
CHAPTER 0

PRELIMINARIES

We include in this preliminary chapter some of the very basic concepts
and results of set theory, linear algebra, and topology. We do this so
that precise definitions and theorems will be at hand for reference. The
exercises given here contain some of the main results. Although they
should be routine for the student of this subject, we recommend that
they be done carefully. The main theorems of Functional Analysis fre-
quently rely on the Axiom of Choice, and in some cases are equivalent
to this axiom from abstract set theory. The version of the Axiom of
Choice that is ordinarily used in Functional Analysis is the Hausdorff
maximality principle, which we state here without proof.

HAUSDORFF MAXIMALITY PRINCIPLE. Let S be a non-
empty set, and let < denote a partial ordering on S, i.e., a transitive
relation on S. Then there exists a maximal linearly ordered subset of S.

Frequently encountered in our subject is the notion of an infinite
product.

DEFINITION. Let I be a set, and for each i ∈ I let Xi be a set. By
the Cartesian product of the sets {Xi}, we mean the set of all functions
f defined on I for which f(i) ∈ Xi for each i ∈ I. We denote this set of
functions by

∏
i∈I Xi or simply by

∏
Xi.

Ordinarily, a function f ∈
∏

i∈I Xi is denoted by {xi}, where xi =
f(i).
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Fundamental to Functional Analysis are the notions of vector spaces
and linear transformations.

DEFINITION. Let F denote either the field R of real numbers or
the field C of complex numbers. A vector space over F is an additive
abelian group X, on which the elements of F act by scalar multiplication:

(1) a(x + y) = ax + ay, a(bx) = (ab)x, and (a + b)x = ax + bx for
all x, y ∈ X and a, b ∈ F.

(2) 1x = x for all x ∈ X.

The elements of F are called scalars. If F = R, then X is called a real
vector space, and if F = C, then X is called a complex vector space.
Obviously, a complex vector space can also be regarded as a real vector
space, but not every real vector space is a complex vector space. See
Exercise 0.1 below.

A subset Y of a vector space X is called a subspace if it is closed
under addition and scalar multiplication.

A nonempty finite set {x1, . . . , xn} of nonzero elements of a vector
space X is called linearly dependent if there exist elements {a1, . . . , an}
of F, not all 0, such that

∑n
i=1 aixi = 0. An arbitrary set S of nonzero

elements of X is called linearly dependent if some nonempty finite subset
of S is linearly dependent. A subset S ⊆ X of nonzero vectors is called
linearly independent if it is not linearly dependent.

A subset B of a vector space X is said to be a spanning set for X
if every element of X is a finite linear combination of elements of B. A
basis of X is a linearly independent spanning subset of X.

EXERCISE 0.1. (a) Prove that every nontrivial vector space has a
basis. HINT: The Hausdorff maximality principle.

(b) If B is a basis of a vector space X, show that each element x ∈ X
can be written uniquely as a finite linear combination x =

∑n
i=1 aixi,

where each xi ∈ B.

(c) Show that any two bases of a vector space have the same cardi-
nality, i.e., they can be put into 1-1 correspondence.

(d) Show that the set Fn of all n-tuples (x1, x2, . . . , xn) of elements
of F is a vector space with respect to coordinatewise addition and scalar
multiplication.

(e) Prove that every complex vector space is automatically a real
vector space. On the other hand, show that R3 is a real vector space
but that scalar multiplication cannot be extended to C so that R3 is a
complex vector space. HINT: What could ix possibly be?
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DEFINITION. The dimension of a vector space X is the cardinality
of a basis of X.

DEFINITION. Let I be a set, and let {Xi}, for i ∈ I, be a collection
of vector spaces over F. By the vector space direct product

∏
i∈I Xi, we

mean the cartesian product of the sets {Xi}, together with the opera-
tions:

(1) {xi}+ {yi} = {xi + yi}
(2) a{xi} = {axi}.

The (algebraic) direct sum ⊕
i∈I

Xi

is defined to be the subset of
∏

i∈I Xi consisting of the elements {xi}
for which xi = 0 for all but a finite number of i’s.

EXERCISE 0.2. (a) Prove that
∏

i∈I Xi is a vector space.
(b) Show that

⊕
i∈I Xi is a subspace of

∏
i∈I Xi.

(c) Prove that

Fn =
∏

i∈{1,... ,n}

F =
∑

i∈{1,... ,n}

F.

DEFINITION. A linear transformation from a vector space X into
a vector space Y is a function T : X → Y for which

T (a1x1 + a2x2) = a1T (x1) + a2T (x2)

for all x1, x2 ∈ X and a1, a2 ∈ F.
A linear transformation T : X → Y is called a linear isomorphism if

it is 1-1 and onto.
By the kernel ker(T ) of a linear transformation T, we mean the set

of all x ∈ X for which T (x) = 0, and by the range of T we mean the set
of all elements of Y of the form T (x).

EXERCISE 0.3. Let X and Y be vector spaces, and letB be a basis
for X.

(a) Suppose T and S are linear transformations of X into Y. Show
that T = S if and only if T (x) = S(x) for every x ∈ B.

(b) For each b ∈ B let yb be an element of Y. Show that there exists
a (unique) linear transformation T : X → Y satisfying T (b) = yb for all
b ∈ B.
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(c) Let T be a linear transformation of X into Y. Prove that the kernel
of T is a subspace of X and the range of T is a subspace of Y.

(d) Let T : X → Y be a linear isomorphism. Prove that T−1 : Y → X
is a linear isomorphism.

DEFINITION. A linear functional on a vector space X over F is a
linear transformation of X into F ≡ F 1.

EXERCISE 0.4. Let f be a linear functional on a vector space X,
and let M be the kernel of f.

(a) If x is an element of X, which is not in M, show that every element
y ∈ X can be written uniquely as y = m+ax, where m ∈ M and a ∈ F.

(b) Let f and g be linear functionals on X. Show that f is a nonzero
multiple f = ag of g if and only if ker(f) = ker(g).

(c) Let T be a linear transformation of a vector space X onto the
vector space Fn. Show that there exist elements {x1, . . . , xn} of X, none
of which belongs to ker(T ), such that each element y ∈ X can be written
uniquely as y = m +

∑n
i=1 aixi, where m ∈ ker(T ) and each ai ∈ F.

DEFINITION. If X is a vector space and M is a subspace of X, we
define the quotient space X/M to be the set of all cosets x + M of M
together with the following operations:

(x + M) + (y + M) = (x + y) + M,

and
a(x + M) = ax + M

for all x, y ∈ X and a ∈ F.

EXERCISE 0.5. Let M be a subspace of a vector space X.
(a) Prove that the quotient space X/M is a vector space.
(b) Define π : X → X/M by π(x) = x + M. Show that π is a linear

transformation from X onto X/M. This transformation π is called the
natural map or quotient map of X onto X/M.

(c) If T is a linear transformation of X into a vector space Y, and
if M ⊆ ker(T ), show that there exists a unique linear transformation
S : X/M → Y such that T = S ◦ π, where π is the natural map of X
onto X/M.

Perhaps the most beautiful aspect of Functional Analysis is in its
combining of linear algebra and topology. We give next the fundamental
topological ideas that we will need.
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DEFINITION. A topology on a set X is a collection T of subsets
of X satisfying:

(1) X ∈ T .
(2) ∅ ∈ T .
(3) The intersection of any finite number of elements of T is an

element of T .
(4) The union of an arbitrary collection of elements of T is an ele-

ment of T .

The set X, or the pair (X, T ), is called a topological space.
The elements of a topology T are called open subsets of X, and their

complements are called closed sets. An open set containing a point
x ∈ X is called an open neighborhood of x, and any set that contains
an open neighborhood of x is itself called a neighborhood of x.

If A is a subset of a topological space (X, T ) and x is a point of A,
then x is called an interior point of A if A contains a neighborhood of
x. The interior of A is the set of all interior points of A.

If Y is a subset of a topological space (X, T ), then the relative topol-
ogy on Y is the collection T ′ of subsets of Y obtained by intersecting
the elements of T with Y. The collection T ′ is a topology on Y, and the
pair (Y, T ′) is called a topological subspace of X.

A subset B of a topology T is called a base for T if each element
U ∈ T is a union of elements of B.

A topological space (X, T ) is called second countable if there exists
a countable base B for T .

A topological space (X, T ) is called a Hausdorff space if for each pair
of distinct points x, y ∈ X there exist open sets U, V ∈ T such that
x ∈ U, y ∈ V, and U ∩ V = ∅. X is called a regular topological space if,
for each closed set A ⊆ X and each point x /∈ A, there exist open sets
U and V such that A ⊆ U, x ∈ V, and U ∩ V = ∅. X is called a normal
topological space if, for each pair A,B of disjoint closed subsets of X,
there exist open sets U, V such that A ⊆ U, B ⊆ V, and U ∩ V = ∅.

By an open cover of a subset Y of a topological space X, we mean a
collection U of open subsets of X for which Y ⊆ ∪U∈UU. A subset Y of
a topological space X is called compact if every open cover U of Y has
a finite subcover; i.e., there exist finitely many elements U1, . . . , Un of
U such that Y ⊆ ∪n

1Ui.
A topological space X is called σ-compact if it is a countable union

of compact subsets.
A topological space X is called locally compact if, for every x ∈ X

and every open set U containing x, U contains a compact neighborhood
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of x.

A function F from one topological space X into another topological
space Y is called continuous if f−1(U) is an open subset of X whenever
U is an open subset of Y.

A metric on a set X is a function d : X ×X → R that satisfies:

(1) d(x, y) ≥ 0 for all x, y ∈ X.
(2) d(x, y) = 0 if and only if x = y.
(3) (Triangle inequality) d(x, z) ≤ d(x, y)+d(y, z) for all x, y, z ∈ X.

If X is a set on which a metric d is defined, then X (or the pair (X, d))
is called a metric space.

If d is a metric on a set X, x is an element of X, and ε > 0, then the
ball Bε(x) of radius ε around x is defined to be the set of all y ∈ X for
which d(x, y) < ε. A point x is called an interior point of a subset A of
a metric space (X, d) if there exists an ε > 0 such that Bε(x) ⊆ A, and
a set A is called open relative to a metric d if every point of A is an
interior point of A.

The topological space (X, T ) is called metrizable if there exists a
metric d on X for which the elements of T coincide with the sets that
are open sets relative to the metric d.

EXERCISE 0.6. (a) Let A be a collection of subsets of a set X.
Prove that there is a smallest topology T on X that contains A, and
verify that a base for this topology consists of the collection of all sets
B of the form

B = ∩n
i=1Ai,

where each Ai ∈ A.

(b) Let A be a subset of a topological space (X, T ). Prove that the
interior of A is an open set. Prove that the intersection of all closed sets
containing A is closed. This closed set is called the closure of A and is
denoted by Ā.

(c) Let Y be a subset of a topological space (X, T ), and write T ′ for
the collection of subsets V of Y of the form V = U ∩Y for U ∈ T . Prove
that T ′ is a topology on Y.

(d) Let d be a metric on a set X. Show that the collection of all sets
that are open relative to d forms a topology on X.

(e) Let X and Y be topological spaces. Prove that a function f :
X → Y is continuous if and only if for every open set U ⊆ Y and
every x ∈ f−1(U) there exists an open set V ⊆ X such that x ∈ V and
f(V ) ⊆ U.
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EXERCISE 0.7. Let X be a set, and let {Xi}, for i in a set I, be
a collection of topological spaces. For each i, let fi be a map of X into
Xi.

(a) Prove that there exists a smallest topology T on X for which each
function fi is continuous.

(b) Let T be as in part a. Show that, for each index i and each open
subset Ui ⊆ Xi, the set f−1

i (Ui) belongs to T .
(c) Let T be as in part a. Show that, for each finite set i1, . . . , in of

elements of I, and for each n-tuple Ui1 , . . . , Uin
, for Uij

an open subset
of Xij

, the set
∩n

j=1f
−1
ij

(Uij )

is in T .
(d) Let T be as in part a. Show that each element of T is a union

of sets of the form described in part c; i.e., the sets described in part c
form a base for T .

DEFINITION. Let X be a set, and for each i in a set I let fi be a
function from X into a topological space Xi. The smallest topology on
X, for which each fi is continuous, is called the weak topology generated
by the fi’s.

If {Xi}, for i ∈ I, is a collection of topological spaces, write

X =
∏
i∈I

Xi,

and define fi : X → Xi by

fi({xj}) = xi.

The product topology on X =
∏

i∈I Xi is defined to be the weak topol-
ogy generated by the fi’s.

EXERCISE 0.8. Let X be a set, let {Xi} for i ∈ I, be a collection
of topological spaces, and for each i ∈ I let fi be a map of X into Xi.
Let T denote the weak topology on X generated by the fi’s.

(a) Prove that T is Hausdorff if each Xi is Hausdorff and the functions
{fi} separate the points of X. (The fi’s separate the points of X if
x 6= y ∈ X implies that there exists an i ∈ I such that fi(x) 6= fi(y).)

(b) Show that T is second countable if the index set I is countable
and each topological space Xi is second countable.

(c) Conclude that the product space Y =
∏

i∈I Xi is second countable
if I is countable and each Xi is second countable.
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(d) Suppose the index set I is countable, that the fi’s separate the
points of X, and that each Xi is metrizable. Prove that (X, T ) is metriz-
able. HINT: Identify I with the set {1, 2, . . . }. If di denotes the metric
on Xi, define d on X by

d(x, y) =
∞∑

i=1

2−i min(1, di(fi(x), fi(y))),

and show that d is a metric whose open sets coincide with the elements
of T .

(e) Let Y be the topological product space Y =
∏

i∈I Xi, and define
F : X → Y by [F (x)]i = fi(x). Suppose that the fi’s separate the points
of X. Prove that F is a homeomorphism of (X, T ) into Y.

EXERCISE 0.9. (a) Prove that a topological space X is compact
if and only if it satisfies the finite intersection property ; i.e., if F is a
collection of closed subsets of X, for which the intersection of any finite
number of elements of F is nonempty, then the intersection of all the
elements of F is nonempty.

(b) Prove that a compact Hausdorff space is normal.
(c) Prove that a regular space, having a countable base, is normal.
(d) Prove Urysohn’s Lemma: If X is a normal topological space,

and if A and B are nonempty disjoint closed subsets of X, then there
exists a continuous function f : X → [0, 1] such that f(A) = {0} and
f(B) = {1}.

(e) Let X be a regular space having a countable base. Show that
there exists a sequence {fn} of continuous real-valued functions on X,
such that for each closed set A ⊆ X and each point x /∈ A, there exists
an n for which fn(x) /∈ fn(A). HINT: For each pair U, V of elements
of the countable base, for which U ⊆ Ū ⊂ V, use Urysohn’s lemma on
the sets Ū and Ṽ , where Ṽ denotes the complement of V. Conclude that
the topology on X coincides with the weak topology generated by the
resulting fn’s.

(f) Prove that a regular space X, having a countable base, is metriz-
able. HINT: Use part e to construct a homeomorphism between X and
a subset of a countable product of real lines.

(g) Prove that a locally compact Hausdorff space is regular and hence
that a locally compact, second countable, Hausdorff space is metrizable.

DEFINITION. Let (X, T ) be a topological space, and let f be a
function from X onto a set Y. The largest topology Q on Y for which f
is continuous is called the quotient topology on Y.
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EXERCISE 0.10. Let (X, T ) be a topological space, let f : X → Y
be a map of X onto a set Y, and let Q be the quotient topology on Y.

(a) Prove that a subset U ⊆ Y belongs to Q if and only if f−1(U)
belongs to T . That is, Q = {U ⊆ Y : f−1(U) ∈ T }.

(b) Suppose Z is a topological space and that g is a function from
(Y,Q) into Z. Prove that g is continuous if and only if g◦f is continuous
from (X, T ) into Z.


