
CHAPTER I

THE RIESZ REPRESENTATION THEOREM

We begin our study by identifying certain special kinds of linear func-
tionals on certain special vector spaces of functions. We describe these
linear functionals in terms of more familiar mathematical objects, i.e.,
as integrals against measures. We have labeled Theorem 1.3 as the Riesz
Representation Theorem. However, each of Theorems 1.2, 1.3, 1.4 and
1.5 is often referred to by this name, and a knowledge of this nontrivial
theorem, or set of theorems, is fundamental to our subject. Theorem
1.1 is very technical, but it is the cornerstone of this chapter.

DEFINITION. A vector lattice of functions on a set X is a vector
space L of real-valued functions on X which is closed under the binary
operations of maximum and minimum. That is:

(1) f, g ∈ L and α, β ∈ R implies that αf + βg ∈ L.
(2) f, g ∈ L implies that max(f, g) ∈ L and min(f, g) ∈ L.

REMARKS. The set of all continuous real-valued functions on a
topological space X clearly forms a vector lattice, indeed the prototypi-
cal one. A nontrivial vector lattice certainly contains some nonnegative
functions (taking maximum of f and 0 ). If a vector lattice does not
contain any nonzero constant function, it does not follow that the min-
imum of an f ∈ L and the constant function 1 must belong to L. The
set of all scalar multiples of a fixed positive nonconstant function is a
counterexample.
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Stone’s axiom for a vector lattice L is as follows: If f is a nonnegative
function in L, then min(f, 1) is an element of L.

EXERCISE 1.1. Let L be a vector lattice of functions on a set X,
and suppose L satisfies Stone’s axiom.

(a) Show that min(f, c) ∈ L whenever f is a nonnegative function in
L and c ≥ 0.

(b) (A Urysohn-type property) Let E and F be disjoint subsets of X,
0 ≤ a < b, and let f ∈ L be a nonnegative function such that f(x) ≥ b
on F and f(x) ≤ a on E. Show that there exists an element g ∈ L such
that 0 ≤ g(x) ≤ 1 for all x ∈ X, g(x) = 0 on E, and g(x) = 1 on F.

(c) Let 0 ≤ a < b < c < d be real numbers, let f ∈ L be nonnegative,
and define E = f−1([0, a]), F = f−1([b, c]), and G = f−1([d,∞)). Show
that there exists an element g of L such that 0 ≤ bg(x) ≤ f(x) for all
x ∈ X, g(x) = 1 on F, and g(x) = 0 on E ∪G.

(d) Let µ be a measure defined on a σ-algebra of subsets of the set
X, and suppose L = L1(µ) is the set of all (absolutely) integrable real-
valued functions on X with respect to µ. Show that L is a vector lattice
that satisfies Stone’s axiom.

(e) Let µ and L be as in part d. Define φ : L → R by φ(f) =∫
f dµ. Prove that φ is a positive linear functional on L, i.e., φ is a

linear functional for which φ(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X.

We come now to our fundamental representation theorem for linear
functionals.

THEOREM 1.1. Let L be a vector lattice on a set X, and assume
that L satisfies Stone’s axiom, i.e., that if f is a nonnegative function
in L, then min(f, 1) ∈ L. Suppose I is a linear functional on the vector
space L that satisfies:

(1) I(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. (I is a positive linear
functional.)

(2) Suppose {fn} is a sequence of nonnegative elements of L, which
increases pointwise to an element f of L, i.e., f(x) = lim fn(x)
for every x, and fn(x) ≤ fn+1(x) for every x and n. Then I(f) =
lim I(fn). (I satisfies the monotone convergence property.)

Then there exists a (not necessarily finite) measure µ defined on a σ-
algebra M of subsets of X such that every f ∈ L is µ-measurable, µ-
integrable, and

I(f) =
∫
f dµ.
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PROOF. We begin by defining an outer measure µ∗ on all subsets
of X. Thus, if E ⊆ X, put

µ∗(E) = inf
∑

I(hm),

where the infimum is taken over all sequences {hm} of nonnegative func-
tions in L for which

∑
hm(x) ≥ 1 for each x ∈ E. Note that if, for some

set E, no such sequence {hm} exists, then µ∗(E) = ∞, the infimum
over an empty set being +∞. In particular, if L does not contain the
constant function 1, then µ∗(X) could be ∞, although not necessarily.
See Exercise 1.2 below.

It follows routinely that µ∗ is an outer measure. Again see Exercise
1.2 below.

We let µ be the measure generated by µ∗, i.e., µ is the restriction
of µ∗ to the σ-algebra M of all µ∗-measurable subsets of X. We wish
to show that each f ∈ L is µ-measurable, µ-integrable, and then that
I(f) =

∫
f dµ. Since L is a vector lattice, and both I and

∫
· dµ are

positive linear functionals on L, we need only verify the above three
facts for nonnegative functions f ∈ L.

To prove that a nonnegative f ∈ L is µ-measurable, it will suffice to
show that each set f−1[a,∞), for a > 0, is µ∗-measurable; i.e., we must
show that for any A ⊆ X,

µ∗(A) ≥ µ∗(A ∩ f−1[a,∞)) + µ∗(A ∩ ˜f−1[a,∞)).

We first make the following observation.
Suppose A ⊆ X, 0 < a < b, E is a subset of X for which f(x) ≤ a if

x ∈ E, and F is a subset of X for which f(x) ≥ b if x ∈ F. Then

µ∗(A ∩ (E ∪ F )) ≥ µ∗(A ∩ E) + µ∗(A ∩ F ).

Indeed, let g be the element of L defined by

g =
min(f, b)−min(f, a)

b− a
.

Then g = 0 on E, and g = 1 on F. If ε > 0 is given, and {hm} is
a sequence of nonnegative elements of L for which

∑
hm(x) ≥ 1 on

A ∩ (E ∪ F ), and
∑
I(hm) < µ∗(A ∩ (E ∪ F )) + ε, set fm = min(hm, g)

and gm = hm −min(hm, g). Then:

hm = fm + gm
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on X, ∑
fm(x) ≥ 1

for x ∈ A ∩ F, and ∑
gm(x) ≥ 1

for x ∈ A ∩ E. Therefore:

µ∗(A ∩ (E ∪ F )) + ε ≥
∑

I(hm)

=
∑

I(fm) +
∑

I(gm)

≥ µ∗(A ∩ F ) + µ∗(A ∩ E).

It follows now by induction that if {I1, ..., In} is a finite collection
of disjoint half-open intervals (aj , bj ], with 0 < b1 and bj < aj+1 for
1 ≤ j < n, and if Ej = f−1(Ij), then

µ∗(A ∩ (∪Ej)) ≥
∑

µ∗(A ∩ Ej)

for any subset A of X. In fact, using the monotonicity of the outer
measure µ∗, the same assertion is true for any countable collection {Ij}
of such disjoint half-open intervals. See Exercise 1.3.

Now, Let A be an arbitrary subset of X, and let a > 0 be given. Write
E = f−1[a,∞). We must show that

µ∗(A ∩ E) + µ∗(A ∩ Ẽ) ≤ µ∗(A).

We may assume that µ∗(A) is finite, for otherwise the desired inequality
is obvious. Let {c1, c2, . . . } be a strictly increasing sequence of posi-
tive numbers that converges to a. We write the interval (−∞, a) as the
countable union ∪∞j=0Ij of the disjoint half-open intervals {Ij}, where
I0 = (−∞, c1], and for j > 0, Ij = (cj , cj+1], whence

Ẽ = ∪∞j=0Ej ,

where Ej = f−1(Ij). Also, if we set Fk = ∪k
j=0Ej , then Ẽ is the increas-

ing union of the Fk’s. Then, using Exercise 1.3, we have:

µ∗(A ∩ (∪∞j=0E2j)) ≥
∞∑

j=0

µ∗(A ∩ E2j),
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whence the infinite series on the right is summable.

Similarly, the infinite series
∑∞

j=0 µ
∗(A∩E2j+1) is summable. There-

fore,

µ∗(A ∩ Fk) ≤ µ∗(A ∩ Ẽ)

= µ∗((A ∩ Fk) ∪ (A ∩ (∪∞j=k+1Ej)))

≤ µ∗(A ∩ Fk) +
∞∑

j=k+1

µ∗(A ∩ Ej),

and this shows that µ∗(A ∩ Ẽ) = limk µ
∗(A ∩ Fk).

So, recalling that Fk = f−1(−∞, ck+1], we have

µ∗(A ∩ E) + µ∗(A ∩ Ẽ) = µ∗(A ∩ E) + lim
k
µ∗(A ∩ Fk)

= lim
k

(µ∗(A ∩ E) + µ∗(A ∩ Fk))

= lim
k
µ∗(A ∩ (E ∪ Fk))

≤ µ∗(A),

as desired. Therefore, f is µ-measurable for every f ∈ L.

It remains to prove that each f ∈ L is µ-integrable, and that I(f) =∫
f dµ. It will suffice to show this for f ’s which are nonnegative, bounded,

and 0 outside a set of finite µ measure. See Exercise 1.4. For such an f,
let φ be a nonnegative measurable simple function, with φ(x) ≥ f(x) for
all x, and such that φ is 0 outside a set of finite measure. (We will use the
fact from measure theory that there exists a sequence {φn} of such simple
functions for which

∫
f dµ = lim

∫
φn dµ. ) Write φ =

∑k
i=1 aiχEi

, where
each ai ≥ 0, and let ε > 0 be given. For each i, let {hi,m} be a sequence
of nonnegative elements in L for which

∑
m hi,m(x) ≥ 1 on Ei, and
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m I(hi,m) < µ∗(Ei) + ε. Then∫

φdµ+ ε
k∑

i=1

ai =
k∑

i=1

aiµ(Ei) + ε
k∑

i=1

ai

>
k∑

i=1

ai

∑
m

I(hi,m)

=
∑
m

k∑
i=1

aiI(hi,m)

= lim
M

M∑
m=1

k∑
i=1

aiI(hi,m)

= lim
M
I(hM ),

where

hM =
M∑

m=1

k∑
i=1

aihi,m.

Observe that {hM} is an increasing sequence of nonnegative elements
of L, and that limhM (x) ≥ φ(x) for all x ∈ X, whence the sequence
{min(hM , f)} increases pointwise to f. Therefore, by the monotone con-
vergence property of I, we have that∫

φdµ+ ε
k∑

i=1

ai ≥ lim
M
I(hM )

≥ lim
M
I(min(hM , f))

= I(f),

showing that
∫
φdµ ≥ I(f), for all such simple functions φ. It follows

then that
∫
f dµ ≥ I(f).

To show the reverse inequality, we may suppose that 0 ≤ f(x) < 1
for all x, since both I and

∫
· dµ are linear. For each positive integer n

and each 0 ≤ i < 2n, define the set Ei,n by

Ei,n = f−1([i/2n, (i+ 1)/2n)),

and then a simple function φn by

φn =
2n−1∑
i=0

(i/2n)χEi,n .
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Using Exercise 1.1 part c, we choose, for each 0 ≤ i < 2n and each
m > 2n+1, a function gi,m satisfying:

(1) For x ∈ f−1([i/2n, ((i+ 1)/2n)− 1/m)),

gi,m(x) = i/2n.

(2) For x ∈ f−1([0, (i/2n) − 1/2m)) and x ∈ f−1([((i + 1)/2n) −
1/2m, 1]),

gi,m(x) = 0.

(3) For all x,
0 ≤ gi,m(x) ≤ f(x).

Then
µ(Ei,n) = lim

m
µ(f−1([i/2n , (i+ 1)/2n − 1/m))).

And,

2n−1∑
i=0

(i/2n)µ(f−1([i/2n , (i+ 1)/2n − 1/m))) ≤
2n−1∑
i=0

I(gi,m)

= I(hm),

where

hm =
2n−1∑
i=0

gi,m.

Observe that hm(x) ≤ f(x) for all x. It follows that

∫
φn dµ =

2n−1∑
i=0

(i/2n)µ(Ei,n)

= lim
m

2n−1∑
i=0

(i/2n)µ(f−1([i/2n , (i+ 1)/2n − 1/m)))

≤ lim sup
m

I(hm)

≤ I(f),

whence, by letting n tend to ∞, we see that
∫
f dµ ≤ I(f).

The proof of the theorem is now complete.
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EXERCISE 1.2. (a) Give an example of a vector lattice L of func-
tions on a set X, such that the constant function 1 does not belong to
L, but for which there exists a sequence {hn} of nonnegative elements
of L satisfying

∑
hn(x) ≥ 1 for all x ∈ X.

(b) Verify that the µ∗ in the preceding proof is an outer measure on
X by showing that:

(1) µ∗(∅) = 0.
(2) If E and F are subsets ofX, with E contained in F, then µ∗(E) ≤

µ∗(F ).
(3) µ∗ is countably subadditive, i.e.,

µ∗(∪En) ≤
∑

µ∗(En)

for every sequence {En} of subsets of X.

HINT: To prove the countable subadditivity, assume that each µ∗(En)
is finite. Then, given any ε > 0, let {hn,i} be a sequence of nonnegative
functions in L for which

∑
i hn,i(x) ≥ 1 for all x ∈ En and for which∑

i I(hn,i) ≤ µ∗(En) + ε/2n.

EXERCISE 1.3. Let {I1, I2, ...} be a countable collection of half-
open intervals (aj , bj ], with 0 < b1 and bj < aj+1 for all j. Let f be a
nonnegative element of the lattice L of the preceding theorem, and set
Ej = f−1(Ij). Show that for each A ⊆ X we have

µ∗(A ∩ (∪Ej)) =
∑

µ∗(A ∩ Ej).

HINT: First show this, by induction, for a finite sequence I1, . . . , In,
and then verify the general case by using the properties of the outer
measure.

EXERCISE 1.4. Let L be the lattice of the preceding theorem.
(a) Show that there exist sets of finite µ-measure. In fact, if f is a

nonnegative element of L, show that f−1([ε,∞)) has finite measure for
every positive ε.

(b) Let f ∈ L be nonnegative. Show that there exists a sequence {fn}
of bounded nonnegative elements of L, each of which is 0 outside some
set of finite µ-measure, which increases to f. HINT: Use Stone’s axiom.

(c) Conclude that, if I(f) =
∫
f dµ for every f ∈ L that is bounded,

nonnegative, and 0 outside a set of finite µ-measure, then I(f) =
∫
f dµ

for every f ∈ L.
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REMARK. One could imagine that all linear functionals defined on
a vector lattice of functions on a setX are related somehow to integration
over X. The following exercise shows that this is not the case; that is,
some extra hypotheses on the functional I are needed.

EXERCISE 1.5. (a) Let X be the set of positive integers, and let L
be the space of all functions f (sequences) on X for which limn→∞ f(n)
exists. Prove that L is a vector lattice that satisfies Stone’s axiom.

(b) Let X and L be as in part a, and define I : L → R by I(f) =
limn→∞ f(n). Prove that I is a positive linear functional.

(c) Let I be the positive linear functional from part b. Prove that
there exists no measure µ on the set X for which I(f) =

∫
f dµ for all

f ∈ L. HINT: If there were such a measure, there would have to exist
a sequence {µn} such that I(f) =

∑
f(n)µn for all f ∈ L. Show that

each µn must be 0, and that this would lead to a contradiction.
(d) Let X,L, and I be as in part b. Verify by giving an example that

I fails to satisfy the monotone convergence property of Theorem 1.1.

DEFINITION. If ∆ is a Hausdorff topological space, then the small-
est σ-algebra B of subsets of ∆, which contains all the open subsets of
∆, is called the σ-algebra of Borel sets. A measure which is defined
on this σ-algebra, is called a Borel measure. A function f from ∆ into
another topological space ∆′ is called a Borel function if f−1(U) is a
Borel subset of ∆ whenever U is an open (Borel) subset of ∆′.

A real-valued (or complex-valued) function f on ∆ is said to have
compact support if the closure of the set of all x ∈ ∆ for which f(x) 6= 0
is compact. The set of all continuous functions having compact support
on ∆ is denoted by Cc(∆).

A real-valued (or complex-valued) function f on ∆ is said to vanish
at infinity if, for each ε > 0, the set of all x ∈ ∆ for which |f(x)| ≥ ε
is compact. The set of all continuous real-valued functions vanishing
at infinity on ∆ is denoted here by C0(∆). Sometimes, C0(∆) denotes
the complex vector space of all continuous complex-valued functions on
∆ that vanish at ∞. Hence, the context in which this symbol occurs
dictates which meaning it has.

If ∆ is itself compact, then every continuous function vanishes at
infinity, and we write C(∆) for the space of all continuous real-valued
(complex-valued) functions on ∆. That is, if ∆ is compact, then C(∆) =
C0(∆).

EXERCISE 1.6. (a) Prove that a second countable locally compact
Hausdorff space ∆ is metrizable. (See Exercise 0.9.) Conclude that if
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K is a compact subset of a second countable locally compact Hausdorff
space ∆, then there exists an element f ∈ Cc(∆) that is identically 1 on
K.

(b) Let ∆ be a locally compact Hausdorff space. Show that every
element of Cc(∆) is a Borel function, and hence is µ-measurable for
every Borel measure µ on ∆.

(c) Show that, if ∆ is second countable, Hausdorff, and locally com-
pact, then the σ-algebra of Borel sets coincides with the smallest σ-
algebra that contains all the compact subsets of ∆.

(d) If ∆ is second countable, Hausdorff, and locally compact, show
that the σ-algebra B of Borel sets coincides with the smallest σ-algebra
M of subsets of ∆ for which each f ∈ Cc(∆) satisfies f−1(U) ∈ M
whenever U is open in R.

(e) Suppose µ and ν are finite Borel measures on a second countable,
locally compact, Hausdorff space ∆, and assume that

∫
f dµ =

∫
f dν

for every f ∈ Cc(∆). Prove that µ = ν. HINT: Show that µ and ν agree
on compact sets, and hence on all Borel sets.

(f) Prove that a second countable locally compact Hausdorff space ∆
is σ-compact. In fact, show that ∆ is the increasing union ∪Kn of a
sequence of compact subsets {Kn} of ∆ such that Kn is contained in
the interior of Kn+1. Note also that this implies that every closed subset
F of ∆ is the increasing union of a sequence of compact sets.

EXERCISE 1.7. Prove Dini’s Theorem: If ∆ is a compact topolog-
ical space and {fn} is a sequence of continuous real-valued functions on
∆ that increases monotonically to a continuous function f, then {fn}
converges uniformly to f on ∆.

THEOREM 1.2. Let ∆ be a second countable locally compact Haus-
dorff space. Let I be a positive linear functional on Cc(∆). Then there
exists a unique Borel measure µ on ∆ such that, for all f ∈ Cc(∆), f is
µ-integrable and I(f) =

∫
f dµ.

PROOF. Of course Cc(∆) is a vector lattice that satisfies Stone’s
axiom. The given linear functional I is positive, so that this theorem
will follow immediately from Theorem 1.1 and Exercise 1.6 if we show
that I satisfies the monotone convergence property. Thus, let {fn} be a
sequence of nonnegative functions in Cc(∆) that increases monotonically
to an element f ∈ Cc(∆). If K denotes a compact set such that f(x) = 0
for x /∈ K, Then fn(x) = 0 for all x /∈ K and for all n. We let g be a
nonnegative element of Cc(∆) for which g(x) = 1 on K. On the compact
set K, the sequence {fn} is converging monotonically to the continuous
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function f, whence, by Dini’s Theorem, this convergence is uniform.
Therefore, given an ε > 0, there exists an N such that

f(x)− fn(x) = |f(x)− fn(x)| < ε

for all x if n ≥ N. Hence f − fn ≤ εg everywhere on X, whence

|I(f − fn)| = I(f − fn) ≤ I(εg) = εI(g).

Therefore I(f) = lim I(fn), as desired.

DEFINITION. If f is a bounded real-valued function on a set X,
we define the supremum norm or uniform norm of f, denoted by ‖f‖,
or ‖f‖∞, by

‖f‖ = ‖f‖∞ = sup
x∈X

|f(x)|.

A linear functional φ on a vector space E of bounded functions is called
a bounded linear functional if there exists a positive constant M such
that |φ(f)| ≤M‖f‖ for all f ∈ E.

THEOREM 1.3. (Riesz Representation Theorem) Suppose ∆ is a
second countable locally compact Hausdorff space and that I is a posi-
tive linear functional on C0(∆). Then there exists a unique finite Borel
measure µ on ∆ such that

I(f) =
∫
f dµ

for every f ∈ C0(∆). Further, I is a bounded linear functional on C0(∆).
Indeed, |I(f)| ≤ µ(∆)‖f‖∞.

PROOF. First we show that the positive linear functional I on the
vector lattice C0(∆) satisfies the monotone convergence property. Thus,
let {fn} be a sequence of nonnegative functions in C0(∆), which increases
to an element f, and let ε > 0 be given. Choose a compact subset K ⊆ ∆
such that f(x) ≤ ε2 if x /∈ K, and let g ∈ C0(∆) be nonnegative and
such that g = 1 on K. Again, by Dini’s Theorem, there exists an N such
that

|f(x)− fn(x)| ≤ ε/(1 + I(g))

for all x ∈ K and all n ≥ N. For x /∈ K, we have:

|f(x)− fn(x)| = f(x)− fn(x)

≤ f(x)

= (
√
f(x))2

≤ ε
√
f(x),
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so that, for all x ∈ ∆ and all n ≥ N, we have

|f(x)− fn(x)| ≤ (ε/(1 + I(g)))g(x) + ε
√
f(x).

Therefore,

|I(f)− I(fn)| = I(f − fn) ≤ ε(1 + I(
√
f)).

This proves that I(f) = lim I(fn), as desired.
Using Theorem 1.1 and Exercise 1.6, let µ be the unique Borel mea-

sure on ∆ for which I(f) =
∫
f dµ for every f ∈ C0(∆). We show next

that there exists a positive constant M such that |I(f)| ≤ M‖f‖∞ for
each f ∈ C0(∆); i.e., that I is a bounded linear functional on C0(∆). If
there were no such M, there would exist a sequence {fn} of nonnegative
elements of C0(∆) such that ‖fn‖∞ = 1 and I(fn) ≥ 2n for all n. Then,
defining f0 =

∑
n fn/2n, we have that f0 ∈ C0(∆). (Use the Weierstrass

M -test.) On the other hand, since I is a positive linear functional, we
see that

I(f0) ≥
N∑

n=1

I(fn/2n) ≥ N

for all N, which is a contradiction. Therefore, I is a bounded linear
functional, and we let M be a fixed positive constant satisfying |I(f)| ≤
M‖f‖∞ for all f ∈ C0(∆).

Observe next that if K is a compact subset of ∆, then there exists
a nonnegative function f ∈ C0(∆) that is identically 1 on K and ≤ 1
everywhere on ∆. Therefore,

µ(K) ≤
∫
f dµ = I(f) ≤M‖f‖∞ = M.

Because ∆ is second countable and locally compact, it is σ-compact, i.e.,
the increasing union ∪Kn of a sequence of compact sets {Kn}. Hence,
µ(∆) = limµ(Kn) ≤ M, showing that µ is a finite measure. Then,
|I(f)| = |

∫
f dµ| ≤ µ(∆)‖f‖∞, and this completes the proof.

THEOREM 1.4. Let ∆ be a second countable locally compact Haus-
dorff space, and let φ be a bounded linear functional on C0(∆). That is,
suppose there exists a positive constant M for which |φ(f)| ≤ M‖f‖∞
for all f ∈ C0(∆). Then φ is the difference φ1−φ2 of two positive linear
functionals φ1 and φ2, whence there exists a unique finite signed Borel
measure µ such that φ(f) =

∫
f dµ for all f ∈ C0(∆).
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PROOF. For f a nonnegative element in C0(∆), define φ1(f) by

φ1(f) = sup
g
φ(g),

where the supremum is taken over all nonnegative functions g ∈ C0(∆)
for which 0 ≤ g(x) ≤ f(x) for all x. Define φ1(f), for an arbitrary
element f ∈ C0(∆), by φ1(f) = φ1(f+)− φ1(f−), where f+ = max(f, 0)
and f− = −min(f, 0). It follows from Exercise 1.8 below that φ1 is well-
defined and is a linear functional on C0(∆). Since the 0 function is one
of the g’s over which we take the supremum when evaluating φ1(f) for
f a nonnegative function, we see that φ1 is a positive linear functional.
We define φ2 to be the difference φ1 − φ. Clearly, since f itself is one of
the g’s over which we take the supremum when evaluating φ1(f) for f a
nonnegative function, we see that φ2 also is a positive linear functional,
so that the existence of a signed measure µ satisfying φ(f) = φ1(f) −
φ2(f) =

∫
f dµ follows from the Riesz Representation Theorem. The

uniqueness of µ is a consequence of the Hahn decomposition theorem.

EXERCISE 1.8. Let L be a vector lattice of bounded functions on
a set ∆, and let φ be a bounded linear functional on L. That is, suppose
that M is a positive constant for which |φ(f)| ≤ M‖f‖∞ for all f ∈ L.
For each nonnegative f ∈ L define, in analogy with the preceding proof,

φ1(f) = sup
g
φ(g),

where the supremum is taken over all g ∈ L for which 0 ≤ g(x) ≤ f(x)
for all x ∈ ∆.

(a) If f is a nonnegative element of L, show that φ1(f) is a finite real
number.

(b) If f and f ′ are two nonnegative functions in L, show that φ1(f +
f ′) = φ1(f) + φ1(f ′).

(c) For each real-valued f = f+ − f− ∈ L, define φ1(f) = φ1(f+) −
φ1(f−). Suppose g and h are nonnegative elements of L and that f =
g − h. Prove that φ1(f) = φ1(g)− φ1(h). HINT: f+ + h = g + f−.

(d) Prove that φ1, as defined in part c, is a positive linear functional
on L.

EXERCISE 1.9. Let ∆ be a locally compact, second countable,
Hausdorff space, and let U1, U2, . . . be a countable basis for the topology
on ∆ for which the closure Un of Un is compact for every n. Let C be
the set of all pairs (n,m) for which Un ⊆ Um, and for each (n,m) ∈ C
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let fn,m be a continuous function from ∆ into [0, 1] that is 1 on Un and
0 on the complement Ũm of Um.

(a) Show that each fn,m belongs to C0(∆) and that the set of fn,m’s
separate the points of ∆.

(b) Let A be the smallest algebra of functions containing all the
fn,m’s. Show that A is uniformly dense in C0(∆). HINT: Use the Stone-
Weierstrass Theorem.

(c) Prove that there exists a countable subset D of C0(∆) such that
every element of C0(∆) is the uniform limit of a sequence of elements
of D. (That is, C0(∆) is a separable metric space with respect to the
metric d given by d(f, g) = ‖f − g‖∞.)

EXERCISE 1.10. (a) Define I on Cc(R) by I(f) =
∫
f(x) dx. Show

that I is a positive linear functional which is not a bounded linear func-
tional.

(b) Show that there is no way to extend the positive linear functional
I of part a to all of C0(R) so that the extension is still a positive linear
functional.

EXERCISE 1.11. Let X be a complex vector space, and let f be a
complex linear functional on X. Write f(x) = u(x) + iv(x), where u(x)
and v(x) are the real and imaginary parts of f(x).

(a) Show that u and v are real linear functionals on the real vector
space X.

(b) Show that u(ix) = −v(x), and v(ix) = u(x). Conclude that a
complex linear functional is completely determined by its real part.

(c) Suppose a is a real linear functional on the complex vector spaceX.
Define g(x) = a(x)− ia(ix). Prove that g is a complex linear functional
on X.

DEFINITION. Let S be a set and let B be a σ-algebra of subsets
of S. By a finite complex measure on B we mean a mapping µ : B → C
that satisfies:

(1) µ(∅) = 0.
(2) If {En} is a sequence of pairwise disjoint elements of B, then the

series
∑
µ(En) is absolutely summable, and

µ(∪En) =
∑

µ(En).

EXERCISE 1.12. Let µ be a finite complex measure on a σ-algebra
B of subsets of a set S.
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(a) Show that there exists a constant M such that |µ(E)| ≤M for all
E ∈ B.

(b) Write the complex-valued function µ on B as µ1 + iµ2, where µ1

and µ2 are real-valued functions. Show that both µ1 and µ2 are finite
signed measures on B. Show also that µ̄ = µ1 − iµ2 is a finite complex
measure on B.

(c) Let X denote the complex vector space of all bounded complex-
valued B-measurable functions on S. If f ∈ X, define∫

f dµ =
∫
f dµ1 + i

∫
f dµ2.

Prove that the assignment f →
∫
f dµ is a linear functional on X and

that there exists a constant M such that

|
∫
f dµ| ≤M‖f‖∞

for all f ∈ X.
(d) Show that ∫

f dµ̄ =
∫
f̄ dµ.

HINT: Write µ = µ1 + iµ2 and f = u+ iv.

THEOREM 1.5. (Riesz Representation Theorem, Complex Version)
Let ∆ be a second countable locally compact Hausdorff space, and de-
note now by C0(∆) the complex vector space of all continuous complex-
valued functions on ∆ that vanish at infinity. Suppose φ is a linear
functional on C0(∆) into the field C, and assume that φ is a bounded
linear functional, i.e., that there exists a positive constant M such that
|φ(f)| ≤ M‖f‖∞ for all f ∈ C0(∆). Then there exists a unique fi-
nite complex Borel measure µ on ∆ such that φ(f) =

∫
f dµ for all

f ∈ C0(∆). See the preceding exercise.

EXERCISE 1.13. (a) Prove Theorem 1.5. HINT: Write φ in terms
of its real and imaginary parts ψ and η. Show that each of these is a
bounded real-valued linear functional on the real vector space C0(∆) of
all real-valued continuous functions on ∆ that vanish at infinity, and
that

ψ(f) =
∫
f dµ1
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and
η(f) =

∫
f dµ2

for all real-valued f ∈ C0(∆). Then show that

φ(f) =
∫
f dµ,

where µ = µ1 + iµ2.
(b) Let ∆ be a second countable, locally compact Hausdorff space,

and let C0(∆) denote the space of continuous complex-valued functions
on ∆ that vanish at infinity. Prove that there is a 1-1 correspondence
between the set of all finite complex Borel measures on ∆ and the set of
all bounded linear functionals on C0(∆).

REMARK. The hypothesis of second countability may be removed
from the Riesz Representation Theorem. However, the notion of mea-
surability must be reformulated. Indeed, the σ-algebra on which the
measure is defined is, from Theorem 1.1, the smallest σ-algebra for which
each element f ∈ Cc(∆) is a measurable function. One can show that
this σ-algebra is the smallest σ-algebra containing the compact Gδ sets.
This σ-algebra is called the σ-algebra of Baire sets, and a measure de-
fined on this σ-algebra is called a Baire measure. One can prove versions
of Theorems 1.2-1.5, for an arbitrary locally compact Hausdorff space ∆,
almost verbatim, only replacing the word “Borel” by the word “Baire.”


