
CHAPTER VII
THE FUNDAMENTAL THEOREM OF ALGEBRA,

AND THE FUNDAMENTAL THEOREM OF ANALYSIS

In this chapter we will discover the incredible difference between the analysis
of functions of a single complex variable as opposed to functions of a single real
variable. Up to this point, in some sense, we have treated them as being quite
similar subjects, whereas in fact they are extremely different in character. Indeed,
if f is a differentiable function of a complex variable on an open set U ⊆ C, then we
will see that f is actually expandable in a Taylor series around every point in U. In
particular, a function fof a complex variable is guaranteed to have infinitely many
derivatives on U if it merely has the first one on U. This is in marked contrast with
functions of a real variable. See part (3) of Theorem 4.17.

The main points of this chapter are:
(1) The Cauchy-Riemann Equations (Theorem 7.1),
(2) Cauchy’s Theorem (Theorem 7.3),
(3) Cauchy Integral Formula (Theorem 7.4),
(4) A complex-valued function that is differentiable on an open set is

expandable in a Taylor series around each point of the set (Theorem
7.5),

(5) The Identity Theorem (Theorem 7.6),
(6) The Fundamental Theorem of Algebra (Theorem 7.7),
(7) Liouville’s Theorem (Theorem 7.8),
(8) The Maximum Modulus Principle (corollary to Theorem 7.9),
(9) The Open Mapping Theorem (Theorem 7.10),

(10) The uniform limit of analytic functions is analytic (Theorem 7.12),
and

(11) The Residue Theorem (Theorem 7).17.

CAUCHY’S THEOREM

We begin with a simple observation connecting differentiability of a function of a
complex variable to a relation among of partial derivatives of the real and imaginary
parts of the function. Actually, we have already visited this point in Exercise 4.8.

THEOREM 7.1. (Cauchy-Riemann equations) Let f = u + iv be a complex-
valued function of a complex variable z = x+ iy ≡ (x, y), and suppose f is differen-
tiable, as a function of a complex variable, at the point c = (a, b). Then the following
two partial differential equations, known as the Cauchy-Riemann Equations, hold:

∂u

∂x
(a, b) =

∂v

∂y
(a, b),

and
∂u

∂y
(a, b) = −∂v

∂x
(a, b).

PROOF. We know that

f ′(c) = limh→ 0
f(c+ h)− f(c)

h
,

197
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and this limit is taken as the complex number h approaches 0. We simply examine
this limit for real h’s approaching 0 and then for purely imaginary h’s approaching
0. For real h’s, we have

f ′(c) = f ′(a+ ib)

= lim
h→0

f(a+ h+ ib)− f(a+ ib)
h

= limh→ 0
u(a+ h, b) + iv(a+ h, b)− u(a, b)− iv(a, b)

h

= lim
h→0

u(a+ h, b)− u(a, b)
h

+ i lim
h→0

v(a+ h, b)− v(a, b)
h

=
∂u

∂x
(a, b) + i

∂v

∂x
(a, b).

For purely imaginary h’s, which we write as h = ik, we have

f ′(c) = f ′(a+ ib)

= lim
k→0

f(a+ i(b+ k))− f(a+ ib)
ik

= lim
k→0

u(a, b+ k) + iv(a, b+ k)− u(a, b)− iv(a, b)
ik

= −i lim
k→0

u(a, b+ k)− u(a, b)
k

+
v(a, b+ k)− v(a, b)

k

= −i∂u
∂y

(a, b) +
∂v

∂y
(a, b).

Equating the real and imaginary parts of these two equivalent expressions for f ′(c)
gives the Cauchy-Riemann equations.

As an immediate corollary of this theorem, together with Green’s Theorem (The-
orem 6.14), we get the following result, which is a special case of what is known as
Cauchy’s Theorem.

COROLLARY. Let S be a piecewise smooth geometric set whose boundary CS
has finite length. Suppose f is a complex-valued function that is continuous on S
and differentiable at each point of the interior S0 of S. Then the contour integral∫
CS
f(ζ) dζ = 0.

Exercise 7.1. (a) Prove the preceding corollary. See Theorem 6.12.
(b) Suppose f = u + iv is a differentiable, complex-valued function on an open

disk Br(c) in C, and assume that the real part u is a constant function. Prove
that f is a constant function. Derive the same result assuming that v is a constant
function.

(c) Suppose f and g are two differentiable, complex-valued functions on an open
disk Br(c) in C. Show that, if the real part of f is equal to the real part of g, then
there exists a constant k such that f(z) = g(z) + k, for all z ∈ Br(c).

For future computational purposes, we give the following implications of the
Cauchy-Riemann equations. As with Theorem 7.1, this next theorem mixes the
notions of differentiability of a function of a complex variable and the partial deriva-
tives of its real and imaginary parts.
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THEOREM 7.2. Let f = u+ iv be a complex-valued function of a complex vari-
able, and suppose that f is differentiable at the point c = (a, b). Let A be the 2× 2
matrix

A =
(
ux(a, b) vx(a, b)
uy(a, b) vy(a, b)

)
.

Then:
(1) |f ′(c)|2 = det(A).
(2) The two vectors

~V1 = (ux(a, b), uy(a, b)) and ~V2 = (vx(a, b), vy(a, b))

are linearly independent vectors in R2 if and only if f ′(c) 6= 0.
(3) The vectors

~V3 = (ux(a, b), vx(a, b)) and ~V4 = (uy(a, b), vy(a, b))

are linearly independent vectors in R2 if and only if f ′(c) 6= 0.

PROOF. Using the Cauchy-Riemann equations, we see that the determinant of the
matrix A is given by

detA = ux(a, b)vy(a, b)− uy(a, b)vx(a, b)

= (ux(a, b))2 + (vx(a, b))2

= (ux(a, b) + ivx(a, b))(ux(a, b)− ivx(a, b))

= f ′(c)f ′(c)

= |f ′(c)|2,

proving part (1).
The vectors ~V1 and ~V2 are the columns of the matrix A, and so, from elementary

linear algebra, we see that they are linearly independent if and only if the determi-
nant of A is nonzero. Hence, part (2) follows from part (1). Similarly, part (3) is a
consequence of part (1).

It may come as no surprise that the contour integral of a function f around
the boundary of a geometric set S is not necessarily 0 if the function f is not
differentiable at each point in the interior of S. However, it is exactly these kinds
of contour integrals that will occupy our attention in the rest of this chapter, and
we shouldn’t jump to any conclusions.
Exercise 7.2. Let c be a point in C, and let S be the geometric set that is a
closed disk Br(c). Let φ be the parameterization of the boundary Cr of S given by
φ(t) = c+ reit for t ∈ [0, 2π]. For each integer n ∈ Z, define fn(z) = (z − c)n.

(a) Show that
∫
Cr
fn(ζ dζ = 0 for all n 6= −1.

(b) Show that ∫
Cr

f−1(ζ) dζ =
∫
Cr

1
ζ − c

dζ = 2πi.

There is a remarkable result about contour integrals of certain functions that
aren’t differentiable everywhere within a geometric set, and it is what has been
called the Fundamental Theorem of Analysis, or Cauchy’s Theorem. This theorem
has many general statements, but we present one here that is quite broad and
certainly adequate for our purposes.
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THEOREM 7.3. (Cauchy’s Theorem, Fundamental Theorem of Analysis) Let S
be a piecewise smooth geometric set whose boundary CS has finite length, and let
Ŝ ⊆ S0 be a piecewise smooth geometric set, whose boundary CŜ also is of finite

length. Suppose f is continuous on S ∩ ˜̂S0, i.e., at every point z that is in S but

not in Ŝ0, and assume that f is differentiable on S0 ∩ ˜̂S, i.e., at every point z in S0

but not in Ŝ. (We think of these sets as being the points “between” the boundary
curves of these geometric sets.) Then the two contour integrals

∫
CS
f(ζ) dζ and∫

C
Ŝ

f(ζ) dζ are equal.

PROOF. Let the geometric set S be determined by the interval [a, b] and the two
bounding functions u and l, and let the geometric set Ŝ be determined by the
subinterval [â, b̂] of [a, b] and the two bounding functions û and l̂. Because Ŝ ⊆ S0,

we know that û(t) < u(t) and l(t) < l̂(t) for all t ∈ [â, b̂]. We define four geometric
sets S1, . . . , S4 as follows:

(1) S1 is determined by the interval [a, â] and the two bounding functions u
and l restricted to that interval.

(2) S2 is determined by the interval [â, b̂] and the two bounding functions u
and û restricted to that interval.

(3) S3 is determined by the interval [â, b̂] and the two bounding functions l̂
and l restricted to that interval.

(4) S4 is determined by the interval [̂b, b] and the two bounding functions u
and l restricted to that interval.

Observe that the five sets Ŝ, S1, . . . , S4 constitute a partition of the geometric
set S. The corollary to Theorem 7.1 applies to each of the four geometric sets
S1, . . . , S4. Hence, the contour integral of f around each of the four boundaries of
these geometric sets is 0. So, by Exercise 6.20,∫

CS

f(ζ) dζ =
∫
C
Ŝ

f(ζ) dζ +
4∑
k=1

∫
CSk

f(ζ) dζ

=
∫
C
Ŝ

f(ζ) dζ,

as desired.

Exercise 7.3. (a) Draw a picture of the five geometric sets in the proof above and
justify the claim that the sum of the four contour integrals around the geometric
sets S1, . . . , S4 is the integral around CS minus the integral around CŜ .

(b) Let S1, . . . , Sn be pairwise disjoint, piecewise smooth geometric sets, each
having a boundary of finite length, and each contained in a piecewise smooth geo-
metric set S whose boundary also has finite length. Prove that the Sk’s are some
of the elements of a partition {S̃l} of S, each of which is piecewise smooth and has
a boundary of finite length. Show that, by reindexing, S1, . . . , Sn can be chosen to
be the first n elements of the partition {Ŝl}.
HINT: Just carefully adjust the proof of Theorem 5.25.

(c) Suppose S is a piecewise smooth geometric set whose boundary has finite
length, and let S1, . . . , Sn be a partition of S for which each Sk is piecewise smooth
and has a boundary CSk of finite length. Suppose f is continuous on each of the
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boundaries CSk of the Sk’s as well as the boundary CS of S, and assume that f is
continuous on each of the Sk’s, for 1 ≤ k ≤ m, and differentiable at each point of
their interiors. Prove that∫

CS

f(ζ) dζ =
n∑

k=m+1

∫
CSk

f(ζ) dζ.

(d) Prove the following generalization of the Cauchy Theorem: Let S1, . . . , Sn
be pairwise disjoint, piecewise smooth geometric sets whose boundaries have finite
length, all contained in the interior of a piecewise smooth geometric set S whose
boundary also has finite length. Suppose f is continuous at each point of S that is
not in the interior of any of the Sk’s, and that f is differentiable at each point of
S0 that is not an element of any of the Sk’s. Prove that

∫
CS

f(ζ) dζ =
n∑
k=1

∫
CSk

f(ζ) dζ.

Perhaps the main application of Theorem 7.3 is what’s called the Cauchy Integral
Formula. It may not appear to be useful at first glance, but we will be able to use
it over and over throughout this chapter. In addition to its theoretical uses, it is
the basis for a technique for actually evaluating contour integrals, line integrals, as
well as ordinary integrals.

THEOREM 7.4. (Cauchy Integral Formula) Let S be a piecewise smooth geo-
metric set whose boundary CS has finite length, and let f be a continuous function
on S that is differentiable on the interior S0 of S. Then, for any point z ∈ S0, we
have

f(z) =
1

2πi

∫
CS

f(ζ)
ζ − z

dζ.

REMARK. This theorem is an initial glimpse at how differentiable functions of
a complex variable are remarkably different from differentiable functions of a real
variable. Indeed, Cauchy’s Integral Formula shows that the values of a differentiable
function f at all points in the interior of a geometric set S are completely determined
by the values of that function on the boundary of the set. The analogous thing for
a function of a real variable would be to say that all the values of a differentiable
function f at points in the open interval (a, b) are completely determined by its
values at the endpoints a and b. This is patently absurd for functions of a real
variable, so there surely is something marvelous going on for differentiable functions
of a complex variable.

PROOF. Let r be any positive number such that Br(z) is contained in the interior
S0 of S, and note that the close disk Br(z) is a piecewise smooth geometric set
Ŝ contained in S0. We will write Cr instead of CŜ for the boundary of this disk,
and we will use as a parameterization of the curve Cr the function φ : [0, 2π]→ Cr
given by φ(t) = z + reit. Now the function g(ζ) = f(ζ)/(ζ − z) is continuous on

S ∩ ˜̂S0 and differentiable on S0 ∩ ˜̂S, so that Theorem 7.3 applies to the function g.
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Hence
1

2πi

∫
CS

f(ζ)
ζ − z

dζ =
1

2πi

∫
CS

g(ζ) dζ

=
1

2πi

∫
CR

g(ζ), dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ

=
1

2πi

∫ 2π

0

f(z + reit)
z + reit − z

ireit dt

=
1

2π

∫ 2π

0

f(z + reit) dt.

Since the equality established above is valid, independent of r, we may take the
limit as r goes to 0, and the equality will persist. We can evaluate such a limit by
replacing the r by 1/n, in which case we would be evaluating

lim
n→∞

1
2π

∫ 2π

0

f(z +
1
n
eit) dt = lim

n→∞

1
2π

∫ 2π

0

fn(t) dt,

where fn(t) = f(z + frac1neit). Finally, because the function f is continuous at
the point z, it follows that the sequence {fn} converges uniformly to the constant
function f(z) on the interval [0, 2π]. So, by Theorem 5.6, we have that

lim
n→∞

1
2π

∫ 2π

0

fn(t) dt =
1

2π

∫ 2π

0

f(z) dt = f(z).

Therefore,

1
2πi

∫
CS

f(ζ
ζ − z

dζ = lim
r→0

1
2π

∫ 2π

0

f(z + reit) dt = f(z),

and the theorem is proved.

The next exercise gives two simple but strong consequences of the Cauchy Inte-
gral Formula, and it would be wise to spend a few minutes deriving other similar
results.
Exercise 7.4. (a) Let S and f be as in the preceding theorem, and assume that
f(z) = 0 for every point on the boundary CS of S. Prove that f(z) = 0 for every
z ∈ S.

(b) Let S be as in part (a), and suppose that f and g are two continuous functions
on S, both differentiable on S0, and such that f(ζ) = g(ζ) for every point on the
boundary of S. Prove that f(z) = g(z) for all z ∈ S.

The preceding exercise shows that two differentiable functions of a complex vari-
able are equal everywhere on a piecewise smooth geometric set S if they agree on
the boundary of the set. More is true. We will see below in the Identity Theorem
that they are equal everywhere on a piecewise smooth geometric set S if they agree
just along a single convergent sequence in the interior of S.

Combining part (b) of Exercise 7.3, Exercise 6.20, and Theorem 7.3, we obtain
the following corollary:
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COROLLARY. Let S1, . . . , Sn be pairwise disjoint, piecewise smooth geometric
sets whose boundaries have finite length, all contained in the interior of a piecewise
smooth geometric set S whose boundary has finite length. Suppose f is continuous
at each point of S that is not in the interior of any of the Sk’s, and that f is
differentiable at each point of S0 that is not an element of any of the Sk’s. Then,
for any z ∈ S0 that is not an element of any of the Sk’s, we have

f(z) =
1

2πi

(∫
CS

f(ζ)
ζ − z

dζ −
n∑
k=1

∫
CSk

f(ζ)
ζ − z

dζ

)
.

PROOF. Let r > 0 be such that Br(z) is disjoint from all the Sk’s. By part (b) of
Exercise 7.3, let T1, . . . , Tm be a partition of S such that Tk = Sk for 1 ≤ k ≤ n,
and Tn+1 = Br(z). By Exercise 6.20, we know that∫

CS

f(ζ)
ζ − z

dζ =
m∑
k=1

∫
CTk

f(ζ)
ζ − z

dζ.

From the Cauchy Integral Formula, we know that∫
CTn+1

f(ζ)
ζ − z

dζ = 2πif(z).

Also, since f(ζ)/(ζ − z) is differentiable at each point of the interior of the sets Tk
for k > n+ 1, we have from Theorem 7.2 that for all k > n+ 1∫

Ctk

f(ζ)
ζ − z

dζ = 0.

Therefore, ∫
CS

f(ζ)
ζ − z

dζ =
n∑
k=1

∫
CSk

f(ζ)
ζ − z

dζ + 2πif(z),

which completes the proof.

Exercise 7.5. Suppose S is a piecewise smooth geometric set whose boundary
has finite length, and let c1, . . . , cn be points in S0. Suppose f is a complex-valued
function that is continuous at every point of S except the Ck’s and differentiable
at every point of S0 except the ck’s. Let r1, . . . , rn be positive numbers such that
the disks {BRk(ck)} are pairwise disjoint and all contained in S0.

(a) Prove that ∫
CS

f(ζ) dζ,=
n∑
k=1

∫
Ck

f(ζ) dζ

where Ck denotes the boundary of the disk Brk(ck).
(b) For any z ∈ S0 that is not in any of the closed disks Brk(ck), show that∫

CS

f(ζ)
ζ − z

dζ = 2πif(z) +
n∑
k=1

∫
Ck

f(ζ)
ζ − z

dζ.
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(c) Specialize part (b) to the case where S = Br(c), and f is analytic at each
point of Br(c) except at the central point c. For each z 6= c in Br(c), and any
0 < δ < |z − c|, derive the formula

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ.

BASIC APPLICATIONS OF THE CAUCHY INTEGRAL FORMULA

As a major application of the Cauchy Integral Formula, let us show the much
alluded to remarkable fact that a function that is a differentiable function of a
complex variable on an open set U is actually expandable in a Taylor series around
every point in U, i.e., is an analytic function on U.

THEOREM 7.5. Suppose f is a differentiable function of a complex variable on
an open set U ⊆ C, and let c be an element of U. Then f is expandable in a Taylor
series around c. In fact, for any r > 0 for which Br(c) ⊆ U, we have

f(z) =
∞∑
n=0

an(z − c)n

for all z ∈ Br(c).
PROOF. Choose an r > 0 such that the closed disk Br(c) ⊆ U, and write Cr for
the boundary of this disk. Note that, for all points ζ on the curve Cr, and any
fixed point z in the open disk Br(c), we have that |z − c| < r = |ζ − c|, whence
|z − c|/|ζ − c| = |z − c|/r < 1. Therefore the geometric series

∞∑
n=0

(
z − c
ζ − c

)n
converges to

1
1− z−c

ζ−c
.

Moreover, by the Weierstrass M -Test, as functions of the variable ζ, this infinite
series converges uniformly on the curve Cr. We will use this in the calculation below.
Now, according to Theorem 7.4, we have that

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c+ c− z

dζ

=
1

2πi

∫
Cr

f(ζ)
(ζ − c)(1− z−c

ζ−c )
dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

∞∑
n=0

(
z − c
ζ − c

)n
dζ

=
1

2πi

∫
Cr

∞∑
n=0

f(ζ)
(ζ − c)n+1

(z − c)n dζ

=
1

2πi

∞∑
n=0

∫
Cr

f(ζ)
(ζ − c)n+1

(z − c)n dζ

=
∞∑
n=0

an(z − c)n,
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where we are able to bring the summation sign outside the integral by part (3) of
Theorem 6.10, and where

an =
1

2πi

∫
Cr

f(ζ)
(ζ − c)n+1

dζ.

This proves that f is expandable in a Taylor series around the point c, as desired.

Using what we know about the relationship between the coefficients of a Tay-
lor series and the derivatives of the function, together with the Cauchy Integral
Theorem, we obtain the following formulas for the derivatives of a differentiable
function f of a complex variable. These are sometimes also called the Cauchy
Integral Formulas.

COROLLARY. Suppose f is a differentiable function of a complex variable on
an open set U, and let c be an element of U. Then f is infinitely differentiable at c,
and

f (n)(c) =
n!

2πi

∫
Cs

f(ζ)
(ζ − c)n+1

dζ,

for any piecewise smooth geometric set S ⊆ U whose boundary CS has finite length,
and for which c belongs to the interior S0 of S.

Exercise 7.6. (a) Prove the preceding corollary.
(b) Let f, U, and c be as in Theorem 7.5. Show that the radius of convergence

r of the Taylor series expansion of f around c is at least as large as the supremum
of all s for which Bs(c) ⊆ U.

(c) Conclude that the radius of convergence of the Taylor series expansion of a
differentiable function of a complex variable is as large as possible. That is, if f
is differentiable on a disk Br(c), then the Taylor series expansion of f around c
converges on all of Br(c).

(d) Consider the real-valued function of a real variable given by f(x) = 1/(1+x2).
Show that f is differentiable at each real number x. Show that f is expandable in
a Taylor series around 0, but show that the radius of convergence of this Taylor
series is equal to 1. Does this contradict part (c)?

(e) Let f be the complex-valued function of a complex variable given by f(z) =
1/(1 + z2). We have just replaced the real variable x of part (d) by a complex
variable z. Explain the apparent contradiction that parts (c) and (d) present in
connection with this function.
Exercise 7.7. (a) Let S be a piecewise smooth geometric set whose boundary
CS has finite length, and let f be a continuous function on the curve CS . Define a
function F on S0 by

F (z) =
∫
CS

f(ζ)
ζ − z

dζ.

Prove that F is expandable in a Taylor series around each point c ∈ S0. Show in
fact that F (z) =

∑
an(z − c)n for all z in a disk Br(c) ⊆ S0, where

an =
n!

2πi

∫
CS

f(ζ)
(ζ − c)n+1

dζ.

HINT: Mimic the proof of Theorem 7.5.
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(b) Let f and F be as in part (a). Is F defined on the boundary CS of S?
If z belongs to the boundary CS , and z = lim zn, where each zn ∈ S0, Does the
sequence {F (zn)} converge, and, if so, does it converge to f(z)?

(c) Let S be the closed unit disk B1(0), and let f be defined on the boundary
C1 of this disk by f(z) = z̄, i.e., f(x + iy) = x − iy. Work out the function F of
part (a), and then re-think about part (b).

(d) Let f and F be as in part (a). If, in addition, f is continuous on all of S
and differentiable on S0, show that F (z) = 2πif(z) for all z ∈ S0. Think about
this “magic” constant 2πi. Review the proof of the Cauchy Integral Formula to
understand where this constant comes from.

Theorem 3.14 and Exercise 3.26 constitute what we called the “identity theorem”
for functions that are expandable in a Taylor series around a point c. An even
stronger result than that is actually true for functions of a complex variable.

THEOREM 7.6. (Identity Theorem) Let f be a continuous complex-valued func-
tion on a piecewise smooth geometric set S, and assume that f is differentiable on
the interior S0 of S. Suppose {zk} is a sequence of distinct points in S0 that con-
verges to a point c in S0. If f(zk) = 0 for every K, then f(z) = 0 for every z ∈ S.

PROOF. It follows from Exercise 3.26 that there exists an r > 0 such that f(z) = 0
for all z ∈ Br(c). Now let w be another point in S0, and let us show that f(w) must
equal 0. Using part (f) of Exercise 6.2, let φ : [â, b̂]→ C be a piecewise smooth curve,
joining c to w, that lies entirely in S0. Let A be the set of all t ∈ [â, b̂] such that
f(φ(s)) = 0 for all s ∈ [â, t). We claim first that A is nonempty. Indeed, because
φ is continuous, there exists an ε > 0 such that |φ(s) − c| = |φ(s) − φ(â)| < r if
|s− â| < ε. Therefore f(φ(s)) = 0 for all s ∈ [â, â+ε), whence, â+ε ∈ A. Obviously,
A is bounded above by b̂, and we write t0 for the supremum of A. We wish to show
that t0 = b̂, whence, since φ is continuous at B̂, f(w) = f(φ(̂b)) = f(φ(t0)) = 0.
Suppose, by way of contradiction, that t0 < b̂, and write z0 = φ(t0). Now z0 ∈ S0,
and z0 = limφ(t0 − 1/k) because φ is continuous at t0. But f(φ(t0 − 1/k)) = 0 for
all k. So, again using Exercise 3.26, we know that there exists an r′ > 0 such that
f(z) = 0 for all z ∈ Br′(z0). As before, because φ is continuous at t0, there exists a
δ > 0 such that t0 + δ < b̂ and |φ(s)−φ(t0)| < r′ if |s− t0| < δ. Hence, f(φ(s)) = 0
for all s ∈ (t0 − δ, t0 + δ), which implies that t0 + δ belongs to A. But then t0
could not be the supremum of A, and therefore we have arrived at a contradiction.
Consequently, t0 = b̂, and therefore f(w) = 0 for all w ∈ S0. Of course, since every
point in S is a limit of points from S0, and since f is continuous on S, we see that
f(z) = 0 for all z ∈ S, and the theorem is proved.

The next exercise gives some consequences of the Identity Theorem. Part (b)
may appear to be a contrived example, but it will be useful later on.
Exercise 7.8. (a) Suppose f and g are two functions, both continuous on a
piecewise smooth geometric set S and both differentiable on its interior. Suppose
{zk} is a sequence of elements of S0 that converges to a point c ∈ S0, and assume
that f(zk) = g(zk) for all k. Prove that f(z) = g(z) for all z ∈ S.

(b) Suppose f is a nonconstant differentiable function defined on the interior of
a piecewise smooth geometric set S. If c ∈ S0 and Bε(c) ⊆ S0, show that there
must exist an 0 < r < ε for which f(c) 6= f(z) for all z on the boundary of the disk
Br(c).
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THE FUNDAMENTAL THEOREM OF ALGEBRA

We can now prove the Fundamental Theorem of Algebra, the last of our primary
goals. One final trumpet fanfare, please!

THEOREM 7.7. (Fundamental Theorem of Algebra) Let p(z) be a nonconstant
polynomial of a complex variable. Then there exists a complex number z0 such
that p(z0) = 0. That is, every nonconstant polynomial of a complex variable has a
root in the complex numbers.

PROOF. We prove this theorem by contradiction. Thus, suppose that p is a non-
constant polynomial of degree n ≥ 1, and that p(z) is never 0. Set f(z) = 1/p(z),
and observe that f is defined and differentiable at every point z ∈ C. We will show
that f is a constant function, implying that p = 1/f is a constant, and that will
give the contradiction. We prove that f is constant by showing that its derivative is
identically 0, and we compute its derivative by using the Cauchy Integral Formula
for the derivative.

From part (4) of Theorem 3.1, we recall that there exists a B > 0 such that
|cn|

2 |z|
n ≤ |p(z)|, for all z for which |z| ≥ B, and where cn is the (nonzero) leading

coefficient of the polynomial p. Hence, |f(z)| ≤ M
|z|n for all |z| ≥ B, where we write

M for 2/|cn|. Now, fix a point c ∈ C. Because f is differentiable on the open set
U = C, we can use the corollary to Theorem 7.4 to compute the derivative of f at
c by using any of the curves Cr that bound the disks Br(c), and we choose an r
large enough so that |c+ reit| ≥ B for all 0 ≤ t ≤ 2π. Then,

|f ′(c)| = | 1
2πi

∫
Cr

f(ζ)
(ζ − c)2

dζ|

=
1

2π
|
∫ 2π

0

f(c+ reit)
(c+ reit − c)2

ireit dt|

≤ 1
2πr

∫ 2π

0

|f(c+ reit)| dt

≤ 1
2πr

∫ 2π

0

M

|c+ reit|n
dt

≤ M

rBn
.

Hence, by letting r tend to infinity, we get that

|f ′(c)| ≤ lim
r→∞

M

rBn
= 0,

and the proof is complete.

REMARK. The Fundamental Theorem of Algebra settles a question first raised
back in Chapter I. There, we introduced a number I that was a root of the poly-
nomial x2 + 1. We did this in order to build a number system in which negative
numbers would have square roots. We adjoined the “number” i to the set of real
numbers to form the set of complex numbers, and we then saw that in fact every
complex number z has a square root. However, a fear was that, in order to build
a system in which every number has an nth root for every n, we would continually
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need to be adjoining new elements to our number system. However, the Funda-
mental Theorem of Algebra shows that this is not necessary. The set of complex
numbers is already rich enough to contain all nth roots and even more.

Practically the same argument as in the preceding proof establishes another
striking result.

THEOREM 7.8. (Liouville) Suppose f is a bounded, everywhere differentiable
function of a complex variable. Then f must be a constant function.

Exercise 7.9. Prove Liouville’s Theorem.

THE MAXIMUM MODULUS PRINCIPLE

Our next goal is to examine so-called “max/min” problems for coplex-valued
functions of complex variables. Since order makes no sense for complex numbers,
we will investigate max/min problems for the absolute value of a complex-valued
function. For the corresponding question for real-valued functions of real variables,
we have as our basic result the First Derivative Test (Theorem 4.8). Indeed, when
searching for the poinhts where a differentiable real-valued function f on an interval
[a, b] attains its extreme values, we consider first the poinhts where it attains a local
max or min, to which purpose end Theorem 4.8 is useful. Of course, to find the
absolute minimum and maximum, we must also check the values of the function at
the endpoints.

An analog of Theorem 4.8 holds in the complex case, but in fact a much different
result is really valid. Indeed, it is nearly impossible for the absolute value of a
differentiable function of a complex variable to attain a local maximum or minimum.

THEOREM 7.9. Let f be a continuous function on a piecewise smooth geometric
set S, and assume that f is differentiable on the interior S0 of S. Suppose c is a
point in S0 at which the real-valued function |f | attains a local maximum. That is,
there exists an ε > 0 such that |f(c)| ≥ |f(z)| for all z satisfying |z − c| < ε. Then
f is a constant function on S; i.e., f(z) = f(c) for all z ∈ S. In other words, the
only differentiable functions of a complex variable, whose absolute value attains a
local maximum on the interior of a geometric set, are constant functions on that
set.

PROOF. If f(c) = 0, then f(z) = 0 for all z ∈ Bε(c). Hence, by the Identity
Theorem (Theorem 7.6), f(z) would equal 0 for all z ∈ S. so, we may as well
assume that f(c) 6= 0. Let r be any positive number for which the closed disk Br(c)
is contained in Bε(c). We claim first that there exists a point z on the boundary Cr
of the disk Br(c) for which |f(z)| = |f(c)|. Of course, |f(z| ≤ |f(c)| for all z on this
boundary by assumption. By way of contradiction, suppose that |f(ζ)| < |f(c)|
for all ζ on the boundary Cr of the disk. Write M for the maximum value of the
function |f | on the compact set Cr. Then, by our assumption, M < |f(c)|. Now,
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we use the Cauchy Integral Formula:

|f(c)| = | 1
2πi

∫
Cr

f(ζ)
ζ − c

dζ|

=
1

2π
|
∫ 2π

0

f(c+ reit)
reit

ireit dt|

≤ 1
2π

∫ 2π

0

|f(c+ reit)| dt

≤ 1
2π

∫ 2π

0

M dt

= M

< |f(c)|,

and this is a contradiction.
Now for each natural number n for which 1/n < ε, let zn be a point for which

|zn−c| = 1/n and |f(zn)| = |f(c)|.We claim that the derivative f ′(zn) of f at zn = 0
for all n. What we know is that the real-valued function F (x, y) = |f(x + iy)|2 =
(u(x, y)2 + (v(x, y))2 attains a local maximum value at zn = (xn, yn). Hence, by
Exercise 4.34, both partial derivatives of F must be 0 at (xn, yn). That is

2u(xn, yn)
∂u

∂x
(xn, yn) + 2v(xn, yn)

∂v

∂x
(xn, yn) = 0

and
2u(xn, yn)

∂u

∂y
(xn, yn) + 2v(xn, yn)

∂v

∂y
(xn, yn) = 0.

Hence the two vectors

~V1 = (
∂u

∂x
(xn, yn),

∂v

∂x
(xn, yn))

and
~V2 = (

∂u

∂y
(xn, yn),

∂v

∂y
(xn, yn))

are both perpendicular to the vector ~V3 = (u(xn, yn), v(xn, yn)). But ~V3 6= 0, be-
cause ‖~V3‖ = |f(zn)| = |f(c)| > 0, and hence ~V1 and ~V2 are linearly dependent.
But this implies that f ′(zn) = 0, according to Theorem 7.2.

Since c = lim zn, and f ′ is analytic on S0, it follows from the Identity Theorem
that there exists an r > 0 such that f ′(z) = 0 for all z ∈ Br(c). But this implies
that f is a constant f(z) = f(c) for all z ∈ Br(c). And thenm, again using the
Identity Theorem, this implies that f(z) = f(c) for all z ∈ S, which completes the
proof.

REMARK. Of course, the preceding proof contains in it the verification that if |f |
attains a maximum at a point c where it is differentiable, then f ′(c) = 0. This
is the analog for functions of a complex variable of Theorem 4.8. But, Theorem
7.9 certainly asserts a lot more than that. In fact, it says that it is impossible for
the absolute value of a nonconstant differentiable function of a complex variable to
attain a local maximum. Here is the coup d’grâs:



210 VII. FUNDAMENTAL THEOREM OF ALGEBRA

COROLLARY. (Maximum Modulus Principle) Let f be a continuous, noncon-
stant, complex-valued function on a piecewise smooth geometric set S, and suppose
that f is differentiable on the interior S0 of S. Let M be the maximum value of
the continuous, real-valued function |f | on S, and let z be a point in S for which
|f(z)| = M. Then, z does not belong to the interior S0 of S; it belongs to the bound-
ary of S. In other words, |f | attains its maximum value only on the boundary of
S.

Exercise 7.10. (a) Prove the preceding corollary.
(b) Let f be an analytic function on an open set U, and let c ∈ U be a point at

which |f | achieves a local minimum; i.e., there exists an ε > 0 such that |f(c)| ≤
|f(z)| for all z ∈ Bε(c). Show that, if f(c) 6= 0, then f is constant on Bε(c). Show
by example that, if f(c) = 0, then f need not be a constant on Bε(c).

(c) Prove the “Minimum Modulus Principle:” Let f be a nonzero, continuous,
nonconstant, function on a piecewise smooth geometric set S, and let m be the
minimum value of the function |f | on S. If z is a point of S at which this minimum
value is atgtained, then z belongs to the boundary CS of S.

THE OPEN MAPPING THEOREM AND THE INVERSE FUNCTION THEOREM

We turn next to a question about functions of a complex variable that is related
to Theorem 4.10, the Inverse Function Theorem. That result asserts, subject to a
couple of hypotheses, that the inverse of a one-to-one differentiable function of a
real variable is also differentiable. Since a function is only differentiable at points
in the interior of its domain, it is necessary to verify that the point f(c) is in
the interior of the domain f(S) of the inverse function f−1 before the question of
differentiability at that point can be addressed. And, the peculiar thing is that it
is this point about f(c) being in the interior of f(S) that is the subtle part. The
fact that the inverse function is differentiable there, and has the prescribed form,
is then only a careful ε− δ argument. For continuous real-valued functions of real
variables, the fact that f(c) belongs to the interior of f(S) boils down to the fact
that intervals get mapped onto intervals by continuous functions, which is basically
a consequence of the Intermediate Value Theorem. However, for complex-valued
functions of complex variables, the situation is much deeper. For instance, the
continuous image of a disk is just not always another disk, and it may not even be
an open set. Well, all is not lost; we just have to work a little harder.

THEOREM 7.10. (Open Mapping Theorem) Let S be a piecewise smooth geo-
metric set, and write U for the (open) interior S0 of S. Suppose f is a nonconstant
differentiable, complex-valued function on the set U. Then the range f(U)of f is an
open subset of C.

PROOF. Let c be in U. Because f is not a constant function, there must exist an
r > 0 such that f(c) 6= f(z) for all z on the boundary Cr of the disk Br(c). See part
(b) of Exercise 7.8. Let z0 be a point in the compact set Cr at which the continuous
real-valued function |f(z) − f(c)| attains its minimum value s. Since f(z) 6= f(c)
for any z ∈ Cr, we must have that s > 0. We claim that the disk Bs/2(f(c)) belongs
to the range f(U) of f. This will show that the point f(c) belongs to the ihnterior
of the set f(U), and that will finish the proof.

By way of contradiction, suppose Bs/2(f(c) is not contained in f(U),, and let
w ∈ Bs/2(f(c)) be a complex number that is not in f(U). We have that |w−f(c)| <
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s/2, which implies that |w − f(z)| > s/2 for all z ∈ Cr. Consider the function g
defined on the closed disk Br(c) by g(z) = 1/(w − f(z)). Then g is continuous on
the closed disk Br(c) and differentiable on Br(c). Moreover, g is not a constant
function, for if it were, f would also be a constant function on Br(c) and therefore,
by the Identity Theorem, constant on all of U, whichg is not the case by hypothesis.
Hence, by the Maximum Modulus Principle, the maximum value of |g| only occurs
on the boundary Cr of this disk. That is, there exists a point z′ ∈ Cr such that
|g(z)| < |g(z′)| for all z ∈ Br(c). But then

2
s

=
1
s/2

<
1

|w − f(c)|
<

1
|w − f(z′)|

≤ 1
s
,

which gives the desired contradiction. Therefore, the entire disk Bs/2(f(c)) belongs
to f(U), and hence the point f(c) belongs to the interior of the set f(U). Since this
holds for any point c ∈ U, it follows that f(U) is open, as desired.

Now we can give the version of the Inverse Function Theorem for complex vari-
ables.

THEOREM 7.11. Let S be a piecewise smooth geometric set, and suppose f :
S → C is continuously differentiable at a point c = a+bi, and assume that f ′(c) 6= 0.
Then:

(1) There exists an r > 0, such that Br(c) ⊆ S, for which f is one-to-one on
Br(c).

(2) f(c) belongs to the interior of f(S).
(3) If g denotes the restriction of the function f to Br(c), then g is one-to-one,

g−1 is differentiable at the point f(c), and g−1′(f(c) = 1/f ′(c).

PROOF. Arguing by contradiction, suppose that f is not one-to-one on any disk
Br(c). Then, for each natural number n, there must exist two points zn = xn + iyn
and z′n = x′n + iy′n such that |zn − c| < 1/n, |z′n − c| < 1/n, and f(zn) = f(z′n). If
we write f = u + iv, then we would have that u(xn, yn) − u(x′n, y

′
n) = 0 for all n.

So, by part (c) of Exercise 4.35, there must exist for each n a point (x̂n, ŷn), such
that (x̂n, ŷn) is on the line segment joining zn and z′n, and for which

0 = u(xn, yn)− u(x′n, y
′
n) =

∂u

∂x
(x̂n, ŷn)(xn − x′n) +

∂u

∂y
(x̂n, ŷn)(yn − y′n).

Similarly, applying the same kind of reasoning to v, there must exist points (x̃n, ỹn)
on the segment joining zn to z′n such that

0 =
∂v

∂x
(x̃n, ỹn)(xn − x′n) +

∂v

∂y
(x̃n, ỹn)(yn − y′n).

If we define vectors ~Un and ~Vn by

~Un = (
∂u

∂x
(x̂n, ŷn),

∂u

∂y
(x̂n, ŷn))

and
~Vn = (

∂v

∂x
(x̃n, ỹn),

∂v

∂y
(x̃n, ỹn)),
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then we have that both ~Un and ~Vn are perpendicular to the nonzero vector ((xn −
x′n), (yn − y′n)). Therefore, ~Un and ~Vn are linearly dependent, whence

det(
( ∂u
∂x (x̂n, ŷn) ∂u

∂y (x̂n, ŷn)
∂v
∂x (x̃n, ỹn) ∂v

∂y (x̃n, ỹn)

)
) = 0.

Now, since both {x̂n + iŷn} and {x̃n + iỹn} converge to the point c = a + ib, and
the partial derivatives of u and v are continuous at c, we deduce that

det(
( ∂u
∂x (a, b) ∂u

∂y (a, b)
∂v
∂x (a, b) ∂v

∂y (a, b)

)
) = 0.

Now, from Theorem 7.2, this would imply that f ′(c) = 0, and this is a contradiction.
Hence, there must exist an r > 0 for which f is one-to-one on Br(c), and this proves
part (1).

Because f is one-to-one on Br(c), f is obviously not a constant function. So, by
the Open Mapping Theorem, the point f(c) belongs to the interior of the range of
f, and this proves part (2).

Now write g for the restriction of f to the disk Br(c). Then g is one-to-one.
According to part (2) of Theorem 4.2, we can prove that g−1 is differentiable at
f(c) by showing that

lim
z→f(c)

g−1(z)− g−1(f(c))
z − f(c)

=
1

f ′(c)
.

That is, we need to show that, given an ε > 0, there exists a δ > 0 such that if
0 < |z − f(c)| < δ then

|g
−1(z)− g−1(f(c))

z − f(c)
− 1
f ′(c)

| < ε.

First of all, because the function 1/w is continuous at the point f ′(c), there exists
an ε′ > 0 such that if |w − f ′(c)| < ε′, then

| 1
w
− 1
f ′(c)

| < ε.

Next, because f is differentiable at c, there exists a δ′ > 0 such that if 0 < |y−c| < δ′

then

|f(y)− f(c)
y − c

− f ′(c)| < ε′.

Now, by Theorem 3.10, g−1 is continuous at the point f(c), and therefore there
exists a δ > 0 such that if |z − f(c)| < δ then

|g−1(z)− g−1(f(c)| < δ′.

So, if |z − f(c)| < δ, then

|g−1(z)− c| = |g−1(z)− g−1(f(c))| < δ′.
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But then,

|f(g−1(z))− f(c)
g−1(z)− c

− f ′(c)| < ε′,

from which it follows that

|g
−1(z)− g−1(f(c))

z − f(c)
− 1
f ′(c)

| < ε,

as desired.

UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS

Part (c) of Exercise 4.26 gives an example showing that the uniform limit of
a sequence of differentiable functions of a real variable need not be differentiable.
Indeed, when thinking about uniform convergence of functions, the fundamental
result to remember is that the uniform limit of continuous functions is continuous
(Theorem 3.17). The functions in Exercise 4.26 were differentiable functions of
a real variable. The fact is that, for functions of a complex variable, things are
as usual much more simple. The following theorem is yet another masterpiece of
Weierstrass.

THEOREM 7.12. Suppose U is an open subset of C, and that {fn} is a sequence
of analytic functions on U that converges uniformly to a function f. Then f is
analytic on U. That is, the uniform limit of differentiable functions on an open set
U in the complex plane is also differentiable on U.

PROOF. Though this theorem sounds impressive and perhaps unexpected, it is
really just a combination of Theorem 6.10 and the Cauchy Integral Formula. Indeed,
let c be a point in U, and let r > 0 be such that Br(c) ⊆ U. Then the sequence
{fn} converges uniformly to f on the boundary Cr of this closed disk. Moreover,
for any z ∈ Br(c), the sequence {fn(ζ)/(ζ−z)} converges uniformly to f(ζ)/(ζ−z)
on Cr. Hence, by Theorem 6.10, we have

f(z) = lim fn(z)

= lim
n

1
2πi

∫
Cr

fn(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ.

Hence, by part (a) of Exercise 7.7, f is expandable in a Taylor series around c, i.e.,
f is analytic on U.

ISOLATED SINGULARITIES, AND THE RESIDUE THEOREM

The first result we present in this section is a natural extension of Theorem
7.3. However, as we shall see, its consequences for computing contour integrals can
hardly be overstated.
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THEOREM 7.13. Let S be a piecewise smooth geometric set whose boundary CS
has finite length. Suppose c1, . . . , cn are distinct points in the interior S0 of S,
and that r1, . . . , rn are positive numbers such that the closed disks {Brk(ck)} are
contained in S0 and pairwise disjoint. Suppose f is continuous on S \ ∪Brk(ck),
i.e., at each point of S that is not in any of the open disks Brk(ck), and that f is
differentiable on S0 \ ∪Brk(ck), i.e., at each point of S0 that is not in any of the
closed disks Brk(ck). Write Ck for the circle that is the boundary of the closed disk
Brk(ck). Then ∫

CS

f(ζ) dζ =
n∑
k=1

∫
Ck

f(ζ) dζ.

PROOF. This is just a special case of part (d) of Exercise 7.3.

Let f be continuous on the punctured disk B′r(c), analytic at each point z in
B′r(c), and suppose f is undefined at the central point c. Such points c are called
isolated singularities of f, and we wish now to classify these kinds of points. Here
is the first kind:

DEFINITION. A complex number c is called a removable singularity of an ana-
lytic function f if there exists an r > 0 such that f is continuous on the punctured
disk B′r(c), analytic at each point in B′r(c), and limz→c f(z) exists.

Exercise 7.11. (a) Define f(z) = sin z/z for all z 6= 0. Show that 0 is a removable
singularity of f.

(b) For z 6= c, define f(z) = (1− cos(z − c))/(z − c). Show that c is a removable
singularity of f.

(c) For z 6= c, define f(z) = (1 − cos(z − c))/(z − c)2. Show that c is still a
removable singularity of f.

(d) Let g be an analytic function on Br(c), and set f(z) = (g(z)− g(c))/(z − c)
for all z ∈ B′r(c). Show that c is a removable singularity of f.

The following theorem provides a good explanation for the term “removable
singularity.” The idea is that this is not a “true” singularity; it’s just that for some
reason the natural definition of f at c has not yet been made.

THEOREM 7.14. Let f be continuous on the punctured disk B
′
r(c) and dif-

ferentiable at each point of the open punctured disk B′r(c), and assume that c is
a removable singularity of f. Define f̃ by f̃(z) = f(z) for all z ∈ B′r(c), and
f̃(c) = limz→c f(z). Then

(1) f̃ is analytic on the entire open disk Br(c), whence

f(z) =
∞∑
k=0

ck(z − c)k

for all z ∈ B′r(c).
(2) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has

finite length, and for which c ∈ S0,∫
CS

f(ζ) dζ = 0.
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PROOF. As in part (a) of Exercise 7.7, define F on Br(c) by

F (z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ.

Then, by that exercise, F is analytic on Br(c). We show next that F (z) = f̃(z) on
Br(c), and this will complete the proof of part (1).

Let z be a point in Br(c) that is not equal to c, and let ε > 0 be given. Choose
δ > 0 such that δ < |z − c|/2 and such that |f̃(ζ) − f̃(c)| < ε if |ζ − c| < δ. Then,
using part (c) of Exercise 7.5, we have that

f̃(z) = f(z)

=
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ

= F (z)− 1
2πi

∫
Cδ

f(ζ)− f̃(c)
ζ − z

dζ − 1
2πi

∫
Cδ

f̃(c)
ζ − z

dζ

= F (z)− 1
2πi

∫
Cδ

f̃(ζ)− f̃(c)
ζ − z

dζ,

where the last equality holds because the function f̃(c)/(ζ−z) is an analytic function
of ζ on the disk Bδ(c), and hence the integral is 0 by Theorem 7.3. So,

|f̃(z)− F (z)| = | 1
2πi

∫
Cδ

f̃(ζ)− f̃(c)
ζ − z

dζ|

≤ 1
2π

∫
Cδ

|f̃(ζ)− f̃(c)|
|ζ − z|

ds

≤ 1
2π

∫
Cδ

ε

δ/2
ds

=
2ε
δ
× δ

= 2ε.

Since this holds for arbitrary ε > 0, we see that f̃(z) = F (z) for all z 6= c in Br(c).
Finally, since

f̃(c) = lim
z→c

f̃(z) = lim z → cF (z) = F (c),

the equality of F and f̃ on all of Br(c) is proved. This finishes the proof of part
(1).

Exercise 7.12. Prove part (2) of the preceding theorem.

Now, for the second kind of isolated singularity:

DEFINITION. A complex number c is called a pole of a function f if there exists
an r > 0 such that f is continuous on the punctured disk B′r(c), analytic at each
point of B′r(c), the point c is not a removable singularity of f, and there exists
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a positive integer k such that the analytic function (z − c)kf(z) has a removable
singularity at c.

A pole c of f is said to be of order n, if n is the smallest positive integer for
which the function f̃(z) ≡ (z − c)nf(z) has a removable singularity at c.

Exercise 7.13. (a) Let c be a pole of order n of a function f, and write f̃(z) =
(z − c)nf(z). Show that f̃ is analytic on some disk Br(c).

(b) Define f(z) = sin z/z3 for all z 6= 0. Show that 0 is a pole of order 2 of f.

THEOREM 7.15. Let f be continuous on a punctured disk B′r(c), analytic at
each point of B′r(c), and suppose that c is a pole of order n of f. Then

(1) For all z ∈ B′r(c),

f(z) =
∞∑

k=−n

ak(z − c)k.

(2) The infinite series of part (1) converges uniformly on each compact subset
K of B′r(c).

(3) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has
finite length, and satisfying c ∈ S0,∫

CS

f(ζ) dζ = 2πia−1,

where A−1 is the coefficient of (z − c)−1 in the series of part (1).

PROOF. For each z ∈ B′r(c), write f̃(z) = (z − c)nf(z). Then, by Theorem 7.14,
f̃ is analytic on Br(c), whence

f(z) =
f̃(z)

(z − c)n

=
1

(z − c)n
∞∑
k=0

ck(z − c)k

=
∞∑

k=−n

ak(z − c)k,

where ak = cn+k. This proves part (1).
We leave the proof of the uniform convergence of the series on each compact

subset of B′r(c), i.e., the proof of part (2), to the exercises.
Part (3) follows from Cauchy’s Theorem (Theorem 7.3) and the computations

in Exercise 7.2. Thus: ∫
CS

f(ζ) dζ =
∫
Cr

f(ζ) dζ

=
∫
Cr

∞∑
k=−n

ak(z − c)k dζ

=
∞∑

k=−n

ak

∫
Cr

(ζ − c)k dζ

= a−12πi,
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as desired. The summation sign comes out of the integral because of the uniform
convergence of the series on the compact circle Cr.

Exercise 7.14. (a) Complete the proof to part (2) of the preceding theorem.
That is, show that the infinite series

∑∞
k=−n ak(z−c)k converges uniformly on each

compact subset K of B′r(c).
HINT: Use the fact that the Taylor series

∑∞
n=0 cn(z−c)n for f̃ converges uniformly

on the entire disk Br(c), and that if c is not in a compact subset K of Br(c), then
there exists a δ > 0 such that |z − c| > δ for all z ∈ K.

(b) Let f, c, and f̃ be as in the preceding proof. Show that

a−1 =
f̃ (n−1)(c)
(n− 1)!

.

(c) Suppose g is a function defined on a punctured disk B′r(c) that is given by
the formula

g(z) =
∞∑

k=−n

ak(z − c)k

for some positive integer n and for all z ∈ B′r(c). Suppose in addition that the
coefficient a−n 6= 0. Show that c is a pole of order n of g.

Having defined two kinds of isolated singularities of a function f, the removable
ones and the polls of finite order, there remain all the others, which we collect into
a third type.

DEFINITION. Let f be continuous on a punctured disk B′r(c), and analytic at
each point of B′r(c). The point c is called an essential singularity of f if it is neither
a removable singularity nor a poll of any finite order. Singularities that are either
poles or essential singularities are called nonremovable singularities.

Exercise 7.15. For z 6= 0, define f(z) = e1/z. Show that 0 is an essential singularity
of f.

THEOREM 7.16. Let f be continuous on a punctured disk B′r(c), analytic at
each point of B′r(c), and suppose that c is an essential singularity of f. Then

(1) For all z ∈ B′r(c),

f(z) =
∞∑

k=−∞

ak(z − c)k,

where the sequence {ak}∞−∞ has the property that for any negative integer
N there is a k < N such that ak 6= 0.

(2) The infinite series in part (1) converges uniformly on each compact subset
K of B′r(c). That is, if Fn is defined by Fn(z) =

∑n
k=−n ak(z − c)k, then

the sequence {Fn} converges uniformly to f on the compact set K.
(3) For any piecewise smooth geometric set S ⊆ Br(c), whose boundary CS has

finite length, and satisfying c ∈ S0, we have∫
CS

f(ζ) dζ = 2πia−1,

where a−1 is the coefficient of (z − c)−1 in the series of part (1).
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PROOF. Define numbers {ak}∞−∞ as follows.

ak =
1

2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ.

Note that for any 0 < δ < r we have from Cauchy’s Theorem that

ak =
1

2πi

∫
Cδ

f(ζ)
(ζ − c)k+1

dζ,

where Cδ denotes the boundary of the disk Bδ(c).
Let z 6= c be in Br(c), and choose δ > 0 such that δ < |z − c|. Then, using part

(c) of Exercise 7.5, and then mimicking the proof of Theorem 7.5, we have

f(z) =
1

2πi

∫
Cr

f(ζ)
ζ − z

dζ − 1
2πi

∫
Cδ

f(ζ)
ζ − z

dζ

=
1

2πi

∫
Cr

f(ζ)
(ζ − c)− (z − c)

dζ +
1

2πi

∫
Cδ

f(ζ)
(z − c)− (ζ − c)

dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

1
1− z−c

ζ−c
dζ +

1
2πi

∫
Cδ

f(ζ)
z − c

1
1− ζ−c

z−c
dζ

=
1

2πi

∫
Cr

f(ζ)
ζ − c

∞∑
k=0

(
z − c
ζ − c

)k dζ +
1

2πi

∫
Cδ

f(ζ)
z − c

∞∑
j=0

(
ζ − c
z − c

)j dζ

=
∞∑
k=0

1
2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ(z − c)k +
∞∑
j=0

1
2πi

∫
Cδ

f(ζ)(ζ − c)j dζ(z − c)−j−1

=
∞∑
k=0

ak(z − c)k +
−1∑

k=−∞

1
2πi

∫
Cδ

f(ζ)
(ζ − c)k+1

dζ(z − c)k

=
∞∑
k=0

ak(z − c)k +
−1∑

k=−∞

1
2πi

∫
Cr

f(ζ)
(ζ − c)k+1

dζ(z − c)k

=
∞∑

k=−∞

ak(z − c)k,

which proves part (1).
We leave the proofs of parts (2) and (3) to the exercises.

Exercise 7.16. (a) Justify bringing the summation signs out of the integrals in
the calculation in the preceding proof.

(b) Prove parts (2) and (3) of the preceding theorem. Compare this with Exercise
7.14.

REMARK. The representation of f(z) in the punctured disk B′r(c) given in part
(1) of Theorems 7.15 and 7.16 is called the Laurent expansion of f around the
singularity c. Of course it differs from a Taylor series representation of f, as this
one contains negative powers of z − c. In fact, which negative powers it contains
indicates what kind of singularity the point c is.
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Non removable isolated singularities of a function f share the property that the
integral of f around a disk centered at the singularity equals 2πia−1, where the
number a−1 is the coefficient of (z − c)−1 in the Laurent expansion of f around c.
This number 2πia−1 is obviously significant, and we call it the residue of f at c,
and denote it by Rf (c).

Combining Theorems 7.13, 7.15, and 7.16, we obtain:

THEOREM 7.17. (Residue Theorem) Let S be a piecewise smooth geometric
set whose boundary has finite length, let c1, . . . , cn be points in S0, and suppose
f is a complex-valued function that is continuous at every point z in S except the
ck’s, and differentiable at every point z ∈ S0 except at the ck’s. Assume finally
that each ck is a nonremovable isolated singularity of f. Then∫

CS

f(ζ) dζ =
n∑
k=1

Rf (ck).

That is, the contour integral around CS is just the sum of the residues inside S.

Exercise 7.17. Prove Theorem 7.17.
Exercise 7.18. Use the Residue Theorem to compute

∫
CS
f(ζ) dζ for the functions

f and geometric sets S given below. That is, determine the poles of f inside S,
their orders, the corresponding residues, and then evaluate the integrals.

(a) f(z) = sin(3z)/z2, and S = B1(0).
(b) f(z) = e1/z, and S = B1(0).
(c) f(z) = e1/z2

, and S = B1(0).
(d) f(z) = (1/z(z − 1)), and S = B2(0).
(e) f(z) = ((1− z2)/z(1 + z2)(2z + 1)2), and S = B2(0).
(f) f(z) = 1/(1 + z4) = (1/(z2 − i)(z2 + i)), and S = Br(0) for any r > 1.

The Residue Theorem, a result about contour integrals of functions of a complex
variable, can often provide a tool for evaluating integrals of functions of a real
variable.

EXAMPLE 1. Consider the integral∫ ∞
−∞

1
1 + x4

dx.

Let us use the Residue Theorem to compute this integral.
Of course what we need to compute is

lim
B→∞

∫ B

−B

1
1 + x4

dx.

The first thing we do is to replace the real variable x by a complex variable Z, and
observe that the function f(z) = 1/(1 + z4) is analytic everywhere except at the
four points ±eiπ/4 and ±e3iπ/4. See part (f) of the preceding exercise. These are
the four points whose fourth power is −1, and hence are the poles of the function
f.

Next, given a positive number B, we consider the geometric set (rectangle) SB
that is determined by the interval [−B,B] and the two bounding functions l(x) = 0
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and u(x) = B. Then, as long as B > 1, we know that f is analytic everywhere in
S0 except at the two points c1 = eiπ/4 and c2 = e3iπ/4, so that the contour integral
of f around the boundary of SB is given by∫

CSB

1
1 + ζ4

dζ = Rf (c1) +Rf (c2).

Now, this contour integral consists of four parts, the line integrals along the bottom,
the two sides, and the top. The magic here is that the integrals along the sides, and
the integral along the top, all tend to 0 as B tends to infinity, so that the integral
along the bottom, which after all is what we originally were interested in, is in the
limit just the sum of the residues inside the geometric set.

Exercise 7.19. Verify the details of the preceding example.
(a) Show that

lim
B→∞

∫ B

0

1
1 + (B + it)4

dt = 0.

(b) Verify that

lim
B→∞

∫ B

−B

1
1 + (t+ iB)4

dt = 0.

(c) Show that ∫ ∞
−∞

1
1 + x4

dx = π
√

2.

Methods similar to that employed in the previous example and exercise often
suffice to compute integrals of real-valued functions. However, the method may
have to be varied. For instance, sometimes the appropriate geometric set is a
rectangle below the x-axis instead of above it, sometimes it should be a semicircle
instead of a rectangle, etc. Indeed, the choice of contour (geometric set) can be
quite subtle. The following exercise may shed some light.

Exercise 7.20. (a) Compute ∫ ∞
−∞

eix

1 + x4
dx

and ∫ ∞
−∞

e−ix

1 + x4
dx.

(b) Compute ∫ ∞
−∞

sin(−x)
1 + x3

dx

and ∫ ∞
−∞

sinx
1 + x3

dx.
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EXAMPLE 2. An historically famous integral in analysis is
∫∞
−∞ sinx/x dx. The

techniques described above don’t immediately apply to this function, for, even
replacing the x by a z, this function has no poles, so that the Residue Theorem
wouldn’t seem to be much help. Though the point 0 is a singularity, it is a removable
one, so that this function sin z/z is essentially analytic everywhere in the complex
plane. However, even in a case like this we can obtain information about integrals
of real-valued functions from theorems about integrals of complex-valued functions.

Notice first that
∫∞
−∞ sinx/x dx is the imaginary part of

∫∞
−∞ eix/x dx, so that

we may as well evaluate the integral of this function. Let f be the function defined
by f(z) = eiz/z, and note that 0 is a pole of order 1 of f, and that the residue
Rf (0) = 2πi. Now, for each B > 0 and δ > 0 define a geometric set SB,δ, determined
by the interval [−B,B], as follows: The upper bounding function uB,δ is given by
uB,δ(x) = B, and the lower bounding function lB,δ is given by lB,δ(x) = 0 for
−B ≤ x ≤ −δ and δ ≤ x ≤ B, and lB,δ(x) = δeiπx/δ for −δ < x < δ. That is, SB,δ
is just like the rectangle SB in Example 1 above, except that the lower boundary is
not a straight line. Rather, the lower boundary is a straight line from −B to −δ, a
semicircle below the x-axis of radius δ from −δ to δ, and a straight line again from
δ to B.

By the Residue Theorem, the contour integral∫
CSB,δ

f(ζ) dζ = Rf (0) = 2πi.

As in the previous example, the contour integrals along the two sides and across
the top of SB,δ tend to 0 as B tends to infinity. Finally, according to part (e) of
Exercise 6.15, the contour integral of f along the semicircle in the lower boundary
is πi independent of the value of δ. So,

lim
B→∞

lim
δ→0

∫
graph(lB,δ)

eiζ

ζ
dζ = πi,

implying then that ∫ ∞
−∞

sinx
x

dx = π.

Exercise 7.21. (a) Justify the steps in the preceding example. In particular, verify
that

lim
B→∞

∫ B

0

ei(B+it)

B + it
dt = 0,

lim
B→∞

∫ B

−B

ei(t+iB)

t+ iB
dt = 0,

and ∫
Cδ

eiζ

ζ
dζ = πi,

where Cδ is the semicircle of radius δ, centered at the origin and lying below the
x-axis.

(b) Evaluate ∫ ∞
−∞

sin2 x

x2
dx.


