
CHAPTER V
INTEGRATION, AVERAGE BEHAVIOR

A = πr2.

In this chapter we will derive the formula A = πr2 for the area of a circle of
radius r. As a matter of fact, we will first have to settle on exactly what is the
definition of the area of a region in the plane, and more subtle than that, we must
decide what kinds of regions in the plane “have” areas. Before we consider the
problem of area, we will develop the notion of the integral (or average value) of
a function defined on an interval [a, b], which notion we will use later to compute
areas, once they have been defined.

The main results of this chapter include:
(1) The definition of integrability of a function, and the definition of the

integral of an integrable function,
(2) The Fundamental Theorem of Calculus (Theorem 5.9),
(3) The Integral Form of Taylor’s Remainder Theorem (Theorem 5.12),
(4) The General Binomial Theorem (Theorem 5.13),
(5) The definition of the area of a geometric set,
(6) A = πr2 (Theorem 5.15), and
(7) The Integral Test (Theorem 5.17).

INTEGRALS OF STEP FUNCTIONS

We begin by defining the integral of certain (but not all) bounded, real-valued
functions whose domains are closed bounded intervals. Later, we will extend the
definition of integral to certain kinds of unbounded complex-valued functions whose
domains are still intervals, but which need not be either closed or bounded. First,
we recall from Chapter III the following definitions.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. By a
partition of [a, b] we mean a finite set P = {x0 < x1 < . . . < xn} of n + 1 points,
where x0 = a and xn = b.

The n intervals {[xi−1, xi]} are called the closed subintervals of the partition P,
and the n intervals {(xi−1, xi)} are called the open subintervals or elements of P.

We write ‖P‖ for the maximum of the numbers (lengths of the subintervals)
{xi − xi−1}, and call ‖P‖ the mesh size of the partition P.

If a partition P = {xi} is contained in another partition Q = {yj}, i.e., each xi
equals some yj , then we say that Q is finer than P.

Let f be a function on an interval [a, b], and let P = {x0 < . . . < xn} be a
partition of [a, b]. Physicists often consider sums of the form

SP,{yi} =
n∑
i=1

f(yi)(xi − xi−1),

where yi is a point in the subinterval (xi−1, xi). These sums (called Riemann sums)
are approximations of physical quantities, and the limit of these sums, as the mesh
of the partition becomes smaller and smaller, should represent a precise value of the
physical quantity. What precisely is meant by the “ limit” of such sums is already
a subtle question, but even having decided on what that definition should be, it is
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122 V. INTEGRATION, AVERAGE BEHAVIOR

as important and difficult to determine whether or not such a limit exists for many
(or even any) functions f. We approach this question from a slightly different point
of view, but we will revisit Riemann sums in the end.

Again we recall from Chapter III the following.

DEFINITION. Let [a, b] be a closed bounded interval in R.A real-valued function
h : [a, b] → R is called a step function if there exists a partition P = {x0 < x1 <
. . . < xn} of [a, b] such that for each 1 ≤ i ≤ n there exists a number ai such that
h(x) = ai for all x ∈ (xi−1, xi).

REMARK. A step function h is constant on the open subintervals (or elements)
of a certain partition. Of course, the partition is not unique. Indeed, if P is such
a partition, we may add more points to it, making a larger partition having more
subintervals, and the function h will still be constant on these new open subintervals.
That is, a given step function can be described using various distinct partitions.

Also, the values of a step function at the partition points themselves is irrelevant.
We only require that it be constant on the open subintervals.

Exercise 5.1. Let h be a step function on [a, b], and let P = {x0 < x1 < . . . < xn}
be a partition of [a, b] such that h(x) = ai on the subinterval (xi−1, xi) determined
by P.

(a) Prove that the range of h is a finite set. What is an upper bound on the
cardinality of this range?

(b) Prove that h is differentiable at all but a finite number of points in [a, b].
What is the value of h′ at such a point?

(c) Let f be a function on [a, b]. Prove that f is a step function if and only if
f ′(x) exists and = 0 for every x ∈ (a, b) except possibly for a finite number of
points.

(d) What can be said about the values of h at the endpoints {xi} of the subin-
tervals of P?

(e) Let h be a step function on [a, b], and let j be a function on [a, b] for which
h(x) = j(x) for all x ∈ [a, b] except for one point c. Show that j is also a step
function.

(f) If k is a function on [a, b] that agrees with a step function h except at a finite
number of points c1, c2, . . . , cN , show that k is also a step function.

Exercise 5.2. Let [a, b] be a fixed closed bounded interval in R, and let H([a, b])
denote the set of all step functions on [a, b].

(a) Using Part (c) of Exercise 5.1, prove that the set H([a, b]) is a vector space
of functions; i.e., it is closed under addition and scalar multiplication.

(b) Show that H([a, b]) is closed under multiplication; i.e., if h1, h2 ∈ H([a, b]),
then h1h2 ∈ H([a, b]).

(c) Show that H([a, b]) is closed under taking maximum and minimum and that
it contains all the real-valued constant functions.

(d) We call a function χ an indicator function if it equals 1 on an interval (c, d)
and is 0 outside [c, d]. To be precise, we will denote this indicator function by χ(c,d).
Prove that every indicator function is a step function, and show also that every step
function h is a linear combination of indicator functions:

h =
n∑
j=1

ajχ(cj ,dj).
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(e) Define a function k on [0, 1] by setting k(x) = 0 if x is a rational number and
k(x) = 1 if x is an irrational number. Prove that the range of k is a finite set, but
that k is not a step function.

Our first theorem in this chapter is a fundamental consistency result about the
“area under the graph” of a step function. Of course, the graph of a step function
looks like a collection of horizontal line segments, and the region under this graph
is just a collection of rectangles. Actually, in this remark, we are implicitly thinking
that the values {ai} of the step function are positive. If some of these values are
negative, then we must re-think what we mean by the area under the graph. We
first introduce the following bit of notation.

DEFINITION. Let h be a step function on the closed interval [a, b]. Suppose
P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h(x) = ai on the interval
(xi−1, xi). Define the weighted average of h relative to P to be the number SP (h)
defined by

SP (h) =
n∑
i=1

ai(xi − xi−1).

REMARK. Notice the similarity between the formula for a weighted average and
the formula for a Riemann sum. Note also that if the interval is a single point, i.e.,
a = b, then the only partition P of the interval consists of the single point x0 = a,
and every weighted average SP (h) = 0.

The next theorem is not a surprise, although its proof takes some careful think-
ing. It is simply the assertion that the weighted averages are independent of the
choice of partition.

THEOREM 5.1. Let h be a step function on the closed interval [a, b]. Suppose
P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h(x) = ai on the interval
(xi−1, xi), and suppose Q = {y0 < y1 < . . . < ym} is another partition of [a, b] such
that h(x) = bj on the interval (yj−1, yj). Then the weighted average of h relative to
P is the same as the weighted average of h relative to Q. That is, SP (h) = SQ(h).

PROOF. Suppose first that the partition Q is obtained from the partition P by
adding one additional point. Then m = n+1, and there exists an i0 between 1 and
n− 1 such that

(1) for 0 ≤ i ≤ i0 we have yi = xi.
(2) xi0 < yi0+1 < xi0+1.
(3) For i0 < i ≤ n we have xi = yi+1.

In other words, yi0+1 is the only point of Q that is not a point of P, and yi0+1 lies
strictly between xi0 and xi0+1.

Because h is constant on the interval (xi0 , xi0+1) = (yi0 , yi0+2), it follows that

(1) For 1 ≤ i ≤ i0, ai = bi.
(2) bi0+1 = bi0+2 = ai0+1.
(3) For i0 + 1 ≤ i ≤ n, ai = bi+1.
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So,

SP (h) =
n∑
i=1

ai(xi − xi−1)

=
i0∑
i=1

ai(xi − xi−1) + ai0+1(xi0+1 − xi0)

+
n∑

i=i0+2

ai(xi − xi−1)

=
i0∑
i=1

bi(yi − yi−1) + ai0+1(yi0+2 − yi0)

+
n∑

i=i0+2

bi+1(yi+1 − yi)

=
i0∑
i=1

bi(yi − yi−1) + ai0+1(yi0+2 − yi0+1 + yi0+1 − yi0)

+
n+1∑

i=i0+3

bi(yi − yi−1)

=
i0∑
i=1

bi(yi − yi−1) + bi0+1(yi0+1 − yi0) + bi0+2(yi0+2 − yi0+1)

+
m∑

i=i0+3

bi(yi − yi−1)

=
m∑
i=1

bi(yi − yi−1)

= SQ(h),

which proves the theorem in this special case where Q is obtained from P by adding
just one more point.

It follows easily now by induction that if Q is obtained from P by adding any fi-
nite number of additional points, then h is constant on each of the open subintervals
determined by Q, and SQ(h) = SP (h).

Finally, let Q = {y0 < y1 < . . . < ym} be an arbitrary partition of [a, b], for
which h is constant on each of the open subintervals (yj−1, yj) determined by Q.
Define R to be the partition of [a, b] obtained by taking the union of the partition
points {xi} and {yj}. Then R is a partition of [a, b] that is obtained by adding
a finite number of points to the partition P, whence SR(h) = SP (h). Likewise,
R is obtained from the partition Q by adding a finite number of points, whence
SR(h) = SQ(h), and this proves that SQ(h) = SP (h), as desired.

DEFINITION. Let [a, b] be a fixed closed bounded interval in R. We define the
integral of a step function h on [a, b], and denote it by

∫
h, as follows: If P = {x0 <

x1 < . . . < xn} is a partition of [a, b], for which h(x) = ai for all x ∈ (xi−1, xi),
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then ∫
h = SP (h) =

n∑
i=1

ai(xi − xi−1).

REMARK. The integral of a step function h is defined to be the weighted average
of h relative to a partition P of [a, b]. Notice that the preceding theorem is crucial
in order that this definition of

∫
h be unambiguously defined. The integral of a

step function should not depend on which partition is used. Theorem 5.1 asserts
precisely this fact.

Note also that if the interval is a single point, i.e., a = b, then the integral of
every step function h is 0.

We use a variety of notations for the integral of h :

∫
h =

∫ b

a

h =
∫ b

a

h(t) dt.

The following exercise provides a very useful way of describing the integral of a
step function. Not only does it show that the integral of a step function looks like
a Riemann sum, but it provides a description of the integral that makes certain
calculations easier. See, for example, the proof of the next theorem.

Exercise 5.3. Suppose h is a step function on [a, b] and that R = {z0 < z1 < . . . <
zn} is a partition of [a, b] for which h is constant on each subinterval (zi−1, zi) of
R.

(a) Prove that ∫
h = SR(h) =

n∑
i=1

h(wi)(zi − zi−1),

where, for each 1 ≤ i ≤ n, wi is any point in (zi−1, zi). (Note then that the integral
of a step function takes the form of a Riemann sum.)

(b) Show that
∫
h is independent of the values of h at the points {zi} of the

partition R.

Exercise 5.4. Let h1 and h2 be two step functions on [a, b].
(a) Suppose that h1(x) = h2(x) for all x ∈ [a, b] except for one point c. Prove

that
∫
h1 =

∫
h2.

HINT: Let P be a partition of [a, b], for which both h1 and h2 are constant on its
open subintervals, and for which c is one of the points of P. Now use the preceding
exercise to calculate the two integrals.

(b) Suppose h1(x) = h2(x) for all but a finite number of points c1, . . . , cN ∈ [a, b].
Prove that

∫
h1 =

∫
h2.

We have used the terminology “weighted average” of a step function relative to
a partition P. The next exercise shows how the integral of a step function can be
related to an actual average value of the function.

Exercise 5.5. Let h be a step function on the closed interval [a, b], and let P =
{x0 < x1 < . . . < xn} be a partition of [a, b] for which h(x) = ai on the interval
(xi−1, xi). Let us think of the interval [a, b] as an interval of time, and suppose
that the function h assumes the value ai for the interval of time between xi−1 and



126 V. INTEGRATION, AVERAGE BEHAVIOR

xi. Show that the average value A(h) taken on by h throughout the entire interval
([a, b]) of time is given by

A(h) =
∫
h

b− a
.

THEOREM 5.2. Let H([a, b]) denote the vector space of all step functions on
the closed interval [a, b]. Then the assignment h →

∫
h of H([a, b]) into R has the

following properties:
(1) (Linearity) H([a, b]) is a vector space. Furthermore,

∫
(h1 + h2) =

∫
h1 +∫

h2, and
∫
ch = c

∫
h for all h1, h2, h ∈ H([a, b]), and for all real numbers

c.
(2) If h =

∑n
i=1 aiχ(ci,di) is a linear combination of indicator functions (See

part (d) of Exercise 5.2), then
∫
h =

∑n
i=1 ai(di − ci).

(3) (Positivity) If h(x) ≥ 0 for all x ∈ [a, b], then
∫
h ≥ 0.

(4) (Order-preserving) If h1 and h2 are step functions for which h1(x) ≤ h2(x)
for all x ∈ [a, b], then

∫
h1 ≤

∫
h2.

PROOF. That H([a, b]) is a vector space was proved in part (a) of Exercise 5.2.
Suppose P = {x0 < x1 < . . . < xn} is a partition of [a, b] such that h1(x) is constant
for all x ∈ (xi−1, xi), and suppose Q = {y0 < y1 < . . . < ym} is a partition of [a, b]
such that h2(x) is constant for all x ∈ (yj−1, yj). Let R = {z0 < z1 < . . . < zr}
be the partition of [a, b] obtained by taking the union of the xi’s and the yj ’s.
Then h1 and h2 are both constant on each open subinterval of R, since each such
subinterval is contained in some open subinterval of P and also is contained in some
open subinterval of Q. Therefore, h1 + h2 is constant on each open subinterval of
R. Now, using Exercise 5.3, we have that∫

(h1 + h2) =
r∑

k=1

((h1 + h2)(wk))(zk − zk−1)

=
r∑

k=1

h1(wk)(zk − zk−1) +
r∑

k=1

h2(wk)(zk − zk−1)

=
∫
h1 +

∫
h2.

This proves the first assertion of part (1).
Next, let P = {x0 < x1 < . . . < xn} be a partition of [a, b] such that h(x)

is constant on each open subinterval of P. Then ch(x) is constant on each open
subinterval of P, and using Exercise 5.3 again, we have that∫

(ch) =
n∑
i=1

ch(wi)(xi − xi−1)

= c
n∑
i=1

h(wi)(xi − xi−1)

= c

∫
h,

which completes the proof of the other half of part (1).
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To see part (2), we need only verify that
∫
χ(ci,di) = di − ci, for then part (2)

will follow from part (1). But χ(ci,di) is just a step function determined by the
four point partition {a, ci, di, b} and values 0 on (a, ci) and (di, b) and 1 on (ci, di).
Therefore, we have that

∫
χ(ci,di) = di − ci.

If h(x) ≥ 0 for all x, and P = {x0 < x1 < . . . < xn} is as above, then∫
h =

n∑
i=1

h(wi)(xi − xi−1) ≥ 0,

and this proves part (3).
Finally, suppose h1(x) ≤ h2(x) for all x ∈ [a, b]. By Exercise 5.2, we know that

the function h3 = h2−h1 is a step function on [a, b]. Also, h3(x) ≥ 0 for all x ∈ [a, b].
So, by part (3),

∫
h3 ≥ 0. Then, by part (1),

0 ≤
∫
h3 =

∫
(h2 − h1) =

∫
h2 −

∫
h1,

which implies that
∫
h1 ≤

∫
h2, as desired.

Exercise 5.6. (a) Let h be the constant function c on [a, b]. Show that
∫
h =

c(b− a).
(b) Let a < c < d < b be real numbers, and let h be the step function on [a, b]

that equals r for c < x < d and 0 otherwise. Prove that
∫ b
a
h(t) dt = r(d− c).

(c) Let h be a step function on [a, b]. Prove that |h| is a step function, and that
|
∫
h| ≤

∫
|h|.

HINT: Note that −|h|(x) ≤ h(x) ≤ |h|(x). Now use the preceding theorem.
(d) Suppose h is a step function on [a, b] and that c is a constant for which

|h(x)| ≤ c for all x ∈ [a, b]. Prove that |
∫
h| ≤ c(b− a).

INTEGRABLE FUNCTIONS

We now wish to extend the definition of the integral to a wider class of functions.
This class will consist of those functions that are uniform limits of step functions.
The requirement that these limits be uniform is crucial. Pointwise limits of step
functions doesn’t work, as we will see in Exercise 5.7 below. The initial step in
carrying out this generalization is the following.

THEOREM 5.3. Let [a, b] be a closed bounded interval, and let {hn} be a se-
quence of step functions that converges uniformly to a function f on [a, b]. Then
the sequence {

∫
hn} is a convergent sequence of real numbers.

PROOF. We will show that {
∫
hn} is a Cauchy sequence in R. Thus, given an

ε > 0, choose an N such that for any n ≥ N and any x ∈ [a, b], we have

|f(x)− hn(x)| < ε

2(b− a)
.

Then, for any m and n both ≥ N and any x ∈ [a, b], we have

|hn(x)− hm(x)| ≤ |hn(x)− f(x)|+ |f(x)− hm(x)| < ε

b− a
.
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Therefore,

|
∫
hn −

∫
hm| = |

∫
(hn − hm)| ≤

∫
|hn − hm| ≤

∫
ε

b− a
= ε,

as desired.

The preceding theorem provides us with a perfectly good idea of how to define
the integral of a function f that is the uniform limit of a sequence of step functions.
However, we first need to establish another kind of consistency result.

THEOREM 5.4. If {hn} and {kn} are two sequences of step functions on [a, b],
each converging uniformly to the same function f, then

lim
∫
hn = lim

∫
kn.

PROOF. Given ε > 0, choose N so that if n ≥ N, then |hn(x)−f(x)| < ε/(2(b−a))
for all x ∈ [a, b], and such that |f(x)− kn(x)| < ε/(2(b− a)) for all x ∈ [a, b]. Then,
|hn(x)− kn(x)| < ε/(b− a) for all x ∈ [a, b] if n ≥ N. So,

|
∫
hn −

∫
kn| ≤

∫
|hn − kn| ≤

∫
ε

b− a
= ε

if n ≥ N. Taking limits gives

| lim
∫
hn − lim

∫
kn| ≤ ε.

Since this is true for arbitrary ε > 0, it follows that lim
∫
hn = lim

∫
kn, as desired.

DEFINITION. Let [a, b] be a closed bounded interval of real numbers. A function
f : [a, b] → R is called integrable on [a, b] if it is the uniform limit of a sequence
{hn} of step functions.

Let I([a, b]) denote the set of all functions that are integrable on [a, b]. If f ∈
I([a, b]), define the integral of f, denoted

∫
f, by∫

f = lim
∫
hn,

where {hn} is some (any) sequence of step functions that converges uniformly to f
on [a, b].

As in the case of step functions, we use the following notations:∫
f =

∫ b

a

f =
∫ b

a

f(t) dt.

REMARK. Note that Theorem 5.4 is crucial in order that this definition be unam-
biguous. Indeed, we will see below that this critical consistency result is one place
where uniform limits of step functions works while pointwise limits do not. See
parts (c) and (d) of Exercise 5.7. Note also that it follows from this definition that∫ a
a
f = 0, because

∫ a
a
h = 0 for any step function. In fact, we will derive almost
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everything about the integral of a general integrable function from the correspond-
ing results about the integral of a step function. No surprise. This is the essence
of mathematical analysis, approximation.

Exercise 5.7. Define a function f on the closed interval [0, 1] by f(x) = 1 if x is
a rational number and f(x) = 0 if x is an irrational number.

(a) Suppose h is a step function on [0, 1]. Prove that there must exist an x ∈ [0, 1]
such that |f(x)− h(x)| ≥ 1/2.
HINT: Let (xi−1, xi) be an interval on which h is a constant c. Now use the fact
that there are both rationals and irrationals in this interval.

(b) Prove that f is not the uniform limit of a sequence of step functions. That
is, f is not an integrable function.

(c) Consider the two sequences {hn} and {kn} of step functions defined on the
interval [0, 1] by hn = χ(0,1/n), and kn = nχ(0,1/n). Show that both sequences {hn}
and {kn} converge pointwise to the 0 function on [0, 1].
HINT: All functions are 0 at x = 0. For x > 0, choose N so that 1/N < x. Then,
for any n ≥ N, hn(x) = kn(x) = 0.

(d) Let hn and kn be as in part (c). Show that lim
∫
hn = 0, but lim

∫
kn = 1.

Conclude that the consistency result in Theorem 5.4 does not hold for pointwise
limits of step functions.

Exercise 5.8. Define a function f on the closed interval [0, 1] by f(x) = x.

(a) For each positive integer n, let Pn be the partition of [0, 1] given by the points
{0 < 1/n < 2/n < 3/n < . . . < (n− 1)/n < 1}. Define a step function hn on [0, 1]
by setting hn(x) = i/n if i−1

n < x < i
n , and hn(i/n) = i/n for all 0 ≤ i ≤ n. Prove

that |f(x)−hn(x)| < 1/n for all x ∈ [0, 1], and then conclude that f is the uniform
limit of the hn’s whence f ∈ I([0, 1]).

(b) Show that ∫
hn =

n∑
i=1

i

n2
=
n(n+ 1)

2n2
.

(c) Show that
∫ 1

0
f(t) dt = 1/2.

The next exercise establishes some additional properties of integrable functions
on an interval [a, b].

Exercise 5.9. Let [a, b] be a closed and bounded interval, and let f be an element
of I([a, b]).

(a) Show that, for each ε > 0 there exists a step function h on [a, b] such that
|f(x)− h(x)| < ε for all x ∈ [a, b].

(b) For each positive integer n let hn be a step function satisfying the conclusion
of part (a) for ε = 1/n. Define kn = hn − 1/n and ln = hn + 1/n. Show that kn
and ln are step functions, that kn(x) < f(x) < ln(x) for all x ∈ [a, b], and that
|ln(x)− kn(x)| = ln(x)− kn(x) = 2/n for all x. Hence,

∫ b
a

(ln − kn) = 2
n (b− a).

(c) Conclude from part (b) that, given any ε > 0, there exist step functions k
and l such that k(x) ≤ f(x) ≤ l(x) for which

∫
(l(x)− k(x)) < ε.

(d) Prove that there exists a sequence {jn} of step functions on [a, b], for which
jn(x) ≤ jn+1(x) ≤ f(x) for all x, that converges uniformly to f. Show also that there
exists a sequence {j′n} of step functions on [a, b], for which j′n(x) ≥ j′n+1(x) ≥ f(x)
for all x, that converges uniformly to f. That is, if f ∈ I([a, b]), then f is the
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uniform limit of a nondecreasing sequence of step functions and also is the uniform
limit of a nonincreasing sequence of step functions.
HINT: To construct the jn’s and j′n’s, use the step functions kn and ln of part
(b), and recall that the maximum and minimum of step functions is again a step
function.

(e) Show that if f(x) ≥ 0 for all x ∈ [a, b], and g is defined by g(x) =
√
f(x),

then g ∈ I([a, b]).
HINT: Write f = limhn where hn(x) ≥ 0 for all x and n. Then use part (g) of
Exercise 3.28.

(f) (Riemann sums again.) Show that, given an ε > 0, there exists a partition P
such that if Q = {x0 < x1 < . . . < xn} is any partition finer than P, and {wi} are
any points for which wi ∈ (xi−1, xi), then

|
∫ b

a

f(t) dt−
n∑
i=1

f(wi)(xi − xi−1)| < ε.

HINT: Let P be a partition for which both the step functions k and l of part (c)
are constant on the open subintervals of P. Verify that for any finer partition Q,
l(wi) ≥ f(wi) ≥ k(wi), and hence∑

i

l(wi)(xi − xi−1) ≥
∑
i

f(wi)(xi − xi−1) ≥
∑
i

k(wi)(xi − xi−1).

DEFINITION. A bounded real-valued function f on a closed bounded interval
[a, b] is called Riemann-integrable if, given any ε > 0, there exist step functions k
and l, on [a, b] for which k(x) ≤ f(x) ≤ l(x) for all x, such that

∫
(l − k) < ε. We

denote the set of all functions on [a, b] that are Riemann-integrable by IR([a, b]).

REMARK. The notion of Riemann-integrability was introduced by Riemann in the
mid nineteenth century and was the first formal definition of integrability. Since
then several other definitions have been given for an integral, culminating in the
theory of Lebesgue integration. The definition of integrability that we are using in
this book is slightly different and less general from that of Riemann, and both of
these are very different and less general from the definition given by Lebesgue in the
early twentieth century. Part (c) of Exercise 5.9 above shows that the functions we
are calling integrable are necessarily Riemann-integrable. We will see in Exercise
5.10 that there are Riemann-integrable functions that are not integrable in our
sense. In both cases, Riemann’s and ours, an integrable function f must be trapped
between two step functions k and l. In our definition, we must have l(x)− k(x) < ε
for all x ∈ [a, b], while in Riemann’s definition, we only need that

∫
l − k < ε. The

distinction is that a small step function must have a small integral, but it isn’t
necessary for a step function to be (uniformly) small in order for it to have a small
integral. It only has to be small on most of the interval [a, b].

On the other hand, all the definitions of integrability on [a, b] include among
the integrable functions the continuous ones. And, all the different definitions of
integral give the same value to a continuous function. The differences then in these
definitions shows up at the point of saying exactly which functions are integrable.
Perhaps the most enlightening thing to say in this connection is that it is impossible
to make a “good” definition of integrability in such a way that every function is
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integrable. Subtle points in set theory arise in such attempts, and many fascinating
and deep mathematical ideas have come from them. However, we will stick with
our definition, since it is simpler than Riemann’s and is completely sufficient for
our purposes.

THEOREM 5.5. Let [a, b] be a fixed closed and bounded interval, and let I([a, b])
denote the set of integrable functions on [a, b]. Then:

(1) Every element of I([a, b]) is a bounded function. That is, integrable func-
tions are necessarily bounded functions.

(2) I([a, b]) is a vector space of functions.
(3) I([a, b]) is closed under multiplication; i.e., if f and g ∈ I([a, b]), then

fg ∈ I([a, b]).
(4) Every step function is in I([a, b]).
(5) If f is a continuous real-valued function on [a, b], then f is in I([a, b]). That

is, every continuous real-valued function on [a, b] is integrable on [a, b].

PROOF. Let f ∈ I([a, b]), and write f = limhn, where {hn} is a sequence of step
functions that converges uniformly to f. Given the positive number ε = 1, choose
N so that |f(x) − hN (x)| < 1 for all x ∈ [a, b]. Then |f(x)| ≤ |hN (x)| + 1 for all
x ∈ [a, b]. Because hN is a step function, its range is a finite set, so that there exists
a number M for which |hN (x)| ≤M for all x ∈ [a, b]. Hence, |f(x)| ≤M + 1 for all
x ∈ [a, b], and this proves part (1).

Next, let f and g be integrable, and write f = limhn and g = lim kn, where
{hn} and {kn} are sequences of step functions that converge uniformly to f and g
respectively. If s and t are real numbers, then the sequence {shn + tkn} converges
uniformly to the function sf + tg. See parts (c) and (d) of Exercise 3.28. Therefore,
sf + tg ∈ I([a, b]), and I([a, b]) is a vector space, proving part (2).

Note that part (3) does not follow immediately from Exercise 3.28; the product
of uniformly convergent sequences may not be uniformly convergent. To see it for
this case, let f = limhn and g = lim kn be elements of I([a, b]). By part (1), both f
and g are bounded, and we write Mf and Mg for numbers that satisfy |f(x)| ≤Mf

and |g(x)| ≤Mg for all x ∈ [a, b]. Because the sequence {kn} converges uniformly to
g, there exists an N such that if n ≥ N we have |g(x)− kn(x)| < 1 for all x ∈ [a, b].
This implies that, if n ≥ N, then |kn(x)| ≤Mg + 1 for all x ∈ [a, b].

Now we show that fg is the uniform limit of the sequence hnkn. For, if n ≥ N,
then

|f(x)g(x)− hn(x)kn(x)| = |f(x)g(x)− f(x)kn(x) + f(x)kn(x)− hn(x)kn(x)|
≤ |f(x)||g(x)− kn(x)|+ |kn(x)||f(x)− hn(x)|
≤Mf |g(x)− kn(x)|+ (Mg + 1)|f(x)− hn(x)|,

which implies that fg = lim(hnkn).
If h is itself a step function, then it is obviously the uniform limit of the constant

sequence {h}, which implies that h is integrable.
Finally, if f is continuous on [a, b], it follows from Theorem 3.20 that f is the

uniform limit of a sequence of step functions, whence f ∈ I([a, b]).

Exercise 5.10. Let f be the function defined on [0, 1] by f(x) = sin(1/x) if x 6= 0
and f(0) = 0.
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(a) Show that f is continuous at every nonzero x and discontinuous at 0.
HINT: Observe that, on any interval (0, δ), the function sin(1/x) attains both the
values 1 and −1.

(b) Show that f is not integrable on [0, 1].
HINT: Suppose f = limhn. Choose N so that |f(x)−hN (x)| < 1/2 for all x ∈ [0, 1].
Let P be a partition for which hN is constant on its open subintervals, and examine
the situation for x’s in the interval (x0, x1).

(c) Show that f is Riemann-integrable on [0, 1]. Conclude that I([a, b]) is a proper
subset of IR([a, b]).

Exercise 5.11. (a) Let f be an integrable function on [a, b]. Suppose g is a function
for which g(x) = f(x) for all x ∈ [a, b] except for one point c. Prove that g is
integrable and that

∫
g =

∫
f.

HINT: If f = limhn, define kn(x) = hn(x) for all x 6= c and kn(c) = g(c). Then use
Exercise 5.4.

(b) Again, let f be an integrable function on [a, b]. Suppose g is a function for
which g(x) = f(x) for all but a finite number of points c1, . . . , cN ∈ [a, b]. Prove
that g ∈ I([a, b]), and that

∫
g =

∫
f.

(c) Suppose f is a function on the closed interval [a, b], that is uniformly contin-
uous on the open interval (a, b). Prove that f is integrable on [a, b].
HINT: Just reproduce the proof to Theorem 3.20.

REMARK. In view of part (b) of the preceding exercise, we see that whether a
function f is integrable or not is totally independent of the values of the function
at a fixed finite set of points. Indeed, the function needn’t even be defined at a
fixed finite set of points, and still it can be integrable. This observation is helpful
in many instances, e.g., in parts (d) and (e) of Exercise 5.21.

THEOREM 5.6. The assignment f →
∫
f on I([a, b]) satisfies the following

properties.

(1) (Linearity) I([a, b]) is a vector space, and
∫

(αf + βg) = α
∫
f + β

∫
g for

all f, g ∈ I([a, b])and α, β ∈ R.
(2) (Positivity) If f(x) ≥ 0 for all x ∈ [a, b], then

∫
f ≥ 0.

(3) (Order-preserving) If f, g ∈ I([a, b]) and f(x) ≤ g(x) for all x ∈ [a, b], then∫
f ≤

∫
g.

(4) If f ∈ I([a, b]), then so is |f |, and |
∫
f | ≤

∫
|f |.

(5) If f is the uniform limit of functions fn, each of which is in I([a, b]), then
f ∈ I([a, b]) and

∫
f = lim

∫
fn.

(6) Let {un} be a sequence of functions in I([a, b]). Suppose that for each n there
is a number mn, for which |un(x)| ≤ mn for all x ∈ [a, b], and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫ ∑

un =
∑∫

un.

PROOF. That I([a, b]) is a vector space was proved in part (2) of Theorem 5.5.
Let f and g be in I([a, b]), and write f = limhn and g = lim kn, where the hn’s and
the kn’s are step functions. Then αf + βg = lim(αhn + βkn), so that, by Theorem
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5.2 and the definition of the integral, we have∫
(αf + βg) = lim

∫
(αhn + βkn)

= lim(α
∫
hn + β

∫
kn)

= α lim
∫
hn + β lim

∫
kn

= α

∫
f + β

∫
g,

which proves part (1).
Next, if f ∈ I([a, b]) satisfies f(x) ≥ 0 for all x ∈ [a, b], let {ln} be a nonincreasing

sequence of step functions that converges uniformly to f. See part (d) of Exercise
5.9. Then ln(x) ≥ f(x) ≥ 0 for all x and all n. So, again by Theorem 5.2, we have
that ∫

f = lim
∫
ln ≥ 0.

This proves part (2).
Part (3) now follows by combining parts (1) and (2) just as in the proof of

Theorem 5.2.
To see part (4), let f ∈ I([a, b]) be given. Write f = limhn. Then |f | = lim |hn|.

For
||f(x)| − |hn(x)|| ≤ |f(x)− hn(x)|.

Therefore, |f | is integrable. Also,∫
|f | = lim

∫
|hn| ≥ lim |

∫
hn| = | lim

∫
hn| = |

∫
f |.

To see part (5), let {fn} be a sequence of elements of I([a, b]), and suppose that
f = lim fn. For each n, let hn be a step function on [a, b] such that |fn(x)−hn(x)| <
1/n for all x ∈ [a, b]. Note also that it follows from parts (3) and (4) that

|
∫
fn −

∫
hn| <

b− a
n

.

Now {hn} converges uniformly to f. For,

|f(x)− hn(x)| ≤ |f(x)− fn(x)|+ |fn(x)− hn(x)|

< |f(x)− fn(x)|+ 1
n
,

showing that f = limhn. Therefore, f ∈ I([a, b]). Moreover,
∫
f = lim

∫
hn. Finally,∫

f = lim
∫
fn, for

|
∫
f −

∫
fn| ≤ |

∫
f −

∫
hn|+ |

∫
hn −

∫
fn|

≤ |
∫
f −

∫
hn|+

b− a
n

.
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This completes the proof of part (5).

Part (6) follows directly from part (5) and the Weierstrass M Test (Theorem
3.18). For, part (1) of that theorem implies that the infinite series

∑
un converges

uniformly, and then
∫ ∑

un =
∑∫

un follows from part (5) of this theorem.

As a final extension of our notion of integral, we define the integral of certain
complex-valued functions.

DEFINITION. Let [a, b] be a fixed bounded and closed interval. A complex-
valued function f = u+ iv is called integrable if its real and imaginary parts u and
v are integrable. In this case, we define

∫ b

a

f =
∫ b

a

(u+ iv) =
∫ b

a

u+ i

∫ b

a

v.

THEOREM 5.7.

(1) The set of all integrable complex-valued functions on [a, b] is a vector space
over the field of complex numbers, and

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g

for all integrable complex-valued functions f and g and all complex numbers
α and β.

(2) If f is an integrable complex-valued function on [a, b], then so is |f |, and
|
∫ b
a
f | ≤

∫ b
a
|f |.

PROOF. We leave the verification of part (1) to the exercise that follows.

To see part (2), suppose that f is integrable, and write f = u + iv. Then |f | =√
u2 + v2, so that |f | is integrable by Theorem 5.5 and part (e) of Exercise 5.9.

Now write z =
∫ b
a
f, and write z in polar coordinates as z = reiθ, where r = |z| =

|
∫ b
a
f |. (See Exercise 4.23.) Define a function g by g(x) = e−iθf(x) and notice that

|g| = |f |. Then
∫ b
a
g = e−iθ

∫ b
a
f = r, which is a real number. Writing g = û + iv̂,
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we then have that r =
∫
û+ i

∫
v̂, implying that

∫
v̂ = 0. So,

|
∫ b

a

f | = r

=
∫ b

a

g

=
∫ b

a

û+ i

∫ b

a

v̂

=
∫ b

a

û

= |
∫ b

a

û|

≤
∫ b

a

|û|

≤
∫ b

a

|g|

=
∫ b

a

|f |,

as desired.

Exercise 5.12. Prove part (1) of the preceding theorem.
HINT: Break α, β,

∫
f, and

∫
g into real and imaginary parts.

THE FUNDAMENTAL THEOREM OF CALCULUS

We begin this section with a result that is certainly not a surprise, but we will
need it at various places in later proofs, so it’s good to state it precisely now.

THEOREM 5.8. Suppose f ∈ I([a, b]), and suppose a < c < b. Then f ∈ I([a, c]),
f ∈ I([c, b]), and ∫ b

a

f =
∫ c

a

f +
∫ b

c

f.

PROOF. Suppose first that h is a step function on [a, b], and let P = {x0 < x1 <
. . . < xn} be a partition of [a, b] such that h(x) = ai on the subinterval (xi−1, xi) of
P. Of course, we may assume without loss of generality that c is one of the points
of P, say c = xk. Clearly h is a step function on both intervals [a, c] and [c, b].

Now, let Q1 = {a = x0 < x1 < . . . < c = xk} be the partition of [a, c] obtained
by intersecting P with [a, c], and let Q2 = {c = xk < xk+1 < . . . < xn = b} be the
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partition of [c, b] obtained by intersecting P with [c, b]. We have that∫ b

a

h = SP (h)

=
n∑
i=1

ai(xi − xi−1)

=
k∑
i=1

ai(xi − xi−1) +
n∑

i=k+1

ai(xi − xi−1)

= SQ1(h) + SQ2(h)

=
∫ c

a

h+
∫ b

c

h,

which proves the theorem for step functions.
Now, write f = limhn, where each hn is a step function on [a, b]. Then clearly

f = limhn on [a, c], which shows that f ∈ I([a, c]), and∫ c

a

f = lim
∫ c

a

hn.

Similarly, f = limhn on [c, b], showing that f ∈ I([c, b]), and∫ b

c

f = lim
∫ b

c

hn.

Finally, ∫ b

a

f = lim
∫ b

a

hn

= lim(
∫ c

a

hn +
∫ b

c

hn)

= lim
∫ c

a

hn + lim
∫ b

c

hn

=
∫ c

a

f +
∫ b

c

f,

as desired.

I’s time for the trumpets again! What we call the Fundamental Theorem of
Calculus was discovered by Newton and Leibniz more or less simultaneously in
the seventeenth century, and it is without doubt the cornerstone of all we call
mathematical analysis today. Perhaps the main theoretical consequence of this
theorem is that it provides a procedure for inventing “new” functions. Polynomials
are rather natural functions, power series are a simple generalization of polynomials,
and then what? It all came down to thinking of a function of a variable x as being
the area beneath a curve between a fixed point a and the varying point x. By now,
we have polished and massaged these ideas into a careful, detailed development
of the subject, which has substantially obscured the original ingenious insights of
Newton and Leibniz. On the other hand, our development and proofs are complete,
while theirs were based heavily on their intuition. So, here it is.



V. INTEGRATION, AVERAGE BEHAVIOR 137

THEOREM 5.9. (Fundamental Theorem of Calculus) Suppose f is an arbitrary
element of I([a, b]). Define a function F on [a, b] by F (x) =

∫ x
a
f. Then:

(1) F is continuous on [a, b], and F (a) = 0.
(2) If f is continuous at a point c ∈ (a, b), then F is differentiable at c and

F ′(c) = f(c).
(3) Suppose that f is continuous on [a, b]. If G is any continuous function on

[a, b] that is differentiable on (a, b) and satisfies G′(x) = f(x) for all x ∈
(a, b), then ∫ b

a

f(t) dt = G(b)−G(a).

REMARK. Part (2) of this theorem is the heart of it, the great discovery of Newton
and Leibniz, although most beginning calculus students often think of part (3) as
the main statement. Of course it is that third part that enables us to actually
compute integrals.

PROOF. Because f ∈ I([a, b]), we know that f ∈ I([a, x]) for every x ∈ [a, b], so
that F (x) at least is defined.

Also, we know that f is bounded; i.e., there exists an M such that |f(t)| ≤ M
for all t ∈ [a, b]. Then, if x, y ∈ [a, b] with x ≥ y, we have that

|F (x)− F (y)| = |
∫ x

a

f −
∫ y

a

f |

= |
∫ y

a

f +
∫ x

y

f −
∫ y

a

f |

= |
∫ x

y

f |

≤
∫ x

y

|f |

≤
∫ x

y

M

= M(x− y),

so that |F (x) − F (y)| ≤ M |x − y| < ε if |x − y| < δ = ε/M. This shows that F
is (uniformly) continuous on [a, b]. Obviously, F (a) =

∫ a
a
f = 0, and part (1) is

proved.
Next, suppose that f is continuous at c ∈ (a, b), and write L = f(c). Let ε > 0

be given. To show that F is differentiable at c and that F ′(c) = f(c), we must find
a δ > 0 such that if 0 < |h| < δ then

|F (c+ h)− F (c)
h

− L| < ε.

Since f is continuous at c, choose δ > 0 so that |f(t)− f(c)| < ε if |t− c| < δ. Now,
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assuming that h > 0 for the moment, we have that

F (c+ h)− F (c) =
∫ c+h

a

f −
∫ c

a

f

=
∫ c

a

f +
∫ c+h

c

f −
∫ c

a

f

=
∫ c+h

c

f,

and

L =

∫ c+h
c

L

h
.

So, if 0 < h < δ, then

|F (c+ h)− F (c)
h

− L| = |
∫ c+h
c

f(t) dt
h

−
∫ c+h
c

L

h
|

= |
∫ c+h
c

(f(t)− L) dt
h

|

≤
∫ c+h
c
|f(t)− L| dt
h

=

∫ c+h
c
|f(t)− f(c)| dt

h

≤
∫ c+h
c

ε

h

= ε,

where the last inequality follows because for t ∈ [c, c+h], we have that |t−c| ≤ h < δ.
A similar argument holds if h < 0. (See the following exercise.) This proves part
(2).

Suppose finally that G is continuous on [a, b], differentiable on (a, b), and that
G′(x) = f(x) for all x ∈ (a, b). Then, F − G is continuous on [a, b], differentiable
on (a, b), and by part (2) (F − G)′(x) = F ′(x) − G′(x) = f(x) − f(x) = 0 for all
x ∈ (a, b). It then follows from Exercise 4.12 that F −G is a constant function C,
whence,

G(b)−G(a) = F (b) + C − F (a)− C = F (b) =
∫ b

a

f(t) dt,

and the theorem is proved.

Exercise 5.13. (a) Complete the proof of part (2) of the preceding theorem; i.e.,
take care of the case when h < 0.
HINT: In this case, a < c+ h < c. Then, write

∫ c
a
f =

∫ c+h
a

f +
∫ c
c+h

f.

(b) Suppose f is a continuous function on the closed interval [a, b], and that
f ′ exists and is continuous on the open interval (a, b). Assume further that f ′

is integrable on the closed interval [a, b]. Prove that f(x) − f(a) =
∫ x
a
f ′ for all
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x ∈ [a, b]. Be careful to understand how this is different from the Fundamental
Theorem.

(c) Use the Fundamental Theorem to prove that for x ≥ 1 we have

ln(x) = F (x) ≡
∫ x

1

1
t
dt,

and for 0 < x < 1 we have

ln(x) = F (x) ≡ −
∫ 1

x

1
t
dt.

HINT: Show that these two functions have the same derivative and agree at x = 1.

CONSEQUENCES OF THE FUNDAMENTAL THEOREM

The first two theorems of this section constitute the basic “techniques of inte-
gration” taught in a calculus course. However, the careful formulations of these
standard methods of evaluating integrals have some subtle points, i.e., some hy-
potheses. Calculus students are rarely told about these details.

THEOREM 5.10. (Integration by Parts Formula) Let f and g be integrable
functions on [a, b], and as usual let F and G denote the functions defined by

F (x) =
∫ x

a

f, and G(x) =
∫ x

a

g.

Then ∫ b

a

fG = [F (b)G(b)− F (a)G(a)]−
∫ b

a

Fg.

Or, recalling that f = F ′ and g = G′,

∫ b

a

F ′G = [F (b)G(b)− F (a)G(a)]−
∫ b

a

FG′.

Exercise 5.14. (a) Prove the preceding theorem.
HINT: Replace the upper limit b by a variable x, and differentiate both sides. By
the way, how do we know that the functions Fg and fG are integrable?

(b) Suppose f and g are integrable functions on [a, b] and that both f ′ and g′

are continuous on (a, b) and integrable on [a, b]. (Of course f ′ and g′ are not even
defined at the endpoints a and b, but they can still be integrable on [a, b]. See the
remark following Exercise 5.11.) Prove that

∫ b

a

fg′ = [f(b)g(b)− f(a)g(a)]−
∫ b

a

f ′g.
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THEOREM 5.11. (Integration by Substitution) Let f be a continuous function
on [a, b], and suppose g is a continuous, one-to-one function from [c, d] onto [a, b]
such that g is continuously differentiable on (c, d), and such that a = g(c) and
b = g(d). Assume finally that g′ is integrable on [c, d]. Then∫ b

a

f(t) dt =
∫ d

c

f(g(s))g′(s) ds.

PROOF. It follows from our assumptions that the function f(g(s))g′(s) is contin-
uous on (a, b) and integrable on [c, d]. It also follows from our assumptions that g
maps the open interval (c, d) onto the open interval (a, b). As usual, let F denote
the function on [a, b] defined by F (x) =

∫ x
a
f(t) dt. Then, by part (2) of the Funda-

mental Theorem, F is differentiable on (a, b), and F ′ = f. Then, by the chain rule,
F ◦ g is continuous and differentiable on (c, d) and

(F ◦ g)′(s) = F ′(g(s))g′(s) = f(g(s))g′(s).

So, by part (3) of the Fundamental Theorem, we have that∫ d

c

f(g(s))g′(s) ds =
∫ d

c

(F ◦ g)′(s) ds

= (F ◦ g)(d)− (F ◦ g)(c)

= F (g(d))− F (g(c))

= F (b)− F (a)

=
∫ b

a

f(t) dt,

which finishes the proof.

Exercise 5.15. (a) Prove the “Mean Value Theorem” for integrals: If f is contin-
uous on [a, b], then there exists a c ∈ (a, b) such that∫ b

a

f(t) dt = f(c)(b− a).

(b) (Uniform limits of differentiable functions. Compare with Exercise 4.26.)
Suppose {fn} is a sequence of continuous functions on a closed interval [a, b] that
converges pointwise to a function f. Suppose that each derivative f ′n is continu-
ous on the open interval (a, b), is integrable on the closed interval [a, b], and that
the sequence {f ′n} converges uniformly to a function g on (a, b). Prove that f is
differentiable on (a, b), and f ′ = g.
HINT: Let x be in (a, b), and let c be in the interval (a, x). Justify the following
equalities, and use them together with the Fundamental Theorem to make the
proof.

f(x)− f(c) = lim(fn(x)− fn(c)) = lim
∫ x

c

f ′n =
∫ x

c

g.

We revisit now the Remainder Theorem of Taylor, which we first presented in
Theorem 4.19. The point is that there is another form of this theorem, the integral
form, and this version is more powerful in some instances than the original one,
e.g., in the general Binomial Theorem below.
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THEOREM 5.12. (Integral Form of Taylor’s Remainder Theorem) Let c be a
real number, and let f have n + 1 derivatives on (c − r, c + r), and suppose that
f (n+1) ∈ I([c− r, c+ r]). Then for each c < x < c+ r,

f(x)− Tn(f,c)(x) =
∫ x

c

f (n+1)(t)
(x− t)n

n!
dt,

where Tnf denotes the nth Taylor polynomial for f.
Similarly, for c− r < x < c,

f(x)− Tn(f,c)(x) =
∫ c

x

f (n+1)(t)
(x− t)n

n!
dt.

Exercise 5.16. Prove the preceding theorem.
HINT: Argue by induction on n, and integrate by parts.

REMARK. We return now to the general Binomial Theorem, first studied in The-
orem 4.21. The proof given there used the derivative form of Taylor’s remainder
Theorem, but we were only able to prove the Binomial Theorem for |t| < 1/2. The
theorem below uses the integral form of Taylor’s Remainder Theorem in its proof,
and it gives the full binomial theorem, i.e., for all t for which |t| < 1.

THEOREM 5.13. (General Binomial Theorem) Let α = a+bi be a fixed complex
number. Then

(1 + t)α =
∞∑
k=0

(
α

k

)
tk

for all t ∈ (−1, 1).

PROOF. For clarity, we repeat some of the proof of Theorem 4.21. Given a general
α = a+bi, consider the function g : (−1, 1)→ C defined by g(t) = (1+t)α. Observe
that the nth derivative of g is given by

g(n)(t) =
α(α− 1) . . . (α− n+ 1)

(1 + t)n−α
.

Then g ∈ C∞((−1, 1)).
For each nonnegative integer k define

ak = g(k)(0)/k! =
α(α− 1) . . . (α− k + 1)

k!
=
(
α

k

)
,

and set h(t) =
∑∞
k=0 akt

k. The radius of convergence for the power series function
h is 1, as was shown in Exercise 4.31. We wish to show that g(t) = h(t) for all
−1 < t < 1. That is, we wish to show that g is a Taylor series function around 0.
It will suffice to show that the sequence {Sn} of partial sums of the power series
function h converges to the function g. We note also that the nth partial sum is
just the nth Taylor polynomial Tng for g.

Now, fix a t strictly between 0 and 1. The argument for t’s between −1 and 0 is
completely analogous.. Choose an ε > 0 for which β = (1 + ε)t < 1. We let Cε be
a numbers such that |

(
α
n

)
| ≤ Cε(1 + ε)n for all nonnegative integers n. See Exercise
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4.31. We will also need the following estimate, which can be easily deduced as a
calculus exercise (See part (d) of Exercise 4.11.). For all s between 0 and t, we have
(t−s)/(1+s) ≤ t. Note also that, for any s ∈ (0, t), we have |(1+s)α| = (1+s)a, and
this is trapped between 1 and (1 + t)a. Hence, there exists a number Mt such that
|(1 + s)α−1| ≤ Mt for all s ∈ (−0, t). We will need this estimate in the calculation
that follows.

Then, by the integral form of Taylor’s Remainder Theorem, we have:

|g(t)−
n∑
k=0

akt
k| = |g(t)− Tng (t)|

= |
∫ t

0

g(n+1)(s)
(t− s)n

n!
ds|

= |
∫ t

0

(
(n+ 1)× α

n+ 1

)
(1 + s)α−n−1(t− s)n ds|

≤
∫ t

0

|
(

α

n+ 1

)
||(1 + s)α−1|(n+ 1)|( t− s

1 + s
|n ds

≤
∫ t

0

|
(

α

n+ 1

)
|Mt(n+ 1)tn ds

≤ CεMt(n+ 1)
∫ t

0

(1 + ε)n+1tn ds

= CεMt(n+ 1)(1 + ε)n+1tn+1

= CεMt(n+ 1)βn+1,

which tends to 0 as n goes to ∞, because β < 1. This completes the proof for
0 < t < 1.

AREA OF REGIONS IN THE PLANE

It would be desirable to be able to assign to each subset S of the Cartesian
plane R2 a nonnegative real number A(S) called its area. We would insist based
on our intuition that (i) if S is a rectangle with sides of length L and W then the
number A(S) should be LW, so that this abstract notion of area would generalize
our intuitively fundamental one. We would also insist that (ii) if S were the union
of two disjoint parts, S = S1 ∪ S2, then A(S) should be A(S1) + A(S2). (We were
taught in high school plane geometry that the whole is the sum of its parts.) In
fact, even if S were the union of an infinite number of disjoint parts, S = ∪∞n=1Sn
with Si ∩ Sj = ∅ if i 6= j, we would insist that (iii) A(S) =

∑∞
n=1A(Sn).

The search for such a definition of area for every subset of R2 motivated much
of modern mathematics. Whether or not such an assignment exists is intimately
related to subtle questions in basic set theory, e.g., the Axiom of Choice and the
Continuum Hypothesis. Most mathematical analysts assume that the Axiom of
Choice holds, and as a result of that assumption, it has been shown that there can
be no assignment S → A(S) satisfying the above three requirements. Conversely, if
one does not assume that the Axiom of Choice holds, then it has also been shown
that it is perfectly consistent to assume as a basic axiom that such an assignment
S → A(S) does exist. We will not pursue these subtle points here, leaving them
to a course in Set Theory or Measure Theory. However, Here’s a statement of the
Axiom of Choice, and we invite the reader to think about how reasonable it seems.
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AXIOM OF CHOICE. Let S be a collection of sets. Then there exists a set A
that contains exactly one element out of each of the sets S in S.

The difficulty mathematicians encountered in trying to define area turned out
to be involved with defining A(S) for every subset S ∈ R2. To avoid this difficulty,
we will restrict our attention here to certain “ reasonable” subsets S. Of course, we
certainly want these sets to include the rectangles and all other common geometric
sets.

DEFINITION. By a (open) rectangle we will mean a set R = (a, b) × (c, d) in
R

2. That is, R = {(x, y) : a < x < b and c < y < d}. The analogous definition of a
closed rectangle [a, b]× [c, d] should be clear: [a, b]× [c, d] = {(x, y) : a ≤ x ≤ b, c ≤
y ≤ d}.

By the area of a (open or closed) rectangle R = (a, b)× (c, d) or [a, b]× [c, d] we
mean the number A(R) = (b− a)(d− c).

. The fundamental notion behind our definition of the area of a set S is this.
If an open rectangle R = (a, b) × (c, d) is a subset of S, then the area A(S) surely
should be greater than or equal to A(R) = (b − a)(d − c). And, if S contains the
disjoint union of several open rectangles, then the area of S should be greater than
or equal to the sum of their areas.

We now specify precisely for which sets we will define the area. Let [a, b] be a
fixed closed bounded interval in R and let l and u be two continuous real-valued
functions on [a, b] for which l(x) < u(x) for all x ∈ (a, b).

DEFINITION. Given [a, b], l, and u as in the above, let S be the set of all pairs
(x, y) ∈ R2, for which a < x < b and l(x) < y < u(x). Then S is called an open
geometric set. If we replace the < signs with ≤ signs, i.e., if S is the set of all
(x, y) such that a ≤ x ≤ b, and l(x) ≤ y ≤ u(x), then S is called a closed geometric
set. In either case, we say that S is bounded on the left and right by the vertical
line segments {(a, y) : l(a) ≤ y ≤ u(a)} and {(b, y) : l(b) ≤ y ≤ u(b)}, and it is
bounded below by the graph of the function l and bounded above by the graph of
the function u. We call the union of these four bounding curves the boundary of S,
and denote it by CS .

If the bounding functions u and l of a geometric set S are smooth or piecewise
smooth functions, we will call S a smooth or piecewise smooth geometric set.

If S is a closed geometric set, we will indicate the corresponding open geometric
set by the symbol S0.

The symbol S0 we have introduced for the open geometric set corresponding to
a closed one is the same symbol that we have used previously for the interior of a
set. Study the exercise that follows to see that the two uses of this notation agree.

Exercise 5.17. (a) Show that rectangles, triangles, and circles are geometric sets.
What in fact is the definition of a circle?

(b) Find some examples of sets that are not geometric sets. Think about a
horseshoe on its side, or a heart on its side.

(c) Let f be a continuous, nonnegative function on [a, b]. Show that the “region”
under the graph of f is a geometric set.

(d) Show that the intersection of two geometric sets is a geometric set. Describe
the left, right, upper, and lower boundaries of the intersection. Prove that the
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interior (S1 ∩ S2)0 of the intersection of two geometric sets S1 and S2 coincides
with the intersection S0

1 ∩ S0
2 of their two interiors.

(e) Give an example to show that the union of two geometric sets need not be a
geometric set.

(f) Show that every closed geometric set is compact.
(g) Let S be a closed geometric set. Show that the corresponding open geometric

set S0 coincides with the interior of S, i.e., the set of all points in the interior of S.
HINT: Suppose a < x < b and l(x) < y < u(x). Begin by showing that, because
both l and u are continuous, there must exist an ε > 0 and a δ > 0 such that
a < x− δ < x+ δ < b and l(x) < y − ε < y + ε < u(x).

Now, given a geometric set S (either open or closed), that is determined by an
interval [a, b] and two bounding functions u and l, let P = {x0 < x1 < . . . < xn}
be a partition of [a, b]. For each 1 ≤ i ≤ n, define numbers ci and di as follows:

ci = sup
xi−1<x<xi

l(x), and di = inf
xi−1<x<xi

u(x).

Because the functions l and u are continuous, they are necessarily bounded, so that
the supremum and infimum above are real numbers. For each 1 ≤ i ≤ n define Ri
to be the open rectangle (xi−1, xi) × (ci, di). Of course, di may be < ci, in which
case the rectangle Ri is the empty set. In any event, we see that the partition
P determines a finite set of (possibly empty) rectangles {Ri}, and we denote the
union of these rectangles by the symbol CP . = ∪ni=1(xi−1, xi)× (ci, di).

The area of the rectangle Ri is (xi−xi−1)(di−ci) if ci < di and 0 otherwise. We
may write in general that A(Ri) = (xi− xi−1) max((di− ci), 0). Define the number
AP by

AP =
n∑
i=1

(xi − xi−1)(di − ci).

Note that AP is not exactly the sum of the areas of the rectangles determined by
P because it may happen that di < ci for some i’s, so that those terms in the sum
would be negative. In any case, it is clear that AP is less than or equal to the sum
of the areas of the rectangles, and this notation simplifies matters later.

For any partition P, we have S ⊇ CP , so that, if A(S) is to denote the area of S,
we want to have

A(S) ≥
n∑
i=1

A(Ri)

=
n∑
i=1

(xi − xi−1) max((di − ci), 0)

≥
n∑
i=1

(xi − xi−1)(di − ci)

= AP .

DEFINITION. Let S be a geometric set (either open or closed), bounded on the
left by x = a, on the right by x = b, below by the graph of l, and above by the
graph of u. Define the area A(S) of S by

A(S) = sup
P
AP = sup

P={x0<x1<...<xn}

n∑
i=1

(xi − xi−1)(di − ci),
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where the supremum is taken over all partitions P of [a, b], and where the numbers
ci and di are as defined above.

Exercise 5.18. (a) Using the notation of the preceding paragraphs, show that
each rectangle Ri is a subset of the set S and that Ri ∩Rj = ∅ if i 6= j. It may help
to draw a picture of the set S and the rectangles {Ri}. Can you draw one so that
di < ci?

(b) Suppose S1 is a geometric set and that S2 is another geometric set that is
contained in S1. Prove that A(S2) ≤ A(S1).
HINT: For each partition P, compare the two AP ’s.
Exercise 5.19. Let T be the triangle in the plane with vertices at the three points
(0, 0), (0,H), and (B, 0). Show that the area A(T ), as defined above, agrees with
the formula A = (1/2)BH, where B is the base and H is the height.

The next theorem gives the connection between area (geometry) and integration
(analysis). In fact, this theorem is what most calculus students think integration
is all about.

THEOREM 5.14. Let S be a geometric set, i.e., a subset of R2 that is determined
in the above manner by a closed bounded interval [a, b] and two bounding functions
l and u. Then

A(S) =
∫ b

a

(u(x)− l(x)) dx.

PROOF. Let P = {x0 < x1 < . . . < xn} be a partition of [a, b], and let ci and di
be defined as above. Let h be a step function that equals di on the open interval
(xi−1, xi), and let k be a step function that equals ci on the open interval (xi−1, xi).
Then on each open interval (xi−1, xi) we have h(x) ≤ u(x) and k(x) ≥ l(x). Com-
plete the definitions of h and k by defining them at the partition points so that
h(xi) = k(xi) for all i. Then we have that h(x)−k(x) ≤ u(x)− l(x) for all x ∈ [a, b].
Hence,

AP =
n∑
i=1

(xi − xi−1)(di − ci) =
∫ b

a

(h− k) ≤
∫ b

a

(u− l).

Since this is true for every partition P of [a, b], it follows by taking the supremum
over all partitions P that

A(S) = sup
P
AP ≤

∫ b

a

(u(x)− l(x)) dx,

which proves half of the theorem; i.e., that A(S) ≤
∫ b
a
u− l.

To see the other inequality, let h be any step function on [a, b] for which h(x) ≤
u(x) for all x, and let k be any step function for which k(x) ≥ l(x) for all x. Let
P = {x0 < x1 < . . . < xn} be a partition of [a, b] for which both h and k are constant
on the open subintervals (xi−1, xi) of P. Let a1, a2, . . . , an and b1, b2, . . . , bn be the
numbers such that h(x) = ai on (xi−1, xi) and k(x) = bi on (xi−1, xi). It follows,
since h(x) ≤ u(x) for all x, that ai ≤ di. Also, it follows that bi ≥ ci. Therefore,∫ b

a

(h− k) =
n∑
i=1

(ai − bi)(xi − xi−1) ≤
n∑
i=1

(xi − xi−1)(di − ci) = AP ≤ A(S).
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Finally, let {hm} be a nondecreasing sequence of step functions that converges
uniformly to u, and let {km} be a nonincreasing sequence of step functions that
converges uniformly to l. See part (d) of Exercise 5.9. Then∫ b

a

(u− l) = lim
m

∫ b

a

(hm − km) ≤ A(S),

which proves the other half of the theorem.

OK! Trumpet fanfares, please!

THEOREM 5.15. (A = πr2.) If S is a circle in the plane having radius r, then
the area A(S) of S is πr2.

PROOF. Suppose the center of the circle S is the point (h, k). This circle is a
geometric set. In fact, we may describe the circle with center (h, k) and radius r
as the subset S of R2 determined by the closed bounded interval [h− r, h+ r] and
the functions

u(x) = k +
√
r2 − (x− h)2

and
l(x) = k −

√
r2 − (x− h)2.

By the preceding theorem, we then have that

A(S) =
∫ h+r

h−r
2
√
r2 − (x− h)2 dx = πr2.

We leave the verification of the last equality to the following exercise.

Exercise 5.20. Evaluate the integral in the above proof:∫ h+r

h−r
2
√
r2 − (x− h)2 dx.

Be careful to explain each step by referring to theorems and exercises in this book.
It may seem like an elementary calculus exercise, but we are justifying each step
here.

REMARK. There is another formula for the area of a geometric set that is some-
times very useful. This formula gives the area in terms of a “double integral.”
There is really nothing new to this formula; it simply makes use of the fact that the
number (length) u(x)− l(x) can be represented as the integral from l(x) to u(x) of
the constant 1. Here’s the formula:

A(S) =
∫ b

a

(
∫ u(x)

l(x)

1 dy) dx.

The next theorem is a result that justifies our definition of area by verifying that
the whole is equal to the sum of its parts, something that any good definition of
area should satisfy.
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THEOREM 5.16. Let S be a closed geometric set, and suppose S = ∪ni=1Si,
where the sets {Si} are closed geometric sets for which S0

i ∩ S0
j = ∅ if i 6= j. Then

A(S) =
n∑
i=1

A(Si).

PROOF. Suppose S is determined by the interval [a, b] and the two bounding
functions l and u, and suppose Si is determined by the interval [ai, bi] and the two
bounding functions li and ui. Because Si ⊆ S, it must be that the interval [ai, bi] is
contained in the interval [a, b]. Initially, the bounding functions li and ui are defined
and continuous on [ai, bi], and we extend their domain to all of [a, b] by defining
li(x) = ui(x) = 0 for all x ∈ [a, b] that are not in [ai, bi]. The extended functions li
and ui may not be continuous on all of [a, b], but they are still integrable on [a, b].
(Why?) Notice that we now have the formula

A(Si) =
∫ bi

ai

(ui(x)− li(x)) dx =
∫ b

a

(ui(x)− li(x)) dx.

Next, fix an x in the open interval (a, b). We must have that the vertical intervals
(li(x), ui(x)) and (lj(x), uj(x)) are disjoint if i 6= j. Otherwise, there would exist a
point y in both intervals, and this would mean that the point (x, y) would belong to
both S0

i and S0
j , which is impossible by hypothesis. Therefore, for each x ∈ (a, b),

the intervals {(li()x), ui(x))} are pairwise disjoint open intervals, and they are all
contained in the interval (l(x), u(x)), because the Si’s are subsets of S. Hence, the
sum of the lengths of the open intervals {(li(x), ui(x))} is less than or equal to
the length of (l(x), u(x)). Also, for any point y in the closed interval [l(x), u(x)],
the point (x, y) must belong to one of the Si’s, implying that y is in the closed
interval [li(x), ui(x)] for some i. But this means that the sum of the lengths of the
closed intervals [li(x), ui(x)] is greater than or equal to the length of the interval
[l(x), u(x)]. Since open intervals and closed intervals have the same length, we then
see that (u(x)− l(x) =

∑n
i=1(ui(x)− li(x)).

We now have the following calculation:

n∑
i=1

A(Si) =
n∑
i=1

∫ bi

ai

(ui(x)− li(x)) dx

=
n∑
i=1

∫ b

a

(ui(x)− li(x)) dx

=
∫ b

a

n∑
i=1

(ui(x)− li(x)) dx

=
∫ b

a

(u(x)− l(x)) dx

= A(S),

which completes the proof.

EXTENDING THE DEFINITION OF INTEGRABILITY
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We now wish to extend the definition of the integral to a wider class of functions,
namely to some that are unbounded and Others whose domains are not closed and
bounded intervals. This extended definition is somewhat ad hoc, and these integrals
are sometimes called “improper integrals.”

DEFINITION. Let f be a real or complex-valued function on the open in-
terval (a, b) where a is possibly −∞ and b is possibly +∞. We say that f is
improperly-integrable on (a, b) if it is integrable on each closed and bounded subin-
terval [a′, b′] ⊂ (a, b), and for each point c ∈ (a, b) we have that the two limits
lim b′ → b− 0

∫ b′
c
f and lima′→a+0

∫ c
a′
f exist.

More generally, We say that a real or complex-valued function f, not necessarily
defined on all of the open interval (a, b), is improperly-integrable on (a, b) if there
exists a partition {xi} of [a, b] such that f is defined and improperly-integrable on
each open interval (xi−1, xi).

We denote the set of all functions f that are improperly-integrable on an open
interval (a, b) by Ii((a, b)).

Analogous definitions are made for a function’s being integrable on half-open
intervals [a, b) and (a, b].

Note that, in order for f to be improperly-integrable on an open interval, we
only require f to be defined at almost all the points of the interval, i.e., at every
point except the endpoints of some partition.
Exercise 5.21. (a) Let f be defined and improperly-integrable on the open interval
(a, b). Show that lima′→a+0

∫ c
a′
f + limb′→b−0

∫ b′
c
f is the same for all c ∈ (a, b).

(b) Define a function f on (0, 1) by f(x) = (1−x)−1/2. Show that f is improperly-
integrable on (0, 1) and that f is not bounded. (Compare this with part (1) of
Theorem 5.5.)

(c) Define a function g on (0, 1) by g(x) = (1 − x)−1. Show that g is not
improperly-integrable on (0, 1), and, using part (b), conclude that the product of
improperly-integrable functions on (0, 1) need not itself be improperly-integrable.
(Compare this with part (3) of Theorem 5.5.)

(d) Define h to be the function on (0,∞) given by h(x) = 1 for all x. Show that
h is not improperly-integrable on (0,∞). (Compare this with parts (4) and (5) of
Theorem 5.5.)

Part (a) of the preceding exercise is just the consistency condition we need in
order to make a definition of the integral of an improperly-integrable function over
an open interval.

DEFINITION. Let f be defined and improperly-integrable on an open interval
(a, b). We define the integral of f over the interval (a, b), and denote it by

∫ b
a
f, by∫ b

a

f = lim
a′→a+0

∫ c

a′
f + lim

b′→b−0

∫ b′

c

f.

In general, if f is improperly-integrable over an open interval, i.e., f is defined
and improperly-integrable over each subinterval of (a, b) determined by a partition
{xi}, then we define the integral of f over the interval (a, b) by∫ b

a

f =
n∑
i=1

∫ xi

xi−1

f.
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THEOREM 5.17. Let (a, b) be a fixed open interval (with a possibly equal to −∞
and b possibly equal to +∞), and let Ii((a, b)) denote the set of improperly-integrable
functions on (a, b). Then:

(1) Ii((a, b)) is a vector space of functions.
(2) (Linearity)

∫ b
a

(αf +βg) = α
∫ b
a
f +β

∫ b
a
g for all f, g ∈ Ii((a, b))and α, β ∈

C.
(3) (Positivity) If f(x) ≥ 0 for all x ∈ (a, b), then

∫ b
a
f ≥ 0.

(4) (Order-preserving) If f, g ∈ Ii((a, b)) and f(x) ≤ g(x) for all x ∈ (a, b),
then

∫ b
a
f ≤

∫ b
a
g.

Exercise 5.22. (a) Use Theorems 5.5, 5.6, 5.7, and properties of limits to prove
the preceding theorem.

(b) Let f be defined and improperly-integrable on (a, b). Show that, given an
ε > 0, there exists a δ > 0 such that for any a < a′ < a+ δ and any b− δ < b′ < b

we have |
∫ a′
a
f |+ |

∫ b
b′
f | < ε.

(c) Let f be improperly-integrable on an open interval (a, b). Show that, given
an ε > 0, there exists a δ > 0 such that if (c, d) is any open subinterval of (a, b) for
which d− c < δ, then |

∫ d
c
f | < ε.

HINT: Let {xi} be a partition of [a, b] such that f is defined and improperly-
integrable on each subinterval (xi−1, xi). For each i, choose a δi using part (b).
Now f is bounded by M on all the intervals [xi−1 + δi, xi − δi], so δ = ε/M should
work there.

(d) Suppose f is a continuous function on a closed bounded interval [a, b] and is
continuously differentiable on the open interval (a, b). Prove that f ′ is improperly-
integrable on (a, b), and evaluate

∫ b
a
f ′.

HINT: Fix a point c ∈ (a, b), and use the Fundamental Theorem of Calculus to
show that the two limits exist.

(e) (Integration by substitution again.) Let g : [c, d] → [a, b] be continuous on
[c, d] and satisfy g(c) = a and g(d) = b. Suppose there exists a partition {x0 < x1 <
. . . < xn} of the interval [c, d] such that g is continuously differentiable on each
subinterval (xi−1, xi). Prove that g′ is improperly-integrable on the open interval
(c, d). Show also that if f is continuous on [a, b], we have that

∫ b

a

f(t) dt =
∫ d

c

f(g(s))g′(s) ds.

HINT: Integrate over the subintervals (xi−1, xi), and use part (d).

REMARK. Note that there are parts of Theorems 5.5 and 5.6 that are not as-
serted in Theorem 5.17. The point is that these other properties do not hold for
improperly-integrable functions on open intervals. See the following exercise.

Exercise 5.23. (a) Define f to be the function on [1,∞) given by f(x) =
(−1)n−1/n if n − 1 ≤ x < n. Show that f is improperly-integrable on (1,∞),
but that |f | is not improperly-integrable on (1,∞). (Compare this with part (4) of
Theorem 5.6.)
HINT: Verify that

∫ N
1
f is a partial sum of a convergent infinite series, and then

verify that
∫ N

1
|f | is a partial sum of a divergent infinite series.
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(b) Define the function f on (1,∞) by f(x) = 1/x. For each positive integer
n, define the function fn on (1,∞) by fn(x) = 1/x if 1 < x < n and fn(x) = 0
otherwise. Show that each fn is improperly-integrable on (1,∞), that f is the
uniform limit of the sequence {fn}, but that f is not improperly-integrable on
(1,∞). (Compare this with part (5) of Theorem 5.6.)

(c) Suppose f is a nonnegative real-valued function on the half-open interval
(a,∞) that is integrable on every closed bounded subinterval [a, b′]. For each pos-
itive integer n ≥ a, define yn =

∫ n
a
f(x) dx. Prove that f is improperly-integrable

on [a,∞) if and only if the sequence {yn} is convergent. In that case, show that∫∞
a
f = lim yn.

We are now able to prove an important result relating integrals over infinite
intervals and convergence of infinite series.

THEOREM 5.18. Let f be a positive function on [1,∞), assume that f is inte-
grable on every closed bounded interval [1, b], and suppose that f is nonincreasing;
i.e., if x < y then f(x) ≥ f(y). For each positive integer i, set ai = f(i), and let
SN denote the N th partial sum of the infinite series

∑
ai : SN =

∑N
i=1 ai. Then:

(1) For each N, we have

SN − a1 ≤
∫ N

1

f(x) dx ≤ SN−1.

(2) For each N, we have that

SN−1 −
∫ N

1

f(x) dx ≤ a1 − aN ≤ a1;

i.e., the sequence {SN−1 −
∫ N

1
f} is bounded above.

(3) The sequence {SN−1 −
∫ N

1
f} is nondecreasing.

(4) (Integral Test) The infinite series
∑
ai converges if and only if the function

f is improperly-integrable on (1,∞).

PROOF. For each positive integer N, define a step function kN on the interval
[1, N ] as follows. Let P = {x0 < x1 < . . . < xN−1} be the partition of [1, N ] given
by the points {1 < 2 < 3 < . . . < N}, i.e., xi = i + 1. Define kN (x) to be the
constant ci = f(i+ 1) on the interval [xi−1, xi) = [i, i+ 1). Complete the definition
of kN by setting kN (N) = f(N). Then, because f is nonincreasing, we have that
kN (x) ≤ f(x) for all x ∈ [1, N ]. Also,∫ N

1

kN =
N−1∑
i=1

ci(xi − xi−1)

=
N−1∑
i=1

f(i+ 1)

=
N∑
i=2

f(i)

=
N∑
i=2

ai

= SN − a1,
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which then implies that

SN − a1 =
∫ N

1

kN (x) dx ≤
∫ N

1

f(x) dx.

This proves half of part (1).
For each positive integer N > 1 define another step function lN , using the same

partition P as above, by setting lN (x) = f(i) if i ≤ x < i + 1 for 1 ≤ i < N,
and complete the definition of lN by setting lN (N) = f(N). Again, because f is
nonincreasing, we have that f(x) ≤ lN (x) for all x ∈ [1, N ]. Also∫ N

1

lN =
N−1∑
i=1

f(i)

=
N−1∑
i=1

ai

= SN−1,

which then implies that∫ N

1

f(x) dx ≤
∫ N

1

lN (x) dx = SN−1,

and this proves the other half of part (1).
It follows from part (1) that

SN−1 −
∫ N

1

f(x) dx ≤ SN−1 − SN + a1 = a1 − aN ,

and this proves part (2).
We see that the sequence {SN−1 −

∫ N
1
f} is nondecreasing by observing that

SN −
∫ N+1

1

f − SN−1 +
∫ N

1

f = aN −
∫ N+1

N

f

= f(N)−
∫ N+1

N

f

≥ 0,

because f is nonincreasing.
Finally, to prove part (4), note that both of the sequences {SN} and {

∫ N
1
f} are

nondecreasing. If f is improperly-integrable on [1,∞), then limN

∫ N
1
f exists, and

SN ≤ a1 +
∫∞

1
f(x) dx for all N, which implies that

∑
ai converges by Theorem

2.14. Conversely, if
∑
ai converges, then limSN exists. Since

∫ N
1
f(x) dx ≤ SN−1,

it then follows, again from Theorem 2.14, that limN

∫ N
1
f(x) dx exists. So, by the

preceding exercise, f is improperly-integrable on [1,∞).

We may now resolve a question first raised in Exercise 2.32. That is, for 1 < s <
2, is the infinite series

∑
1/ns convergent or divergent? We saw in that exercise

that this series is convergent if s is a rational number.
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Exercise 5.24. (a) Let s be a real number. Use the Integral Test to prove that
the infinite series

∑
1/ns is convergent if and only if s > 1.

(b) Let s be a complex number s = a+ bi. Prove that the infinite series
∑

1/ns

is absolutely convergent if and only if a > 1.
Exercise 5.25. Let f be the function on [1,∞) defined by f(x) = 1/x.

(a) Use Theorem 5.18 to prove that the sequence {
∑N
i=1

1
i − lnN} converges to

a positive number γ ≤ 1. (This number γ is called Euler’s constant.)
HINT: Show that this sequence is bounded above and nondecreasing.

(b) Prove that
∞∑
i=1

(−1)i+1

i
= ln 2.

HINT: Write S2N for the 2Nth partial sum of the series. Use the fact that

S2N =
2N∑
i=1

1
i
− 2

N∑
i=1

1
2i
.

Now add and subtract ln(2N) and use part (a).

INTEGRATION IN THE PLANE

Let S be a closed geometric set in the plane. If f is a real-valued function on S,
we would like to define what it means for f to be “integrable” and then what the
“integral” of f is. To do this, we will simply mimic our development for integration
of functions on a closed interval [a, b].

So, what should be a “step function” in this context? That is, what should is
a “partition” of S be in this context? Presumably a step function is going to be a
function that is constant on the “elements” of a partition. Our idea is to replace
the subintervals determined by a partition of the interval [a, b] by geometric subsets
of the geometric set S.

DEFINITION. The overlap of two geometric sets S1 and S2 is defined to be the
interior (S1 ∩S2)0 of their intersection. S1 and S2 are called nonoverlapping if this
overlap (S1 ∩ S2)0 is the empty set.

DEFINITION. A partition of a closed geometric set S in R2 is a finite collection
{S1, S2, . . . , Sn} of nonoverlapping closed geometric sets for which ∪ni=1Si = S; i.e.,
the union of the Si’s is all of the geometric set S.

The open subsets {S0
i } are called the elements of the partition.

A step function on the closed geometric set S is a real-valued function h on S
for which there exists a partition P = {Si} of S such that h(z) = ai for all z ∈ S0

i ;
i.e., h is constant on each element of the partition P.

REMARK. One example of a partition of a geometric set, though not at all the
most general kind, is the following. Suppose the geometric set S is determined by
the interval [a, b] and the two bounding functions u and l. Let {x0 < x1 < . . . < xn}
be a partition of the interval [a, b]. We make a partition {Si} of S by constructing
vertical lines at the points xi from l(xi) to u(xi). Then Si is the geometric set
determined by the interval [xi−1, xi] and the two bounding functions ui and li that
are the restrictions of u and l to the interval [xi−1, xi].
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A step function is constant on the open geometric sets that form the elements
of some partition. We say nothing about the values of h on the “boundaries” of
these geometric sets. For a step function h on an interval [a, b], we do not worry
about the finitely many values of h at the endpoints of the subintervals. However,
in the plane, we are ignoring the values on the boundaries, which are infinite sets.
As a consequence, a step function on a geometric set may very well have an infinite
range, and may not even be a bounded function, unlike the case for a step function
on an interval. The idea is that the boundaries of geometric sets are “negligible”
sets as far as area is concerned, so that the values of a function on these boundaries
shouldn’t affect the integral (average value) of the function.

Before continuing our development of the integral of functions in the plane, we
digress to present an analog of Theorem 3.20 to functions that are continuous on a
closed geometric set.

THEOREM 5.19. Let f be a continuous real-valued function whose domain is a
closed geometric set S. Then there exists a sequence {hn} of step functions on S
that converges uniformly to f.

PROOF. As in the proof of Theorem 3.20, we use the fact that a continuous func-
tion on a compact set is uniformly continuous.

For each positive integer n, let δn be a positive number satisfying |f(z)−f(w)| <
1/n if |z − w| < δn. Such a δn exists by the uniform continuity of f on S. Because
S is compact, it is bounded, and we let R = [a, b] × [c, d] be a closed rectangle
that contains S. We construct a partition {Sni } of S as follows. In a checkerboard
fashion, we write R as the union ∪Rni of small, closed rectangles satisfying

(1) If z and w are in Rni , then |z − w| < δn. (The rectangles are that small.)
(2) Rni

0 ∩Rnj
0 = ∅. (The interiors of these small rectangles are disjoint.)

Now define Sni = S ∩ Rni . Then Sni
0 ∩ Snj

0 = ∅, and S = ∪Sni . Hence, {Sni } is a
partition of S.

For each i, choose a point zni in Sni , and set ani = f(zni ). We define a step function
hn as follows: If z belongs to one (and of course only one) of the open geometric
sets Sni

0, set hn(z) = ani . And, if z does not belong to any of the open geometric
sets Sni

0, set hn(z) = f(z). It follows immediately that hn is a step function.
Now, we claim that |f(z) − hn(z)| < 1/n for all z ∈ S. For any z in one of the

Sni
0’s, we have

|f(z)− hn(z)| = |fz)− ani | = |f(z)− f(znI )| < 1/n

because |z − zni | < δn. And, for any z not in any of the Sni
0’s, f(z) − hn(z) = 0.

So, we have defined a sequence {hn} of step functions on S, and the sequence {hn}
converges uniformly to f by Exercise 3.29.

What follows now should be expected. We will define the integral of a step
function h over a geometric set S by∫

S

h =
n∑
i=1

ai ×A(Si).

We will define a function f on S to be integrable if it is the uniform limit of a
sequence {hn} of step functions, and we will then define the integral of f by∫

S

f = lim
∫
S

hn.
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Everything should work out nicely. Of course, we have to check the same two
consistency questions we had for the definition of the integral on [a, b], i.e., the
analogs of Theorems 5.1 and 5.4.

THEOREM 5.20. Let S be a closed geometric set, and let h be a step function
on S. Suppose P = {S1, . . . , Sn} and Q = {T1, . . . , Tm} are two partitions of S for
which h(z) is the constant ai on S0

i and h(z) is the constant bj on T 0
j . Then

n∑
i=1

aiA(Si) =
m∑
j=1

bjA(Tj).

PROOF. We know by part (d) of Exercise 5.17 that the intersection of two geo-
metric sets is itself a geometric set. Also, for each fixed index j, we know that the
sets {Tj ∩S0

i } are pairwise disjoint. Then, by Theorem 5.16, we have that A(Tj) =∑n
i=1A(Tj ∩ Si). Similarly, for each fixed i, we have that A(Si =

∑m
j=1A(Tj ∩ Si).

Finally, for each pair i and j, for which the set T 0
j ∩S0

i is not empty, choose a point
zi,j ∈ T 0

j ∩S0
i , and note that ai = h(zi,j) = bj , because zi,j belongs to both S0

i and
T 0
j .

With these observations, we then have that

n∑
i=1

aiA(Si) =
n∑
i=1

ai

m∑
j=1

A(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

aiA(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

h(zi,j)A(Tj ∩ Si)

=
n∑
i=1

m∑
j=1

bjA(Tj ∩ Si)

=
m∑
j=1

n∑
i=1

bjA(Tj ∩ Si)

=
m∑
j=1

bj

n∑
i=1

A(Tj ∩ Si)

=
m∑
j=1

bjA(Tj),

which completes the proof.

OK, the first consistency condition is satisfied. Moving right along:

DEFINITION. Let h be a step function on a closed geometric set S. Define the
integral of h over the geometric set S by the formula∫

S

h =
∫
S

H(z) dz =
n∑
i=1

aiA(Si),
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where S1, . . . , Sn is a partition of S for which h is the constant ai on the interior
S0
i of the set Si.

Just as in the case of integration on an interval, before checking the second
consistency result, we need to establish the following properties of the integral of
step functions.

THEOREM 5.21. Let H(S) denote the vector space of all step functions on the
closed geometric set S. Then the assignment h →

∫
h of H(S) into R has the

following properties:
(1) (Linearity) H(S) is a vector space, and

∫
S

(h1 + h2) =
∫
S
h1 +

∫
S
h2, and∫

S
ch = c

∫
S
h for all h1, h2, h ∈ H(S), and for all real numbers c.

(2) If h =
∑n
i=1 ciχSi is a linear combination of indicator functions of geometric

sets that are subsets of S, then
∫
h =

∑n
i=1 ciA(Si).

(3) (Positivity) If h(z) ≥ 0 for all z ∈ S, then
∫
S
h ≥ 0.

(4) (Order-preserving) If h1 and h2 are step functions on S for which h1(z) ≤
h2(z) for all z ∈ S, then

∫
S
h1 ≤

∫
S
h2.

PROOF. Suppose h1 is constant on the elements of a partition P = {Si} and h2

is constant on the elements of a partition Q = {Tj}. Let V be the partition of the
geometric set S whose elements are the sets {Uk} = {S0

i ∩ T 0
j }. Then both h1 and

h2 are constant on the elements Uk of V, so that h1 + h2 is also constant on these
elements. Therefore, h1 + h2 is a step function, and∫

(h1 + h2) =
∑
k

(ak + bk)A(Uk) =
∑
k

akA(Uk) +
∑
k

bkA(Uk) =
∫
h1 +

∫
h2,

and this proves the first assertion of part (1).
The proof of the other half of part (1), as well as parts (2), (3), and (4), are

totally analogous to the proofs of the corresponding parts of Theorem 5.2, and we
omit the arguments here.

Now for the other necessary consistency condition:

THEOREM 5.22. let S be a closed geometric set in the plane.
(1) If {hn} is a sequence of step functions that converges uniformly to a function

f on S, then the sequence {
∫
S
hn} is a convergent sequence of real numbers.

(2) If {hn} and {kn} are two sequences of step functions on S that converge
uniformly to the same function f, then

lim
∫
S

hn = lim
∫
S

kn.

Exercise 5.26. Prove Theorem 5.22. Mimic the proofs of Theorems 5.3 and 5.4.

DEFINITION. If f is a real-valued function on a closed geometric set S in the
plane, then f is integrable on S if it is the uniform limit of a sequence {hn} of step
functions on S.

We define the integral of an integrable function f on S by∫
S

f ≡
∫
S

f(z) dz = lim
∫
S

hn,

where {hn} is a sequence of step functions on S that converges uniformly to f.
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THEOREM 5.23. Let S be a closed geometric set in the plane, and let I(S)
denote the set of integrable functions on S. Then:

(1) I(S) is a vector space of functions.
(2) If f and g ∈ I(S), and one of them is bounded, then fg ∈ I(S).
(3) Every step function is in I(S).
(4) If f is a continuous real-valued function on S, then f is in I(S). That is,

every continuous real-valued function on S is integrable on S.

Exercise 5.27. (a) Prove Theorem 5.23. Note that this theorem is the analog of
Theorem 5.5, but that some things are missing.

(b) Show that integrable functions on S are not necessarily bounded; not even
step functions have to be bounded.

(c) Show that, if f ∈ I(S), and g is a function on S for which f(x, y) = g(x, y)
for all (x, y) in the interior S0 of S, then g ∈ I(S). That is, integrable functions on
S can do whatever they like on the boundary.

THEOREM 5.24. Let S be a closed geometric set. The assignment f →
∫
f on

I(S) satisfies the following properties.

(1) (Linearity) I(S) is a vector space, and
∫
S

(αf + βg) = α
∫
S
f + β

∫
S
g for

all f, g ∈ I(S)and α, β ∈ R.
(2) (Positivity) If f(z) ≥ 0 for all z ∈ S, then

∫
S
f ≥ 0.

(3) (Order-preserving) If f, g ∈ I(S) and f(z) ≤ g(z) for all z ∈ S, then∫
S
f ≤

∫
S
g.

(4) If f ∈ I(S), then so is |f |, and |
∫
S
f | ≤

∫
S
|f |.

(5) If f is the uniform limit of functions fn, each of which is in I(S), then
f ∈ I(S) and

∫
S
f = lim

∫
S
fn.

(6) Let {un} be a sequence of functions in I(S), and suppose that for each n
there is a number mn, for which |un(z)| ≤ mn for all z ∈ S, and such that
the infinite series

∑
mn converges. Then the infinite series

∑
un converges

uniformly to an integrable function, and
∫
S

∑
un =

∑∫
S
un.

(7) If f ∈ I(S), and {S1, . . . , Sn} is a partition of S, then f ∈ I(Si) for all i,
and ∫

S

=
n∑
i=1

∫
Si

f.

Exercise 5.28. Prove Theorem 5.24. It is mostly the analog to Theorem 5.6. To
see the last part, let hi be the step function that is identically 1 on Si; check that
hif ∈ I(Si); then examine

∑
i

∫
S
fhi.

Of course, we could now extend the notion of integrability over a geometric set S
to include complex-valued functions just as we did for integrability over an interval
[a, b]. However, real-valued functions on geometric sets will suffice for the purposes
of this book.

We include here, to be used later in Chapter VII, a somewhat technical theorem
about constructing partitions of a geometric set.

THEOREM 5.25. Let S1, . . . , Sn be closed, nonoverlapping, geometric sets, all
contained in a geometric set S. Then there exists a partition Ŝ1, . . . , ŜM of S such
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that for 1 ≤ i ≤ n we have Si = Ŝi. In other words, the si’s are the first n elements
of a partition of S.

PROOF. Suppose S is determined by the interval [a, b] and the two bounding
functions u and l. We prove this theorem by induction on n.

If n = 1, let S1 be determined by the interval [a1, b1] and the two bounding
functions u1 and l1. Set Ŝ1 = S1, and define four more geometric sets Ŝ2, . . . , Ŝ5 as
follows:

(1) Ŝ2 is determined by the interval [a, a1] and the two bounding functions u
and l restricted to that interval.

(2) S3 is determined by the interval [a1, b1] and the two bounding functions u
and u1 restricted to that interval.

(3) S4 is determined by the interval [a1, b1] and the two bounding functions l
and l1 restricted to that interval.

(4) Ŝ5 is determined by the interval [b1, b] and the two bounding functions u
and l restricted to that interval.

Observe that the five sets Ŝ1, Ŝ2, . . . , Ŝ5 constitute a partition of the geometric
set S, proving the theorem in the case n = 1.

Suppose next that the theorem is true for any collection of n sets satisfying the
hypotheses. Then, given S1, . . . , Sn+1 as in the hypothesis of the theorem, apply
the inductive hypothesis to the n sets S1, . . . , Sn to obtain a partition T1, . . . , Tm
of S for which Ti = Si for all 1 ≤ i ≤ n. For each n + 1 ≤ i ≤ m, consider the
geometric set S′i = Sn+1 ∩ Ti of the geometric set Ti. We may apply the case n = 1
of this theorem to this geometric set to conclude that S′i is the first element S′i,1 of
a partition {S′i,1, S′i,2, . . . , S′i,mi} of the geometric set Ti.

Define a partition {Ŝk} of S as follows: For 1 ≤ k ≤ n, set Ŝk = Tk. Set
Ŝn+1 = ∪mi=n+1S

′
i,1 = Sn+1. And define the rest of the partition {Ŝk} to be made

up of the remaining sets S′i,j for n+ 1 ≤ i ≤ m and 2 ≤ j ≤ mi. It follows directly
that this partition {Ŝk} satisfies the requirements of the theorem.

Exercise 5.29. Let S1, . . . , Sn be as in the preceding theorem. Suppose Sk is
determined by the interval [ak, bk] and the two bounding functions uk and lk. We
will say that Sk is “below” Sj , equivalently Sj is “above” Sk, if there exists a point
x such that uk(x) < lj(x). Note that this implies that x ∈ [ak, bk] ∩ [aj , bj ].

(a) Suppose Sk is below Sj , and suppose (z, yk) ∈ Sk and (z, yj) ∈ Sj . Show that
yj > yk. That is, if Sk is below Sj , then no part of Sk can be above Sj .

(b) Suppose S2 is below S1 and S3 is below S2. Show that no part of S3 can be
above S1.
HINT: By way of contradiction, let x1 ∈ [a1, b1] be such that u2(x1) < l1(x1); let
x2 ∈ [a2, b2] be such that u3(x2) < l2(x2); and suppose x3 ∈ [a3, b3] is such that
u1(x3) < l3(x3). Derive contradictions for all possible arrangements of the three
points x1, x2, and x3.

(c) Prove that there exists an index k0 such that Sk0 is minimal in the sense that
there is no other Sj that is below Sk0 .
HINT: Argue by induction on n. Thus, let {Tl} be the collection of all Sk’s that
are below S1, and note that there are at most n−1 elements of {Tl}. By induction,
there is one of the Tl’s, i.e., an Sk0 that is minimal for that collection. Now, using
part (b), show that this Sk0 must be minimal for the original collection.
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There is one more concept about integrating over geometric sets that we will
need in later chapters. We have only considered sets that are bounded on the left
and right by straight vertical lines and along the top and bottom by graphs of
continuous functions y = u(x) and y = l(x). We equally well could have discussed
sets that are bounded above and below by straight horizontal lines and bounded
on the left and right by graphs of continuous functions x = l(y) and x = r(y).
These additional sets do not provide anything particularly important, so we do not
discuss them. However, there are times when it is helpful to work with geometric
sets with the roles of horizontal and vertical reversed. We accomplish this with the
following definition.

DEFINITION. Let S be a subset of R2. By the symmetric image of S we mean
the set Ŝ of all points (x, y) ∈ R2 for which the point (y, x) ∈ S.

The symmetric image of a set is just the reflection of the set across the y = x
line in the plane. Note that the symmetric image of the rectangle [a, b] × [c, d] is
again a rectangle, [c, d]× [a, b], and therefore the area of a rectangle is equal to the
area of its symmetric image. This has the implication that if the symmetric image
of a geometric set is also a geometric set, then they both have the same area. The
symmetric image of a geometric set doesn’t have to be a geometric set itself. For
instance, consider the examples suggested in part (b) of Exercise 5.17. But clearly
rectangles, triangles, and circles have this property, for their symmetric images are
again rectangles, triangles, and circles. For a geometric set, whose symmetric image
is again a geometric set, there are some additional computational properties of the
area of S as well as the integral of functions over S, and we present them in the
following exercises.

Exercise 5.30. Suppose S is a closed geometric set, which is determined by a closed
interval [a, b] and two bounding functions u(x) and l(x). Suppose the symmetric
image Ŝ of S is also a closed geometric set, determined by an interval [â, b̂] and two
bounding functions û(x) and l̂(x).

(a) Make up an example to show that the numbers â and b̂ need not have
anything to do with the numbers a and b, and that the functions û and l̂ need not
have anything to do with the functions u and l.

(b) Prove that S and Ŝ have the same area.
HINT: use the fact that the area of a geometric set is approximately equal to the
sum of the areas of certain rectangles, and then use the fact that the area of the
symmetric image of a rectangle is the same as the area of the rectangle.

(c) Show that for every point (x, y) ∈ S, we must have â ≤ y ≤ b̂, and for every
such y, we must have l̂(y) ≤ x ≤ û(y).
HINT: If (x, y) ∈ S, then (y, x) ∈ Ŝ.

(d) Prove that the area A(S) of S is given by the formula

A(S) =
∫ b

a

∫ u(x)

l(x)

1 dydx =
∫ b̂

â

∫ û(y)

l̂(y)

1 dxdy.

(See the remark preceding Theorem 5.16.)
(e) Let S be the right triangle having vertices (a, c), (b, c), and (b, d), where d > c.

Describe the symmetric image of S; i.e., find the corresponding â, b̂, û, and l̂. Use
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part (d) to obtain the following formulas for the area of S :

A(S) =
∫ b

a

∫ d+ t−b
a−b (c−d)

c

1 dsdt =
∫ d

c

∫
b+ t−d

c−d (a−b)
1 dsdt.

Exercise 5.31. (a) Prove that if S1 and S2 are geometric sets whose symmetric
images are again geometric sets, then the symmetric image of the geometric set
S1 ∩ S2 is also a geometric set.

(b) Suppose T is a closed geometric set that is contained in a closed geometric
set S. Assume that both the symmetric images T̂ and Ŝ are also geometric sets.
If Ŝ is determined by an interval [â, b̂] and two bounding functions û and l̂, prove
that

A(T ) =
∫ b̂

â

∫ û(s)

l̂(s)

χT (t, s) dtds,

where χT is the indicator function of the set T ; i.e., χT (t, s) = 1 if (t, s) ∈ T, and
χT (t, s) = 0 if (t, s) /∈ T.
HINT: See the proof of Theorem 5.16, give names to all the intervals and bounding
functions, and in the end use part (d) of the preceding exercise.

(c) Suppose {Si} is a partition of a geometric set S, and suppose the symmetric
images of S and all the Si’s are also geometric sets. Suppose h is a step function
that is the constant ai on the element S0

i of the partition {Si}. Prove that
∫
S
h =∑n

i=1 ai
∫
S
χS0

i
, and therefore that

∫
S

h =
∫ b

a

∫ u(t)

l(t)

h(t, s) dsdt =
∫ b̂

â

∫ û(s)

l̂(s)

h(t, s) dtds.

HINT: Use part (b).
(d) Let S be a geometric set whose symmetric image Ŝ is also a geometric set,

and suppose f is a continuous function on S. Show that

∫
S

f =
∫ b

a

∫ u(t)

l(t)

f(t, s) dsdt =
∫ b̂

â

∫ û(s)

l̂(s)

f(t, s) dtds.

HINT: Make use of the fact that the step functions constructed in Theorem 5.19
satisfy the assumptions of part (c). Then take limits.

(e) Let S be the triangle in part (e) of the preceding exercise. If f is a continuous
function on S, show that the integral of f over S is given by the formulas

∫
S

f =
∫ b

a

∫ d+ t−b
a−b (c−d)

c

f(t, s) dsdt =
∫ d

c

∫
b+ s−d

c−d (a−b)
f(t, s) dtds.


