
MATH 4330/5330, Fourier Analysis
Section 10

The L2 Fourier Transform on the Line

The Fourier transform on the real line appears to be restricted to absolutely
integrable (L1) functions. However, just as in the case of the Fourier transform
on the circle, there is a remarkable L2 theory. (Remember the marvelous Parseval
Equality!) This time the L2 theory requires some more detailed analysis. There is
no help for it. We must deal with Dirac δ functions. The following is a fundamental
construction.

EXERCISE 10.1. Let k(x) be a nonnegative function on the real line R for which∫
R
k(x) dx = 1. For each t > 0, define

kt(x) =
1
t
k(
x

t
).

(a) Prove that
∫
R
kt(x) dx = 1 for all t > 0.

(b) Show that, for each δ > 0, we have

lim
t→0

∫ δ

−δ
kt(x) dx = 1.

HINT: Write down the integral, and change variables. Then take the limit.
(c) Show that part (b) implies that for each δ > 0

lim
t→0

[
∫ −δ
−∞

kt(x) dx+
∫ ∞
δ

kt(x) dx] = 0.

(d) Can you sketch the graph of kt and deduce what must be happening to it as
t approaches 0?

REMARK. The construction in Exercise 10.1 produces an example of a Dirac δ
function. These particular examples are nonnegative functions (parameterized fam-
ilies of functions). The Dirichlet kernel is an example of a Dirac δ function that is
not nonnegative, but rather oscillatory. Likewise, the kernel KB of Section 10 is a
Dirac δ function that is oscillatory

The Dirac δ functions constructed in Exercise 10.1 have an important connection
with the convolution operation. They form what are called approximate identities.

THEOREM 10.1. Let k(x) be a nonnegative function on R for which
∫
R
k(x) dx =

1. For each t > 0, set

kt(x) =
1
t
k(
x

t
).

Suppose f is a bounded function on R, and assume that f is continuous at a point
x. Then

f(x) = lim
t→0

f ∗ kt(x) = lim
t→0

∫
R

f(x− y)kt(y) dy.

PROOF. Let ε be a positive number. We wish to show that limt→0 |f(x) − f ∗
kt(x)| ≤ ε. (Why will this suffice to prove the theorem?) First, choose a δ > 0 so
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that |f(x) − f(x − y)| < ε if |y| < δ. (How is this possible?) Next, since f is a
bounded function, let M be a number for which |f(t)| ≤M for all real numbers t.
We then have

|f(x)− f ∗ kt(x)| = |f(x)
∫
R

kt(y) dy −
∫
R

f(x− y)kt(y) dy|

= |
∫
R

(f(x)− f(x− y))kt(y) dy|

≤
∫
R

|f(x)− f(x− y)|kt(y) dy

=
∫ −δ
−∞
|f(x)− f(x− y)|kt(y) dy

+
∫ δ

−δ
|f(x)− f(x− y)|kt(y) dy

+
∫ ∞
δ

|f(x)− f(x− y)|kt(y) dt

≤
∫ −δ
−∞

(|f(x)|+ |f(x− y)|)kt(y) dy

+
∫ δ

−δ
εkt(y) dy

+
∫ ∞
δ

(|f(x)|+ |f(x− y)|)kt(y) dy

≤
∫ −δ
−∞

2Mkt(y) dy +
∫ δ

−δ
εkt(y) dy +

∫ ∞
δ

2Mkt(y) dy

=
∫ −δ
−∞

2Mkt(y) dy +
∫ ∞
δ

2Mkt(y) dy +
∫ δ

−δ
εkt(y) dy

= 2M(
∫ −δ
−∞

kt(y) dy +
∫ ∞
δ

kt(y) dy) +
∫ δ

−δ
εkt(y) dy

≤ 2M(1−
∫ δ

−δ
kt(y) dy) + ε

∫
R

kt(y) dy

= 2M(1−
∫ δ

−δ
kt(y) dy) + ε.

So, from part (b) of Exercise 10.1, we see that

lim
t→0
|f(x)− f ∗ kt(x)| ≤ ε.

Since this is true for an arbitrary ε, it follows that

lim
t→0
|f(x)− f ∗ kt(x)| = 0,

as desired.
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THEOREM 10.2. Let k and kt be as in Exercise 10.1. Then
(1) For each real number ω, we have

lim
t→0

k̂t(ω) = 1.

(2) If f is any absolutely integrable function, then

lim
t→0

f̂ ∗ kt(ω) = f̂(ω).

PROOF. We calculate

k̂t(ω) =
∫
R

kt(x)e−2πixω dx

=
∫
R

1
t
k(
x

t
)e−2πixω dx

=
∫
R

k(x)e−2πitxω dx

=
∫
R

k(x)e−2πix(tω) dx

= k̂(tω).

Therefore, since k̂ is continuous,

lim
t→0

k̂t(ω) = lim
t→0

k̂(tω) = k̂(0) = 1,

which proves part (1).
Now, part (2) is easy:

lim
t→0

f̂ ∗ kt(ω) = lim
t→0

f̂(ω)k̂t(ω) = f̂(ω).

EXERCISE 10.2. Can you explain why these Dirac δ functions are called approx-
imate identities? For instance, suppose f is a bounded function that is continuous
everywhere. What can you say about the parameterized family of functions f∗kt? Is
there a single function g such that f = f ∗ g, i.e., anactualidentityforconvolution?

EXERCISE 10.3. (a) Verify that the function defined by

k(x) =
1
π

1
1 + x2

satisfies the hypotheses of the preceding theorem, and write down an explicit for-
mula for the functions kt. (This Dirac δ function is called the Poisson kernel.

(b) Let k be a nonnegative function on R for which
∫
R
k(x) dx = 1. For each

positive t, define kt(x) = (1/
√
t)k(x/

√
t). Show that the conclusions of Exercise 10.1

and Theorem 10.1 hold for this kernel. In fact, verify that all the same conclusions
hold if, instead of

√
t, we use any positive power of t or, for that matter, any scalar

multiple of a positive power of t, e.g.,
√

4πt.



4

(c) Let g(x) = e−πx
2
. For each t > 0 define gt(x) = (1/

√
4πt)g(x/

√
4πt). Use

part (b) to prove that the conclusions of the preceding theorem hold for this kernel.
Work out exactly what the functions gt are. Do you recognize these functions?
(This Dirac δ function is called the heat kernel.)

Here is a generalization of Theorem 10.1.

EXERCISE 10.4. Suppose the f in Theorem 10.1 is bounded and uniformly contin-
uous. Show that f(x) = limt→0 f ∗kt(x), and that the convergence is uniform. That
is, show that, given an ε > 0, there exists a α > 0 such that |f(x)− f ∗ kt(x)| ≤ ε
for all x and for all t for which t < α.
HINT: By the uniform continuity of f, choose a δ such that |f(x)− f(x− y)| < ε/2
for all x and all |y| < δ. Then, using part (b) of Exercise 10.1, choose α such that
1 −

∫ δ
−δ kt(x) dx < ε/(4M) if t < α. Now, make the same computation as in the

proof of Theorem 10.1.

Here’s another important analytical result about convolution.

THEOREM 10.3. Let f and g be uniformly continuous, absolutely integrable
functions. Then the convolution f ∗ g is uniformly continuous and absolutely inte-
grable.

PROOF. Note that

|f ∗ g(x)− f ∗ g(x′)| = |
∫
R

(f(x− y)− f(x′ − y))g(y) dy|

≤
∫
R

|f(x− y)− f(x′ − y)||g(y)| dy,

so that, by the uniform continuity of f, we would have that

|f ∗ g(x)− f ∗ g(x′)| ≤
∫
R

ε|g(y)| dy

providing |x− x′| is less than some δ. The uniform continuity of f ∗ g follows from
this.

As for the absolute integrability, note that∫
R

|f ∗ g(x)| dx =
∫
R

|
∫
R

f(x− y)g(y) dy| dx

≤
∫
R

∫
R

|f(x− y)g(y)| dydx

=
∫
R

∫
R

|f(x− y)g(y)| dxdy

=
∫
R

∫
R

|f(x)g(y)| dxdy

=
∫
R

∫
R

|f(x)| dx|g(y)| dy

<∞.

We come next to the analog in this L1(R) context of the Parseval Equality.
Here, it is called the Plancherel Theorem. In preparation for its proof, we have the
following technical exercises.
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EXERCISE 10.5. Let f be an absolutely integrable function. Define a function f∗

by f∗(x) = f(−x).
(a) Show that f∗ is absolutely integrable.

(b) Prove that f̂∗(ω) = f̂(ω).
(c) Prove that f̂ ∗ f∗(ω) = |f̂(ω)|2.

EXERCISE 10.6. Let kt be the Poisson Kernel; i.e., the Dirac δ function deter-
mined by the function

k(x) =
1
π

1
1 + x2

.

See part (a) of Exercise 10.3.
(a) Prove that kt(−x) = kt(x).
(b) Compute k̂. You should get

k̂(ω) = e−|2πω|.

(You probably can’t compute this transform directly. Consult Exercise 8.8.)

(c) Prove that ̂̂kt = kt.

THEOREM 10.4. (Plancherel Theorem) Let f be a continuous, absolutely inte-
grable and square-integrable function on the real line. Then f̂ is square-integrable,
and ∫

R

|f(x)|2 dx =
∫
R

|f̂(ω)|2 dω.

PROOF. We will use in this proof the Poisson kernel kt of the preceding exercise.
We will also use the function f∗ of Exercise 10.5, as well as the earlier theorems in
this section and the hat trick from Section 8. Watch out for the math! We have∫

R

|f(x)|2 dx =
∫
R

f(x)f∗(0− x) dx

= f ∗ F ∗(0)

= lim
t→0

f ∗ f∗ ∗ kt(0)

= lim
t→0

∫
R

f ∗ f∗(x)kt(0− x) dx

= lim
t→0

∫
R

f ∗ f∗(x)kt(x) dx

= lim
t→0

∫
R

f ∗ f∗(x) ̂̂kt(x) dx

= lim
t→0

∫
R

f̂ ∗ f∗(ω)k̂t(ω) dω

= lim
t→0

∫
R

|f̂(ω)|2k̂t(ω) dω

=
∫
R

|f̂(ω)|2 dω,

proving the theorem.
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REMARK. In fact, the preceding theorem holds for any square-integrable function.
That is, the L2 norm of f equals the L2 norm of its Fourier transform. Another
perfect theorem!!

The Poisson Summation Formula

Let f be a function on the real line, and define a function F by

F (x) =
∞∑

k=−∞

f(x+ k).

In the next two theorems, we will assume that f has sufficient extra properties
so that F is differentiable. Then F is a periodic function, and we call F the
periodization of f.

EXERCISE 10.7. Suppose f is differentiable everywhere and assume further that
f has bounded support. that is, f(x) = 0 unless x belongs to a bounded interval
[−b, b]. Show that in this case F is differentiable.

THEOREM 10.5. (Poisson Summation Formula) Suppose f and F are as above,.
Then, for every x,

F (x) =
∞∑

n=−∞
f̂(n)e2πinx,

whence, in particular,
∞∑

k=−∞

f(k) =
∞∑

n=−∞
f̂(n).

(This last equation is what is usually called the Poisson summation formula.)

PROOF. First, we calculate the Fourier coefficients F̂ (n) for the periodic function
F.

F̂ (n) =
∫ 1

0

F (t)e−2πint dt

=
∫ 1

0

∞∑
k=−∞

f(t+ k)e−2πint dt

=
∞∑

k=−∞

∫ 1

0

f(t+ k)e−2πint dt

=
∞∑

k=−∞

∫ k+1

k

f(s)e−2πin(s−k) ds

=
∞∑

k=−∞

∫ k+1

k

f(s)e−2πins ds

=
∫ ∞
−∞

f(s)e−2πins ds

= f̂(n).
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So, using Theorem 6.1, we have

∞∑
k=−∞

f(x+ k) = F (x)

=
∞∑

n=−∞
F̂ (n)e2πinx

=
∞∑

n=−∞
f̂(n)e2πinx.

Of course, the Poisson Summation Formula now follows by substituting x = 0 in
the preceding.

EXERCISE 10.8. Let f be as in the preceding theorem, and let α be a positive
number. Define fα(x) = f(αx), and let Fα(x) =

∑∞
k=−∞ fα(x + k). Write β for

the reciprocal 1/α of α. Use the theorem above, applied to fα, to conclude that for
every x

∞∑
k=−∞

f(x+ kα) = β
∞∑

n=−∞
f̂(nβ)e2πinx.

Then, deduce that
∞∑

k=−∞

f(kα) = β
∞∑

n=−∞
f̂(nβ).

THEOREM 10.6. (Sampling Theorem) Suppose f has bounded support. That
is, suppose that f(x) = 0 if x is outside a finite interval [−b, b]. If β is any positive
number smaller than 1/2b, then the function f is totally reconstructible from the
“samples” {f̂(nβ)} of the Fourier transform f̂ .

PROOF. Let β be a positive number smaller than 1/2b, and write α for the recip-
rocal 1/β. From the preceding exercise, we know that

∞∑
k=−∞

f(x+ kα) = β
∞∑

n=−∞
f̂(nβ)e2πinx.

Note that, for any x in the interval [−b, b], the only value of k for which f(x+kα) 6= 0
is k = 0. So, for any such x, we have

f(x) = β

∞∑
n=−∞

f̂(nβ)e2πinx.

Hence, f is totally reconstructible from the values of f̂ at the points nβ.

The Heat Equation on the Line

Now, suppose u(t, x) is a solution of the heat equation on the line and that
u(0, x) = f(x) is its initial condition. Assume that f is square-integrable. (Of
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course, as in Section 1, we assume that u(t, x) is square-integrable in the variable
x for each t > 0.)

For each t ≥ 0, write ft for the function of x given by ft(x) = u(t, x). Note
that f0(x) = u(0, x) = f(x). Then, for every t > 0, ft is differentiable and square-
integrable, so that Fourier’s inversion formula works for it. Hence, we may write

u(t, x) = ft(x)

=
∫
R

f̂t(ω)e2πiωx dω

=
∫
R

gω(t)e2πiωx dω,

where gω(t) is just f̂t(ω). In particular, gω(0) = f̂0(ω) = f̂(ω).
So, writing

u(t, x) =
∫
R

gω(t)e2πiωx dω,

what is the partial derivative of u with respect to t?

∂u

∂t
u(t, x) =

d

dt

∫
R

gω(t)e2πiωx dω

=
∫
R

gω
′(t)e2πiωx.

And, what is the second partial derivative of u with respect to x?

∂2u

∂x2
u(t, x) =

d2

dx2

∫
R

gω(t)e2πiωx dω

=
∫
R

gω(t)(−4π2ω2)e2πiωx dω.

Now u satisfies the heat equation

∂u

∂t
u(t, x) =

∂2u

∂x2
u(t, x).

Hence, from our calculations above, for each t > 0, we have an equality between
two Fourier transforms, i.e., of the function gω ′(t) and of the function −4π2ω2gω(t).
Hence, since the Fourier transform is 1-1, these two functions of ω must be equal
for every t. Turning things around, we must have that for every ω the two functions
g′ω(t) and −4π2ω2gω(t) of t must be equal.

Now we can solve this simple differential equation for the functions gω, using
Theorem 2.1 for instance. Indeed, we get that

gω(t) = gω(0)e−4π2ω2t = f̂(ω)e−4π2ω2t.

For each t, let gt be the function whose Fourier transform is given by ĝt(ω) =
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e−4π2ω2t. Then a formula for the solution to the heat equation is given by

u(t, x) =
∫
R

gω(t)e2πiωx dx

=
∫
R

f̂(ω)e−4π2ω2te2πiωx

=
∫
R

f̂(ω)ĝt(ω)e2πiωx dω

=
∫
R

f̂ ∗ gt(ω)e2πiωx dω

= f ∗ gt(x)

=
∫
R

f(x− ygt(y) dy.

Now, what is this function gt? It’s just the inverse Fourier transform of the function
e−4π2ω2t.

EXERCISE 10.9. (a) Show that gt is given by

gt(x) =
1√
4πt

g(
x√
4πt

) =
1√
4πt

e−
x2
4t .

(This Dirac δ function is called the heat kernel.)
(b) Show that the solution to the heat equation on the line, having initial con-

dition f(x), is given by

u(t, x) =
∫
R

f(x− y)
1√
4πt

e−
y2

4t dy..

EXERCISE 10.10. Deduce that, for any square-integrable initial condition f(x),
there is a solution u(t, x) of the heat equation. Moreover, show there is only one
such solution.

Mathematical Formulation of the Heisenberg Uncertainty Principle

We begin with a famous inequality that holds for square-integrable functions,
either on the circle or on the real line.

THEOREM 10.7. (Cauchy-Schwarz Inequality) Let f and g be two square-
integrable functions. Then

|
∫
f(x)g(x) dx|2 ≤

∫
|f(x)|2 dx×

∫
|g(x)|2 dx.

PROOF. Because the inequality we want to prove is certainly correct if g is the 0
function, we assume that g is not the 0 function. This means that

∫
|g(x)|2 dx > 0.
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We will want to divide by this number in the argument below. Note next that the
following calculation is correct for any complex number λ :

0 ≤
∫
|f(x) + λg(x)|2 dx

=
∫

(f(x) + λg(x))(f(x) + λg(x)) dx

=
∫
f(x)f(x) dx+

∫
f(x)λg(x) dx

+
∫
λg(x)f(x) dx+

∫
λg(x)λg(x) dx

=
∫
|f(x)|2 dx+ λ

∫
f(x)g(x) dx

+ λ

∫
g(x)f(x) dx+ λλ

∫
g(x)g(x) dx

=
∫
|f(x)|2 dx+ λ

∫
f(x)g(x) dx

+ λ

∫
g(x)f(x) dx+ |λ|2

∫
|g(x)|2 dx

=
∫
|f(x)|2 dx+ λ

∫
f(x)g(x) dx

+ λ

∫
f(x)g(x) dx+ |λ|2

∫
|g(x)|2 dx.

Since this inequality is true for any complex number λ, it must hold for

λ = −
∫
f(x)g(x) dx∫
|g(x)|2 dx

.

Substituting this value in for λ gives

0 ≤
∫
|f(x)|2 dx−

∫
f(x)g(x) dx∫
|g(x)|2 dx

∫
f(x)g(x) dx

−
∫
f(x)g(x) dx∫
|g(x)|2 dx

∫
f(x)g(x) dx+

|
∫
f(x)g(x) dx|2

(
∫
|g(x)|2 dx)2

∫
|g(x)|2 dx

=
∫
|f(x)|2 dx−

|
∫
f(x)g(x) dx|2∫
|g(x)|2 dx

,

from which the desired inequality is an immediate consequence.

Here is a little stuff from probability theory.
If p is a nonnegative function on R for which

∫
R
p(x) dx = 1, we call p a probabil-

ity density function. This density function p is associated to a “random variable” X,
in the sense that we say that the probability that the value of the random variable
X is between points a and b is equal to

∫ b
a
p(x) dx.

The number (if it is finite) µ = E(X) =
∫
R
xp(x) dx is called the expected value

or mean of the random variable X. Finally, the number (if it’s finite) defined by
σ2 = var(X) =

∫
R
(x− µ)2p(x) dx is called the variance of the random variable X.
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The mean of a random variable is what we think of as the average value, with
respect to the probability density function. The variance is a measure of how
concentrated the probability is near the mean. If the variance is small, then the
density function p(x) must be concentrated near µ; i.e., everywhere the quantity
(x − µ)2 is large, the quantity p(x) must be small. The smaller the variance, the
more concentrated the random variable is near its mean value.

The assertion of the next theorem is that the variances of two particular ran-
dom variables cannot both be small. Their product is always greater than a fixed
constant.

Let f be an element of L2(R) for which ‖f‖2 =
∫
R
|f(x)|2 dx = 1. Think of

|f(x)|2 as a density function associated to a random variable X. By the Plancherel
Theorem, we know that the function |f̂(ω)|2 is the density function for another
random variable that we denote by P. Suppose that the expected value µ =
E(X) =

∫
R
x|f(x)|2 dx exists, and suppose also that the expected value ν = E(P ) =∫

R
ω|f̂(ω)|2 dω exists.

THEOREM 10.8. Let the notation be as in the preceding paragraph. Then

var(X)× var(P ) ≥ 1
16π2

.

That is, ∫
R

(x− µ)2|f(x)|2 dx×
∫
R

(ω − ν)2|f̂(ω)|2 dω ≥ 1
16π2

.

REMARK. What this theorem has to do with the physical understanding of the
Heisenberg uncertainty principle is not immediately obvious. Ask your Quantum
Mechanics teacher. In any case, this is kind of a peculiar relation between a function
and its Fourier transform.

PROOF. We make a few simplifications before we do any computations. First of
all, if g(x) is defined to be f(x+ µ), and x1 is a random variable associated to the
density function |g(x)|2, then

E(x1) =
∫
R

x|g(x)|2 dx

=
∫
R

x|f(x+ µ)|2 dx

=
∫
R

(x− µ)|f(x)|2 dx

=
∫
R

x|f(x)|2 dx− µ
∫
R

|f(x)|2 dx

= µ− µ
= 0,
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and
var(x1) =

∫
R

(x− 0)2|g(x)|2 dx

=
∫
R

x2|f(x+ µ)|2 dx

=
∫
R

(x− µ)2|f(x)|2 dx

= var(X).
Hence, we need only prove that

var(x1)× var(P ) ≥ 1
16π2

.

Moreover, since |ĝ(ω)| = |f̂(ω)|, the two density functions |ĝ(ω)|2 and |f̂(ω)|2 are
identical, which means that the random variable P is associated to the density
function |ĝ(ω)|2.

Secondly, if h(x) is defined by h(x) = e2πiνxg(x), then |h(x)| = |g(x)|, so that
the random variable X1 is associated to the density function |h(x)|2. Also, ĥ(ω) =
ĝ(ω + ν), so that just as above, the random variable P1 associated to the density
function ĥ(ω)|2 satisfies E(P1) = 0, and var(P1) = var(P ). Hence, we need only
prove that

var(X1)× var(P1) ≥ 1
16π2

.

Now we just compute, using what we know about Fourier transforms and, at a
crucial point, using the Cauchy-Schwarz Inequality. Also, for notational purposes,
we will write H(x) for the function xh(x). See if you can follow this!

var(X1)× var(P1) =
∫
R

x2|h(x)|2 dx×
∫
R

ω2|widehath(ω)|2 dω

=
∫
R

x2|h(x)|2 dx 1
4π2

∫
R

|ĥ′(ω)|2 dω

=
1

4π2
‖H‖2‖h′‖2

≥ 1
4π2
|〈H | h′〉|2

=
1

16π2
(|〈H | h′〉|+ |〈h′ | H〉|)2

=
1

16π2
|
∫
R

H(x)h′(x) + h′(x)H(x) dx|2

=
1

16π2
|
∫
R

xh(x)h′(x) + xh′(x)h(x) dx|2

=
1

16π2
|
∫
R

x(h(x)h′(x) + h′(x)h(x)) dx|2

=
1

16π2
(xh(x)h(x)[∞−∞−

∫
R

h(x)h(x) dx|2

=
1

16π2
|
∫
R

|h(x)|2 dx|2

=
1

16π2
,
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completing the proof.

EXERCISE 10.11. Show that the Heisenberg uncertainty inequality above is actu-
ally an equality if f(x) = e−πx

2
.


