true if α is a nonnegative integer, for it is
then just the original Binomial Theorem, and in fact in that case it holds for every
complex number t. For a general complex number α, we have only defined xα for
positive x’s, so that (1 + t)α is not even defined for t < −1.

Now, for a general α = a+ bi, consider the function g : (−1/2, 1/2)→ C defined
by g(t) = (1 + t)α. Observe that the nth derivative of g is given by

g(n)(t) =
α(α− 1) . . . (α− n+ 1)

(1 + t)n−α
.
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Then g ∈ C∞((−1/2, 1/2)). (Of course, g is actually in C∞(−1, 1), but the present
theorem is only concerned with t’s in (−1/2, 1/2).)

For each nonnegative integer k define

ak = g(k)(0)/k! =
α(α− 1) . . . (α− k + 1)

k!
=
(
α

k

)
,

and set h equal to the power series function given by h(t) =
∑∞
k=0 akt

k. Accord-
ing to part (d) of the preceding exercise, the radius of convergence for the power
series

∑
akt

k is 1. The aim of this theorem is to show that g(t) = h(t) for all
−1/2 < t < 1/2. In other words, we wish to show that g agrees with this power
series function at least on the interval (−1/2, 1/2). It will suffice to show that the
sequence {Sn} of partial sums of the power series function h converges to the func-
tion g, at least on (−1/2, 1/2). We note also that the nth partial sum of this power
series is just the nth Taylor polynomial Tng for g.

Sn(t) =
n∑
k=0

(
α

k

)
tk =

n∑
k=0

g(k)(0)
k!

tk.

Now, fix a t strictly between −1/2 and 1/2, and let r < 1 be as in part (c) of
Exercise 4.11. That is, |t/(1 + y)| < r for every y between 0 and t. (This is an
important inequality for our proof, and this is one place where the hypothesis that
t ∈ (−1/2, 1/2) is necessary.) Note also that, for any y ∈ (−1/2, 1/2), we have
|(1 + y)α| = (1 + y)a, and this is trapped between (1/2)a and (3/2)a. Hence, there
exists a number M such that |(1 + y)α| ≤M for all y ∈ (−1/2, 1/2).

Next, choose an ε > 0 for which β = (1 + ε)r < 1. We let Cε be a constant
satisfying the inequality in Part (c) of Exercise 4.31. So, using Taylor’s Remainder
Theorem, we have that there exists a y between 0 and t for which

|g(t)−
n∑
k=0

akt
k| = |g(t)− (Tn(g,0)(t)|

= |g
(n+1)(y)
(n+ 1)!

tn+1|

= | α(α− 1) . . . (α− n)
(n+ 1)!(1 + y)n+1−α t

n+1|

≤ |
(

α

n+ 1

)
||(1 + y)α|| t

1 + y
|n+1

≤ Cε(1 + ε)n+1M | t

1 + y
|n+1

≤ Cε(1 + ε)n+1Mrn+1

≤ CεMβn+1, .

Taking the limit as n tends to ∞, and recalling that β < 1, shows that g(t) = h(t)
for all −1/2 < t < 1/2, which completes the proof.

MORE ON PARTIAL DERIVATIVES
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We close the chapter with a little more concerning partial derivatives. Thus far,
we have discussed functions of a single variable, either real or complex. However, it
is difficult not to think of a function of one complex variable z = x+ iy as equally
well being a function of the two real variables x and y. We will write (a, b) and a+bi
to mean the same point in C ≡ R2, and we will write |(a, b)| and |a+ bi| to indicate
the same quantity, i.e., the absolute value of the complex number a + bi ≡ (a, b).
We have seen in Theorem 4.4 that the only real-valued, differentiable functions of a
complex variable are the constant functions. However, this is far from the case if we
consider real-valued functions of two real variables, as is indicated in Exercise 4.8.
Consequently, we make the following definition of differentiability of a real-valued
function of two real variables. Note that it is clearly different from the definition of
differentiability of a function of a single complex variable, and though the various
notations for these two kinds of differentiability are clearly ambiguous, we will leave
it to the context to indicate which kind we are using.

DEFINITION. Let f : S → R be a function whose domain is a subset S of R2,
and let c = (a, b) be a point in the interior S0 of S. We say that f is differentiable,
as a function of two real variables, at the point (a, b) if there exists a pair of real
numbers L1 and L2 and a function θ such that

(4.8) f(a+ h1, b+ h2)− f(a, b) = L1h1 + L2h2 + θ(h1, h2)

and

(4.9) lim
|(h1,h2)|→0

θ(h1, h2)
|(h1, h2)|

= 0.

One should compare this definition with part (3) of Theorem 4.2.
Each partial derivative of a function f is again a real-valued function of two real

variables, and so it can have partial derivatives of its own. We use simplifying no-
tation like fxyxx and fyyyxyy... to indicate “higher order” mixed partial derivatives.
For instance, fxxyx denotes the fourth partial derivative of f, first with respect
to x, second with respect to x again, third with respect to y, and finally fourth
with respect to x. These higher order partial derivatives are called mixed partial
derivatives.

DEFINITION. Suppose S is a subset of R2, and that f is a continuous real-
valued function on S. If both partial derivatives of f exist at each point of the
interior S0 of S, and both are continuous on S0, then f is said to belong to C1(S).
If all kth order mixed partial derivatives exist at each point of S0, and all of them
are continuous on S0, then f is said to belong to Ck(S). Finally, if all mixed partial
derivatives, of arbitrary orders, exist and are continuous on S0, then f is said to
belong to C∞(S).

Exercise 4.32. (a) Suppose f is a real-valued function of two real variables and
that it is differentiable, as a function of two real variables, at the point (a, b). Show
that the numbers L1 and L2 in the definition are exactly the partial derivatives of
f at (a, b). That is,

L1 =
∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)
h
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and

L2 =
∂f

∂y
(a, b) = lim

h→0

f(a, b+ h)− f(a, b)
h

.

(b) Define f on R2 as follows: f(0, 0) = 0, and if (x, y) 6= (0, 0), then f(x, y) =
xy/(x2 +y2). Show that both partial derivatives of f at (0, 0) exist and are 0. Show
also that f is not, as a function of two real variables, differentiable at (0, 0).
HINT: Let h and k run through the numbers 1/n.

(c) What do parts (a) and (b) tell about the relationship between a function of
two real variables being differentiable at a point (a, b) and its having both partial
derivatives exist at (a, b)?

(d) Suppose f = u + iv is a complex-valued function of a complex variable,
and assume that f is differentiable, as a function of a complex variable, at a point
c = a + bi ≡ (a, b). Prove that the real and imaginary parts u and v of f are
differentiable, as functions of two real variables. Relate the five quantities

∂u

∂x
(a, b),

∂u

∂y
(a, b),

∂v

∂x
(a, b),

∂v

∂y
(a, b), and f ′(c).

Perhaps the most interesting theorem about partial derivatives is the “mixed
partials are equal” theorem. That is, fxy = fyx. The point is that this isnot always
the case. An extra hypothesis is necessary.

THEOREM 4.22. (Theorem on mixed partials) Let f : S → R be such that both
second order partials derivatives fxy and fyx exist at a point (a, b) of the interior
of S, and assume in addition that one of these second order partials exists at every
point in a disk Br(a, b) around (a, b) and that it is continuous at the point (a, b).
Then fxy(a, b) = fyx(a, b).

PROOF. Suppose that it is fyx that is continuous at (a, b). Let ε > 0 be given, and
let δ1 > 0 be such that if |(c, d)− (a, b)| < δ1 then |fyx(c, d)− fyx(a, b)| < ε. Next,
choose a δ2 such that if 0 < |k| < δ2, then

|fxy(a, b)− fx(a, b+ k)− fx(a, b)
k

| < ε,

and fix such a k. We may also assume that |k| < δ1/2. Finally, choose a δ3 > 0 such
that if 0 < |h| < δ3, then

|fx(a, b+ k)− f(a+ h, b+ k)− f(a, b+ k)
h

| < |k|ε,

and

|fx(a, b)− f(a+ h, b)− f(a, b)
h

| < |k|ε,

and fix such an h. Again, we may also assume that |h| < δ1/2.
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In the following calculation we will use the Mean Value Theorem twice.

0 ≤ |fxy(a, b)− fyx(a, b)|

≤ |fxy(a, b)− fx(a, b+ k)− fx(a, b)
k

|

+ |fx(a, b+ k)− fx(a, b)
k

− fyx(a, b)|

≤ ε+ |
fx(a, b+ k)− f(a+h,b+k)−f(a,b+k)

h

k
|

+ |
f(a+h,b)−f(a,b)

h − fx(a, b)
k

|

+ |f(a+ h, b+ k)− f(a, b+ k) + (f(a+ h, b)− f(a, b))
hk

− fyx(a, b)|

< 3ε+ |f(a+ h, b+ k)− f(a, b+ k) + (f(a+ h, b)− f(a, b))
hk

− fyx(a, b)|

= 3ε+ |fy(a+ h, b′)− fy(a, b′)
h

− fyx(a, b)|

= 3ε+ |fyx(a′, b′)− fyx(a, b)|
< 4ε,

because b′ is between b and b+ k, and a′ is between a and a+ h, so that |(a′, b′)−
(a, b)| < δ1/

√
2 < δ1. Hence, |fxy(a, b) − fyx(a, b) < 4ε, for an arbitrary ε, and so

the theorem is proved.

Exercise 4.33. Let f be defined on R2 by f(0, 0) = 0 and, for (x, y) 6= (0, 0),
f(x, y) = x3y/(x2 + y2).

(a) Prove that both partial derivatives fx and fy exist at each point in the plane.
(b) Show that fyx(0, 0) = 1 and fxy(0, 0) = 0.
(c) Show that fxy exists at each point in the plane, but that it is not continuous

at (0, 0).

The following exercise is an obvious generalization of the First Derivative Test
for Extreme Values, Theorem 4.8, to real-valued functions of two real variables.

Exercise 4.34. Let f : S → R be a real-valued function of two real variables,
and let c = (a, b) ∈ S0 be a point at which f attains a local maximum or a local
minimum. Show that if either of the partial derivatives ∂f/∂x or ∂f/∂y exists at
c, then it must be equal to 0.
HINT: Just consider real-valued functions of a real variable like x → f(x, b) or
y → f(a, y), and use Theorem 4.8.

Whenever we make a new definition about functions, the question arises of how
the definition fits with algebraic combinations of functions and how it fits with the
operation of composition. In that light, the next theorem is an expected one.

THEOREM 4.23. (Chain Rule again) Suppose S is a subset of R2, that (a, b) is
a point in the interior of S, and that f : S → R is a real-valued function that is
differentiable, as a function of two real variables, at the point (a, b). Suppose that
T is a subset of R, that c belongs to the interior of T, and that φ : T → R

2 is
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differentiable at the point c and φ(c) = (a, b). Write φ(t) = (x(t), y(t)). Then the
composition f ◦ φ is differentiable at c and

f ◦ φ′(c) =
∂f

∂x
(a, b)x′(c) +

∂f

∂y
(a, b)y′(c) =

∂f

∂x
(φ(c))x′(c) +

∂f

∂y
(φ(c))y′(c).

PROOF. From the definition of differentiability of a real-valued function of two
real variables, write

f(a+ h1, b+ h2)− f(a, b) = L1h1 + L2h2 + θf (H1, h2).

and from part (3) of Theorem 4.2, write

φ(c+ h)− φ(c) = φ′(c)h+ θφ(h),

or, in component form,

x(c+ h)− x(c) = x(c+ h)− a = x′(c)h+ θx(h)

and
y(c+ h)− y(c) = y(c+ h)− b = y′(c)h+ θy(h).

We also have that

lim
|(h1,h2)|→0

θf ((h1, h2))
|(h1, h2)|

= 0,

lim
h→0

θx(h)
h

= 0,

and

lim
h→0

θy(h)
h

= 0.

We will show that f ◦ φ is differentiable at c by showing that there exists a
number L and a function θ satisfying the two conditions of part (3) of Theorem
4.2.

Define

k1(h), k2(h)) = φ(c+ h)− φ(c) = (x(c+ h)− x(c), y(c+ h)− y(c)).

Thus, we have that

f ◦ φ(c+ h)− f ◦ φ(c) = f(φ(c+ h))− f(φ(c))

= f(x(c+ h), y(c+ h))− f(x(c), y(c))

= f(a+ k1(h), b+ k2(h))− f(a, b)

= L1k1(h) + L2k2(h) + θf (k1(h), k2(h))

= l1(x(c+ h)− x(c)) + L2(y(c+ h)− y(c))

+ θf (k1(h), k2(h))

= L1(x′(c)h+ θx(h)) + L2(y′(c)h+ θy(h))

+ θf (k1(h), k2(h))

= (L1x
′(c) + L2y

′(c))h

+ L1θx(h) + L2θy(h) + θf (k1(h), k2(h)).



120 IV. DIFFERENTIATION, LOCAL BEHAVIOR

We define L = (L1x
′(c) +L2y

′(c)) and θ(h) = l1θx(h) +L2θy(h) + θf (k1(h), k2(h)).
By these definitions and the calculation above we have Equation (4.1)

f ◦ φ(c+ h)− f ◦ φ(c) = Lh+ θ(h),

so that it only remains to verify Equation (4.2) for the function θ. We have seen
above that the first two parts of θ satisfy the desired limit condition, so that it
is just the third part of θ that requires some proof. The required argument is
analogous to the last part of the proof of the Chain Rule (Theorem 4.7), and we
leave it as an exercise.

Exercise 4.35. (a) Finish the proof to the preceding theorem by showing that

lim
h→0

θf (k1(h), k2(h))
h

= 0.

HINT: Review the corresponding part of the proof to Theorem 4.7.
(b) Suppose f : S → R is as in the preceding theorem and that φ is a real-valued

function of a real variable. Suppose f is differentiable, as a function of two real
variables, at the point (a, b), and that φ is differentiable at the point c = f(a, b).
Let g = φ ◦ f. Find a formula for the partial derivatives of the real-valued function
g of two real variables.

(c) (A generalized Mean Value Theorem) Suppose u is a real-valued function of
two real variables, both of whose partial derivatives exist at each point in a disk
Br(a, b). Show that, for any two points (x, y) and (x′, y′) in Br(a, b), there exists a
point (x̂, ŷ) on the line segment joining (x, y) to (x′, y′) such that

u(x, y)− u(x′, y′) =
∂u

∂x
(x̂, ŷ)(x− x′) +

∂u

∂y
(x̂, ŷ)(y − y′).

HINT: Let φ : [0, 1]→ R
2 be defined by φ(t) = (1− t)(x′, y′) + t(x, y). Now use the

preceding theorem.
(d) Verify that the assignment f → ∂f/∂x is linear; i.e., that

∂(f + g)
∂x

=
∂f

∂x
+
∂g

∂x
.

Check that the same is true for partial derivatives with respect to y.


