CHAPTER XII

NONLINEAR FUNCTIONAL ANALYSIS, INFINITE-DIMENSIONAL CALCULUS

DEFINITION Let E and F be (possibly infinite dimensional) real or complex Banach spaces, and let f be a map from a subset D of E into F. We say that f is differentiable at a point $x \in D$ if:
(1) x belongs to the interior of D; i.e., there exists an $\epsilon>0$ such that $B_{\epsilon}(x) \subseteq D$.
(2) There exists a continuous linear transformation $L: E \rightarrow F$ and a function $\theta: B_{\epsilon}(0) \rightarrow F$ such that

$$
\begin{equation*}
f(x+h)-f(x)=L(h)+\theta(h) \tag{12.1}
\end{equation*}
$$

for all $h \in B_{\epsilon}(0)$, and

$$
\begin{equation*}
\lim _{h \rightarrow 0}\|\theta(h)\| /\|h\|=0 \tag{12.2}
\end{equation*}
$$

The function f is said to be differentiable on D if it is differentiable at every point of D.

If $E=\mathbb{R}$, i.e., if f is a map from a subset D of \mathbb{R} into a Banach space F, then f is said to have a derivative at a point $x \in D$ if $\lim _{t \rightarrow 0}[f(x+$ $t)-f(x)] / t$ exists, in which case we write

$$
\begin{equation*}
f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t} \tag{12.3}
\end{equation*}
$$

If $D \subseteq E, D^{\prime} \subseteq F$, and $f: D \rightarrow D^{\prime}$, then f is called a diffeomorphism of D onto D^{\prime} if f is a homeomorphism of D onto D^{\prime} and f and f^{-1} are differentiable on D and D^{\prime} respectively.

EXERCISE 12.1. (a) Suppose $f: D \rightarrow F$ is differentiable at a point $x \in D$, and write

$$
f(x+h)-f(x)=L(h)+\theta(h)
$$

as in Equation (12.1). Prove that $\theta(0)=0$.
(b) Let $D \subseteq \mathbb{R}$, and suppose f is a function from D into a Banach space F. Show that f is differentiable at a point $x \in D$ if and only if f has a derivative at x. If f has a derivative at x, what is the continuous linear transformation $L: \mathbb{R} \rightarrow F$ and what is the map θ that satisfy Equation (12.1)?

THEOREM 12.1. Suppose $f: D \rightarrow F$ is differentiable at a point x. Then both the continuous linear transformation L and the map θ of Equation (12.1) are unique.

PROOF. Suppose, as in Equations (12.1) and (12.2), that

$$
\begin{gathered}
f(x+h)-f(x)=L_{1}(h)+\theta_{1}(h) \\
f(x+h)-f(x)=L_{2}(h)+\theta_{2}(h) \\
\lim _{h \rightarrow 0}\left\|\theta_{1}(h)\right\| /\|h\|=0
\end{gathered}
$$

and

$$
\lim _{h \rightarrow 0}\left\|\theta_{2}(h)\right\| /\|h\|=0
$$

Then

$$
L_{1}(h)-L_{2}(h)=\theta_{2}(h)-\theta_{1}(h)
$$

If $L_{1} \neq L_{2}$, choose a unit vector $u \in E$ such that $\left\|L_{1}(u)-L_{2}(u)\right\|=c>$ 0 . But then,

$$
\begin{aligned}
0 & =\lim _{t \rightarrow 0}\left(\left\|\theta_{2}(t u)\right\| /\|t u\|+\left\|\theta_{1}(t u)\right\| /\|t u\|\right) \\
& \geq \lim _{t \rightarrow 0}\left\|\theta_{2}(t u)-\theta_{1}(t u)\right\| /\|t u\| \\
& =\lim _{t \rightarrow 0}\left\|L_{1}(t u)-L_{2}(t u)\right\| /\|t u\| \\
& =\lim _{t \rightarrow 0}|t| c /(|t|\|u\|) \\
& =c \\
& >0
\end{aligned}
$$

which is a contradiction. Therefore, $L_{1}=L_{2}$, whence $\theta_{1}=\theta_{2}$ as well.
DEFINITION. Suppose $f: D \rightarrow F$ is differentiable at a point x. The (unique) continuous linear transformation L is called the differential of f at x, and is denoted by $d f_{x}$. The differential is also called the Fréchet derivative of f at x.

THEOREM 12.2. Let E and F be real or complex Banach spaces.
(1) Let $f: E \rightarrow F$ be a constant function; i.e., $f(x) \equiv y_{0}$. Then f is differentiable at every $x \in E$, and $d f_{x}$ is the zero linear transformation for all x.
(2) Let f be a continuous linear transformation from E into F. Then f is differentiable at every $x \in E$, and $d f_{x}=f$ for all $x \in E$.
(3) Suppose $f: D \rightarrow F$ and $g: D^{\prime} \rightarrow F$ are both differentiable at a point x. Then $f+g: D \cap D^{\prime} \rightarrow F$ is differentiable at x, and $d(f+g)_{x}=d f_{x}+d g_{x}$.
(4) If $f: D \rightarrow F$ is differentiable at a point x, and if c is a scalar, then the function $g=c f$ is differentiable at x and $d g_{x}=c d f_{x}$.
(5) If $f: D \rightarrow F$ is differentiable at a point x, and if v is a vector in E, then

$$
d f_{x}(v)=\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}
$$

(6) Suppose f is a function from a subset $D \subseteq \mathbb{R}$ into F. If f is differentiable at a point x (equivalently, f has a derivative at x), then

$$
f^{\prime}(x)=d f_{x}(1)
$$

PROOF. If $f(x) \equiv y_{0}$, then we have

$$
f(x+h)-f(x)=0+0
$$

i.e., we may take both L and θ to be 0 . Both Equations (12.1) and (12.2) are satisfied, and $d f_{x}=0$ for every x.

If f is itself a continuous linear transformation of E into F, then

$$
f(x+h)-f(x)=f(h)+0
$$

i.e., we may take $L=f$ and $\theta=0$. Then both Equations (12.1) and (12.2) are satisfied, whence $d f_{x}=f$ for every x.

To prove part 3, write

$$
f(x+h)-f(x)=d f_{x}(h)+\theta_{f}(h)
$$

and

$$
g(x+h)-g(x)=d g_{x}(h)+\theta_{g}(h) .
$$

Then we have

$$
(f+g)(x+h)-(f+g)(x)=\left[d f_{x}+d g_{x}\right](h)+\left[\theta_{f}(h)+\theta_{g}(h)\right]
$$

and we may set $L=d f_{x}+d g_{x}$ and $\theta=\theta_{f}+\theta_{g}$. Again, Equations (12.1) and (12.2) are satisfied, and $d(f+g)_{x}=d f_{x}+d g_{x}$.

Part 4 is immediate.
To see part 5 , suppose f is differentiable at x and that v is a vector in E. Then we have

$$
\begin{aligned}
d f_{x}(v) & =\lim _{t \rightarrow 0} d f_{x}(t v) / t \\
& =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)-\theta(t v)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}+\lim _{t \rightarrow 0} \frac{\theta(t v)}{t} \\
& =\lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}
\end{aligned}
$$

showing part 5.
Finally, if f is a map from a subset D of \mathbb{R} into a Banach space F, and if f is differentiable at a point x, then we have from part 5 that

$$
d f_{x}(1)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

which proves that $f^{\prime}(x)=d f_{x}(1)$.
EXERCISE 12.2. Show that the following functions are differentiable at the indicated points, and verify that their differentials are as given below in parentheses.
(a) $f: B(H) \rightarrow B(H)$ is given by $f(T)=T^{2}$. $\left(d f_{T}(S)=T S+S T.\right)$
(b) $f: B(H) \rightarrow B(H)$ is given by $f(T)=T^{n}$. $\left(d f_{T}(S)=\sum_{j=0}^{n-1} T^{j} S T^{n-1-j}\right.$.)
(c) f maps the invertible elements of $B(H)$ into themselves and is given by $f(T)=T^{-1}$.
$\left(d f_{T}(S)=-T^{-1} S T^{-1}.\right)$
(d) Let μ be a σ-finite measure, let p be an integer >1, and let $f: L^{p}(\mu) \rightarrow L^{1}(\mu)$ be given by $f(g)=g^{p}$. $\left(d f_{g}(h)=p g^{p-1} h.\right)$
(e) Suppose E, F, and G are Banach spaces, and let $f: E \times F \rightarrow G$ be continuous and bilinear.
$\left(d f_{x, y}(z, w)=f(x, w)+f(z, y).\right)$
(f) Let E, F and G be Banach spaces, let D be a subset of E, let $f: D \rightarrow F$, let $g: D \rightarrow G$, and assume that f and g are differentiable at a point $x \in D$. Define $h: D \rightarrow F \oplus G$ by $h(y)=(f(y), g(y))$. Show that h is differentiable at x.
$\left(d h_{x}(v)=\left(d f_{x}(v), d g_{x}(v)\right).\right)$
EXERCISE 12.3. Suppose D is a subset of \mathbb{R}^{n} and that $f: D \rightarrow \mathbb{R}^{k}$ is differentiable at a point $x \in D$. If we express each element of \mathbb{R}^{k} in terms of the standard basis for \mathbb{R}^{k}, then we may write f in component form as $\left\{f_{1}, \ldots, f_{k}\right\}$.
(a) Prove that each component function f_{i} of f is differentiable at x.
(b) If we express the linear transformation $d f_{x}$ as a matrix $J(x)$ with respect to the standard bases in \mathbb{R}^{n} and \mathbb{R}^{k}, show that the $i j$ th entry of $J(x)$ is the partial derivative of f_{i} with respect to the j th variable x_{j} evaluated at x. That is, show that

$$
J(x)_{i j}=\frac{\partial f_{i}}{\partial x_{j}}(x)
$$

The matrix $J(x)$ is called the Jacobian of f at x.
EXERCISE 12.4. Let A be a Banach algebra with identity I, and define $f: A \rightarrow A$ by $f(x)=e^{x}$.
(a) Prove that f is differentiable at 0 , and compute $d f_{0}$.
(b) Prove that f is differentiable at every $x \in A$, and compute $d f_{x}(y)$ for arbitrary x and y.

THEOREM 12.3. If $f: D \rightarrow F$ is differentiable at a point x, then f is continuous at x.

PROOF. Suppose $\epsilon>0$ is such that $B_{\epsilon}(x) \subseteq D$, and let y satisfy $0<\|y-x\|<\epsilon$. Then

$$
\begin{aligned}
\|f(y)-f(x)\| & =\|f(x+(y-x))-f(x)\| \\
& =\left\|d f_{x}(y-x)+\theta(y-x)\right\| \\
& \leq\left\|d f_{x}\right\|\|y-x\|+\|y-x\|\|\theta(y-x)\| /\|y-x\|
\end{aligned}
$$

which tends to 0 as y tends to x. This shows the continuity of f at x.
THEOREM 12.4. (Chain Rule) Let E, F, and G be Banach spaces and let $D \subseteq E$ and $D^{\prime} \subseteq F$. Suppose $f: D \rightarrow F$, that $g: D^{\prime} \rightarrow G$, that f is differentiable at a point $x \in D$, and that g is differentiable at the point $f(x) \in D^{\prime}$. Then the composition $g \circ f$ is differentiable at x, and

$$
d(g \circ f)_{x}=d g_{f(x)} \circ d f_{x}
$$

PROOF. Write y for the point $f(x) \in D^{\prime}$, and define the functions θ_{f} and θ_{g} by

$$
\begin{equation*}
f(x+h)-f(x)=d f_{x}(h)+\theta_{f}(h) \tag{12.4}
\end{equation*}
$$

and

$$
\begin{equation*}
g(y+k)-g(y)=d g_{y}(k)+\theta_{g}(k) \tag{12.5}
\end{equation*}
$$

Let $\epsilon>0$ be such that $B_{\epsilon}(y) \subseteq D^{\prime}$, and let $\delta>0$ be such that $B_{\delta}(x) \subseteq D$, that $f\left(B_{\delta}(x)\right) \subseteq B_{\epsilon}(y)$, and that

$$
\begin{equation*}
\left\|\theta_{f}(h)\right\| /\|h\| \leq 1 \tag{12.6}
\end{equation*}
$$

if $\|h\|<\delta$. For $\|h\|<\delta$, define $k(h)=f(x+h)-f(x)$, and observe from Equations (12.4) and (12.6) that $\|k(h)\| \leq M\|h\|$, where $M=\left\|d f_{x}\right\|+1$.

To prove the chain rule, we must show that

$$
\lim _{h \rightarrow 0} \frac{\left\|g(f(x+h))-g(f(x))-d g_{f(x)}\left(d f_{x}(h)\right)\right\|}{\|h\|}=0
$$

But,

$$
\begin{aligned}
& g(f(x+h))-g(f(x))-d g_{f(x)}\left(d f_{x}(h)\right) \\
= & g(y+k(h))-g(y)-d g_{y}\left(d f_{x}(h)\right) \\
= & d g_{y}(k(h))+\theta_{g}(k(h))-d g_{y}\left(d f_{x}(h)\right) \\
= & d g_{y}(f(x+h)-f(x))-d g_{y}\left(d f_{x}(h)\right) \\
\quad & \quad+\theta_{g}(k(h)) \\
= & d g_{y}\left(\theta_{f}(h)\right)+\theta_{g}(k(h))
\end{aligned}
$$

SO,
$\left\|g(f(x+h))-g(f(x))-d g_{f(x)}\left(d f_{x}(h)\right)\right\| \leq\left\|d g_{y}\right\|\left\|\theta_{f}(h)\right\|+\left\|\theta_{g}(k(h))\right\|$,
so that it will suffice to show that

$$
\lim _{h \rightarrow 0}\left\|\theta_{g}(k(h))\right\| /\|h\|=0
$$

If $k(h)=0$, then $\left\|\theta_{g}(k(h))\right\| /\|h\|=0$. Otherwise,

$$
\begin{aligned}
\frac{\left\|\theta_{g}(k(h))\right\|}{\|h\|} & =\frac{\|k(h)\|}{\|h\|} \frac{\left\|\theta_{g}(k(h))\right\|}{\|k(h)\|} \\
& \leq M \frac{\left\|\theta_{g}(k(h))\right\|}{\|k(h)\|}
\end{aligned}
$$

so we need only show that

$$
\lim _{h \rightarrow 0} \frac{\left\|\theta_{g}(k(h))\right\|}{\|k(h)\|}=0 .
$$

But, since f is continuous at x, we have that $k(h)$ approaches 0 as h approaches 0, so that the desired result follows from Equation (12.5).

EXERCISE 12.5. Let E, F, and G be Banach spaces, and let D be a subset of E.
(a) Let $f: D \rightarrow F$ and $g: D \rightarrow G$, and suppose B is a continuous bilinear map of $F \times G$ into a Banach space H. Define $p: D \rightarrow H$ by $p(y)=B(f(y), g(y))$. Assume that f and g are both differentiable at a point $x \in D$. Show that p is differentiable at x and compute $d p_{x}(y)$.
(b) Derive the "Product Formula" for differentials. That is, let A be a Banach algebra, let $f: D \rightarrow A$ and $g: D \rightarrow A$, and suppose both f and g are differentiable at a point $x \in D$. Show that the product function $f(y) g(y)$ is differentiable at x, and derive the formula for its differential.
(c) Suppose E is a Hilbert space and that $f: E \rightarrow \mathbb{R}$ is defined by $f(x)=\|x\|$. Prove that f is differentiable at every nonzero x.
(d) Let $E=L^{1}(\mathbb{R})$, and define $f: E \rightarrow \mathbb{R}$ by $f(x)=\|x\|_{1}$. Show that f is not differentiable at any point.

THEOREM 12.5. (First Derivative Test) Let E be a Banach space, let D be a subset of E, and suppose $f: D \rightarrow \mathbb{R}$ is differentiable at a point $x \in D$. Assume that the point $f(x)$ is an extreme point of the set $f(D)$. Then $d f_{x}$ is the 0 linear transformation. That is, if a function achieves an extreme value at a point where it is differentiable, then the differential at that point must be 0 .

PROOF. Let v be a vector in E. Since x belongs to the interior of D, we let $\epsilon>0$ be such that $x+t v \in D$ if $|t|<\epsilon$, and define a function $h:(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ by $h(t)=f(x+t v)$. Then, by the chain rule, h is differentiable at 0 . Furthermore, since $f(x)$ is an extreme point of the set $f(D)$, it follows that h attains either a local maximum or a local
minimum at 0 . From the first derivative test in elementary calculus, we then have that $h^{\prime}(0)=d h_{0}(1)=0$, implying that $d f_{x}(v)=0$. Since this is true for arbitrary elements $v \in E$, we see that $d f_{x}=0$.

THEOREM 12.6. (Mean Value Theorem) Suppose E and F are Banach spaces, D is a subset of E, and $f: D \rightarrow F$. Suppose x and y are elements of D and that the closed line segment joining x and y is contained in D. Assume that f is continuous at each point of the closed line segment joining x to y, i.e., at each point $(1-t) x+t y$ for $0 \leq t \leq 1$, and assume that f is differentiable at each point on the open segment joining x and y, i.e., at each point $(1-t) x+t y$ for $0<t<1$. Then:
(1) There exists a $t^{*} \in(0,1)$ such that

$$
\begin{aligned}
& \quad\|f(y)-f(x)\| \leq\left\|d f_{z}(y-x)\right\| \leq\left\|d f_{z}\right\|\|y-x\| \text {, } \\
& \text { for } z=\left(1-t^{*}\right) x+t^{*} y .
\end{aligned}
$$

(2) If $F=\mathbb{R}$, then there exists a t^{*} in $(0,1)$ such that

$$
f(y)-f(x)=d f_{z}(y-x)
$$

$$
\text { for } z=\left(1-t^{*}\right) x+t^{*} y
$$

PROOF. Using the Hahn-Banach Theorem, choose ϕ in the conjugate space F^{*} of F so that $\|\phi\|=1$ and

$$
\|f(y)-f(x)\|=\phi(f(y)-f(x))
$$

Let h be the map of $[0,1]$ into E defined by $h(t)=(1-t) x+t y$, and observe that

$$
\|f(y)-f(x)\|=\phi(f(h(1)))-\phi(f(h(0)))
$$

Defining $j=\phi \circ f \circ h$, we have from the chain rule that j is continuous on $[0,1]$ and differentiable on $(0,1)$. Then, using the Mean Value Theorem from elementary calculus, we have:

$$
\begin{aligned}
\|f(y)-f(x)\| & =j(1)-j(0) \\
& =j^{\prime}\left(t^{*}\right) \\
& =d j_{t^{*}}(1) \\
& =d(\phi \circ f \circ h)_{t^{*}}(1) \\
& =d \phi_{f\left(h\left(t^{*}\right)\right)}\left(d f_{h\left(t^{*}\right)}\left(d h_{t^{*}}(1)\right)\right) \\
& =\phi\left(d f_{h\left(t^{*}\right)}\left(d h_{t^{*}}(1)\right)\right) \\
& =\phi\left(d f_{h\left(t^{*}\right)}(y-x)\right)
\end{aligned}
$$

whence

$$
\begin{aligned}
\|f(y)-f(x)\| & \leq\|\phi\|\left\|d f_{h\left(t^{*}\right)}(y-x)\right\| \\
& =\left\|d f_{z}(y-x)\right\|
\end{aligned}
$$

as desired.
We leave the proof of part 2 to the exercises.
EXERCISE 12.6. (a) Prove part 2 of the preceding theorem.
(b) Define $f:[0,1] \rightarrow \mathbb{R}^{2}$ by

$$
f(x)=\left(x^{3}, x^{2}\right)
$$

Show that part 1 of the Mean Value Theorem cannot be strengthened to an equality. That is, show that there is no t^{*} between 0 and 1 satisfying $f(1)-f(0)=d f_{t^{*}}(1)$.
(c) Define D to be the subset of \mathbb{R}^{2} given by $0 \leq x \leq 1,0 \leq y \leq 1$, and define $f: D \rightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=(y \cos x, y \sin x) .
$$

Show that every point $f(x, 1)$ is an extreme point of the set $f(D)$ but that $d f_{(x, 1)} \neq 0$. Conclude that the first derivative test only works when the range space is \mathbb{R}.

DEFINITION. Let f be a map from a subset D of a Banach space E into a Banach space F. We say that f is continuously differentiable at a point x if f is differentiable at each point y in a neighborhood of x and if the map $y \rightarrow d f_{y}$ is continuous at $x .\left(y \rightarrow d f_{y}\right.$ is a map from a neighborhood of $x \in E$ into the Banach space $L(E, F)$.)

The map f is twice differentiable at x if it is continuously differentiable at x and the map $y \rightarrow d f_{y}$ is differentiable at x. The differential of this map $y \rightarrow d f_{y}$ at the point x is denoted by $d^{2} f_{x}$. The map f is 2 times continuously differentiable at x if the map $y \rightarrow d f_{y}$ is continuously differentiable at x.

The notions of n times continuously differentiable are defined by induction.

EXERCISE 12.7. (a) Let E and F be Banach spaces, let D be a subset of E, and suppose $f: D \rightarrow F$ is twice differentiable at a point $x \in D$. For each $v \in E$, show that $d^{2} f_{x}(v)$ is an element of $L(E, F)$, whence for each pair (v, w) of elements in $E,\left[d^{2} f_{x}(v)\right](w)$ is an element of F.
(b) Let f be as in part a. Show that $d^{2} f_{x}$ represents a continuous bilinear map of $E \oplus E$ into F.
(c) Suppose f is a continuous linear transformation of E into F. Show that f is twice differentiable everywhere, and compute $d^{2} f_{x}$ for any x.
(d) Suppose H is a Hilbert space, that $E=F=B(H)$ and that $f(T)=T^{-1}$. Show that f is twice differentiable at each invertible T, and compute $d^{2} f_{T}$.

THEOREM 12.7. (Theorem on Mixed Partials) Suppose E and F are Banach spaces, D is a subset of E, and $f: D \rightarrow F$ is twice differentiable at each point of D. Suppose further that f is 2 times continuously differentiable at a point $x \in D$. Then

$$
\left[d^{2} f_{x}(v)\right](w)=\left[d^{2} f_{x}(w)\right](v)
$$

i.e., the bilinear map $d^{2} f_{x}$ is symmetric.

PROOF. Let v and w be in E, and let $\phi \in F^{*}$. Write $\phi=U+i V$ in its real and imaginary parts. Then

$$
\begin{aligned}
& U\left(\left[d^{2} f_{x}(v)\right](w)\right) \\
= & \lim _{t \rightarrow 0} U\left(\frac{\left[d f_{x+t v}-d f_{x}\right](w)}{t}\right) \\
= & \lim _{t \rightarrow 0} \lim _{s \rightarrow 0} U\left(\frac{f(x+t v+s w)-f(x+t v)-f(x+s w)+f(x)}{s t}\right) \\
= & \lim _{t \rightarrow 0} \lim _{s \rightarrow 0} \frac{J_{s}(t)-J_{s}(0)}{s t}
\end{aligned}
$$

where $J_{s}(t)=U(f(x+s w+t v)-f(x+t v))$. Therefore, using the ordinary Mean Value Theorem on the real-valued function J_{s}, we have that

$$
\begin{aligned}
U\left(\left[d^{2} f_{x}(v)\right](w)\right) & =\lim _{t \rightarrow 0} \lim _{s \rightarrow 0} J_{s}^{\prime}\left(t^{*}\right) / s \\
& =\lim _{t \rightarrow 0} \lim _{s \rightarrow 0} U\left(d f_{x+s w+t^{*} v}(v)-d f_{x+t^{*} v}(v)\right) / s \\
& =\lim _{t \rightarrow 0} \lim _{s \rightarrow 0} U\left(\left[d f_{x+t^{*} v+s w}-d f_{x+t^{*} v}\right](v)\right) / s \\
& =\lim _{t \rightarrow 0} U\left(\left[d^{2} f_{x+t^{*} v}(w)\right](v)\right) \\
& =U\left(\left[d^{2} f_{x}(w)\right](v)\right)
\end{aligned}
$$

because of the continuity of $d^{2} f_{y}$ at $y=x$. A similar computation shows that

$$
V\left(\left[d^{2} f_{x}(v)\right](w)\right)=V\left(\left[d^{2} f_{x}(w)\right](v)\right)
$$

which implies that

$$
\phi\left(\left[d^{2} f_{x}(v)\right](w)\right)=\phi\left(\left[d^{2} f_{x}(w)\right](v)\right) .
$$

This equality being valid for every $\phi \in F^{*}$ implies that

$$
\left[d^{2} f_{x}(v)\right](w)=\left[d^{2} f_{x}(w)\right](v)
$$

as desired.
EXERCISE 12.8. (Second Derivative Test) Let E and F be Banach spaces, let D be a subset of E, and suppose $f: D \rightarrow F$ is 2 times continuously differentiable at a point $x \in D$.
(a) Show that for each pair v, w of elements in E, the function

$$
y \rightarrow\left[d^{2} f_{y}(v)\right](w)
$$

is continuous at x.
(b) Suppose $F=\mathbb{R}$, that f is 2 times continuously differentiable at x, that $d f_{x}=0$, and that the bilinear form $d^{2} f_{x}$ is positive definite; i.e., there exists a $\delta>0$ such that $\left[d^{2} f_{x}(v)\right](v) \geq \delta$ for every unit vector $v \in E$. Prove that f attains a local minimum at x. That is, show that there exists an $\epsilon>0$ such that if $\|y-x\|<\epsilon$ then $f(x)<f(y)$. HINT: Use the Mean Value Theorem twice to show that $f(y)-f(x)>0$ for all y in a sufficiently small ball around x.

EXERCISE 12.9. Let (X, d) be a metric space. A map $\phi: X \rightarrow X$ is called a contraction map on X if there exists an α with $0 \leq \alpha<1$ such that

$$
d(\phi(x), \phi(y)) \leq \alpha d(x, y)
$$

for all $x, y \in X$.
(a) If ϕ is a contraction map on $(X, d), x_{0} \in X$, and $k<n$ are positive integers, show that

$$
\begin{aligned}
d\left(\phi^{n}\left(x_{0}\right), \phi^{k}\left(x_{0}\right)\right) & \leq \sum_{j=k}^{n-1} d\left(\phi^{j+1}\left(x_{0}\right), \phi^{j}\left(x_{0}\right)\right) \\
& \leq \sum_{j=k}^{n-1} \alpha^{j} d\left(\phi\left(x_{0}\right), x_{0}\right) \\
& =d\left(\phi\left(x_{0}\right), x_{0}\right) \alpha^{k} \frac{1-\alpha^{n-k}}{1-\alpha}
\end{aligned}
$$

where ϕ^{i} denotes the composition of ϕ with itself i times.
(b) If ϕ is a contraction map on a complete metric space (X, d), and $x_{0} \in X$, show that the sequence $\left\{\phi^{n}\left(x_{0}\right)\right\}$ has a limit in X.
(c) If ϕ is a contraction map on a complete metric space (X, d), and $x_{0} \in X$, show that the limit y_{0} of the sequence $\left\{\phi^{n}\left(x_{0}\right)\right\}$ is a fixed point of ϕ; i.e., $\phi\left(y_{0}\right)=y_{0}$.
(d) (Contraction mapping theorem) Show that a contraction map on a complete metric space (X, d) has one and only one fixed point y_{0}, and that $y_{0}=\lim _{n} \phi^{n}(x)$ for each $x \in X$.

THEOREM 12.8. (Implicit Function Theorem) Let E and F be Banach spaces, and equip $E \oplus F$ with the max norm. Let f be a map of an open subset O in $E \oplus F$ into F, and suppose f is continuously differentiable at a point $x=\left(x_{1}, x_{2}\right) \in O$. Assume further that the linear transformation $T: F \rightarrow F$, defined by $T(w)=d f_{x}(0, w)$, is 1-1 and onto F. Then there exists a neighborhood U_{1} of x_{1} in E, a neighborhood U_{2} of x_{2} in F, and a unique continuous function $g: U_{1} \rightarrow U_{2}$ such that
(1) The level set $f^{-1}(f(x)) \cap U$ coincides with the graph of g, where $U=U_{1} \times U_{2}$.
(2) g is differentiable at x_{1}, and

$$
d g_{x_{1}}(h)=-T^{-1}\left(d f_{x}(h, 0)\right)
$$

PROOF. We will use the contraction mapping theorem. (See the previous exercise.) By the Isomorphism Theorem for continuous linear transformations on Banach spaces, we know that the inverse T^{-1} of T is an element of the Banach space $L(F, F)$. From the hypothesis of continuous differentiability at x, we may assume then that O is a sufficiently small neighborhood of x so that

$$
\begin{equation*}
\left\|d f_{z}-d f_{x}\right\|<1 / 2\left\|T^{-1}\right\| \tag{12.7}
\end{equation*}
$$

if $z \in O$. Write

$$
f(x+h)-f(x)=d f_{x}(h)+\theta(h)
$$

We may assume also that O is sufficiently small so that

$$
\begin{equation*}
\|\theta(h)\| \leq\|h\| / 2\left\|T^{-1}\right\| \tag{12.8}
\end{equation*}
$$

if $x+h \in O$. Now there exist neighborhoods O_{1} of x_{1} and O_{2} of x_{2} such that $O_{1} \times O_{2} \subseteq O$. Choose $\epsilon>0$ such that the closed ball $\bar{B}_{\epsilon}\left(x_{2}\right) \subseteq O_{2}$, and then choose $\delta>0$ such that $B_{\delta}\left(x_{1}\right) \subseteq O_{1}$ and such that

$$
\begin{equation*}
\delta<\max \left(\epsilon, \epsilon / 2\left\|T^{-1}\right\|\left\|d f_{x}\right\|\right) . \tag{12.9}
\end{equation*}
$$

Set $U_{1}=B_{\delta}\left(x_{1}\right), U_{2}=\bar{B}_{\epsilon}\left(x_{2}\right)$, and $U=U_{1} \times U_{2}$.
Let X be the set of all continuous functions from U_{1} into U_{2}, and make X into a metric space by defining

$$
d\left(g_{1}, g_{2}\right)=\sup _{v \in U_{1}}\left\|g_{1}(v)-g_{2}(v)\right\| .
$$

Then, in fact, X is a complete metric space. (See the following exercise.)
Define a map ϕ, from X into the set of functions from U_{1} into F, by

$$
[\phi(g)](v)=g(v)-T^{-1}(f(v, g(v))-f(x))
$$

Notice that each function $\phi(g)$ is continuous on U_{1}. Further, if $v \in U_{1}$, i.e., if $\left\|v-x_{1}\right\|<\delta$, then using inequalities (12.8) and (12.9) we have that

$$
\begin{aligned}
& \left\|[\phi(g)](v)-x_{2}\right\| \\
= & \left\|g(v)-x_{2}-T^{-1}(f(v, g(v))-f(x))\right\| \\
\leq & \left\|T^{-1}\right\|\left\|T\left(g(v)-x_{2}\right)-f(v, g(v))+f(x)\right\| \\
= & \left\|T^{-1}\right\| \\
& \times\left\|d f_{x}\left(0, g(v)-x_{2}\right)-d f_{x}\left(v-x_{1}, g(v)-x_{2}\right)-\theta\left(v-x_{1}, g(v)-x_{2}\right)\right\| \\
= & \left\|T^{-1}\right\|\left\|d f_{x}\left(v-x_{1}, 0\right)+\theta\left(v-x_{1}, g(v)-x_{2}\right)\right\| \\
\leq & \left\|T^{-1}\right\|\left\|d f_{x}\right\| \delta+\left\|T^{-1}\right\|\left\|\theta\left(v-x_{1}, g(v)-x_{2}\right)\right\| \\
< & \left\|T^{-1}\right\|\left\|d f_{x}\right\| \delta+\left\|\left(v-x_{1}, g(v)-x_{2}\right)\right\| / 2 \\
< & \left\|T^{-1}\right\|\left\|d f_{x}\right\| \delta+\max \left(\left\|v-x_{1}\right\|,\left\|g(v)-x_{2}\right\|\right) / 2 \\
< & \left\|T^{-1}\right\|\left\|d f_{x}\right\| \delta+\epsilon / 2 \\
< & \epsilon
\end{aligned}
$$

showing that $\phi(g) \in X$.

Next, for $g_{1}, g_{2} \in X$, we have:

$$
\begin{aligned}
& \quad d\left(\phi\left(g_{1}\right), \phi\left(g_{2}\right)\right) \\
& =\sup _{v \in U_{1}}\left\|g_{1}(v)-g_{2}(v)-T^{-1}\left(f\left(v, g_{1}(v)\right)-f\left(v, g_{2}(v)\right)\right)\right\| \\
& \leq \sup _{v \in U_{1}}\left\|T^{-1}\right\| \\
& \quad \times\left\|T\left(g_{1}(v)-g_{2}(v)\right)-\left[f\left(v, g_{1}(v)\right)-f\left(v, g_{2}(v)\right)\right]\right\| \\
& =\sup _{v \in U_{1}}\left\|T^{-1}\right\| \\
& \quad \times\left\|\left[T\left(g_{1}(v)\right)-f\left(v, g_{1}(v)\right)\right]-\left[T\left(g_{2}(v)\right)-f\left(v, g_{2}(v)\right)\right]\right\| \\
& \leq \sup _{v \in U_{1}}\left\|T^{-1}\right\| \\
& \quad \times\left\|J^{v}\left(w_{1}\right)-J^{v}\left(w_{2}\right)\right\|,
\end{aligned}
$$

where $w_{i}=g_{i}(v)$, and where J^{v} is the function defined on O_{2} by

$$
J^{v}(w)=T(w)-f(v, w)
$$

So, by the Mean Value Theorem and inequality (12.7), we have

$$
\begin{aligned}
d\left(\phi\left(g_{1}\right), \phi\left(g_{2}\right)\right) & \leq \sup _{v \in U_{1}}\left\|T^{-1}\right\|\left\|d\left(J^{v}\right)_{z}\left(w_{1}-w_{2}\right)\right\| \\
& =\sup _{v \in U_{1}}\left\|T^{-1}\right\|\left\|\left[T-d f_{(v, z)}\right]\left(g_{1}(v)-g_{2}(v)\right)\right\| \\
& \leq \sup _{v \in U_{1}}\left\|T^{-1}\right\|\left\|d f_{x}-d f_{(v, z)}\right\|\left\|g_{1}(v)-g_{2}(v)\right\| \\
& \leq d\left(g_{1}, g_{2}\right) / 2
\end{aligned}
$$

showing that ϕ is a contraction mapping on X.
Let g be the unique fixed point of ϕ. Then, $\phi(g)=g$, whence $f(v, g(v))$ $=f(x)$ for all $v \in U_{1}$, which shows that the graph of g is contained in the level set $f^{-1}(f(x)) \cap U$. On the other hand, if $\left(v_{0}, w_{0}\right) \in U$ satisfies $f\left(v_{0}, w_{0}\right)=f(x)$, we may set $g_{0}(v) \equiv w_{0}$, and observe that $\left[\phi^{n}\left(g_{0}\right)\right]\left(v_{0}\right)=w_{0}$ for all n. Therefore, the unique fixed point g of ϕ must satisfy $g\left(v_{0}\right)=w_{0}$, because $g=\lim \phi^{n}\left(g_{0}\right)$. Hence, any element (v_{0}, w_{0}) of the level set $f^{-1}(f(x)) \cap U$ belongs to the graph of g.

Finally, to see that g is differentiable at x_{1} and has the prescribed differential, it will suffice to show that

$$
\lim _{h \rightarrow 0}\left\|g\left(x_{1}+h\right)-g\left(x_{1}\right)+T^{-1}\left(d f_{x}(h, 0)\right)\right\| /\|h\|=0
$$

Now, because

$$
f\left(x_{1}+h, x_{2}+\left(g\left(x_{1}+h\right)-x_{2}\right)\right)-f\left(x_{1}, x_{2}\right)=0
$$

we have that

$$
0=d f_{x}(h, 0)+d f_{x}\left(0, g\left(x_{1}+h\right)-x_{2}\right)+\theta\left(h, g\left(x_{1}+h\right)-x_{2}\right)
$$

or

$$
g\left(x_{1}+h\right)-g\left(x_{1}\right)=-T^{-1}\left(d f_{x}(h, 0)\right)-T^{-1}\left(\theta\left(h, g\left(x_{1}+h\right)-g\left(x_{1}\right)\right)\right) .
$$

Hence, there exists a constant $M \geq 1$ such that

$$
\left\|g\left(x_{1}+h\right)-g\left(x_{1}\right)\right\| \leq M\|h\|
$$

whenever $x_{1}+h \in U_{1}$. (How?) But then

$$
\begin{aligned}
& \frac{\left\|g\left(x_{1}+h\right)-g\left(x_{1}\right)+T^{-1}\left(d f_{x}(h, 0)\right)\right\|}{\|h\|} \\
\leq & \frac{\left\|T^{-1}\right\|\left\|\theta\left(h, g\left(x_{1}+h\right)-g\left(x_{1}\right)\right)\right\|}{\|h\|} \\
\leq & \frac{\left\|T^{-1}\right\| M\left\|\theta\left(h, g\left(x_{1}+h\right)-g\left(x_{1}\right)\right)\right\|}{\left\|\left(h, g\left(x_{1}+h\right)-g\left(x_{1}\right)\right)\right\|},
\end{aligned}
$$

and this tends to 0 as h tends to 0 since g is continuous at x_{1}.
This completes the proof.
EXERCISE 12.10. Verify that the set X used in the preceding proof is a complete metric space with respect to the function d defined there.

THEOREM 12.9. (Inverse Function Theorem) Let f be a mapping from an open subset O of a Banach space E into E, and assume that f is continuously differentiable at a point $x \in O$. Suppose further that the differential $d f_{x}$ of f at x is 1-1 from E onto E. Then there exist neighborhoods O_{1} of x and O_{2} of $f(x)$ such that f is a homeomorphism of O_{1} onto O_{2}. Further, the inverse f^{-1} of the restriction of f to O_{1} is differentiable at the point $f(x)$, whence

$$
d\left(f^{-1}\right)_{f(x)}=\left(d f_{x}\right)^{-1}
$$

PROOF. Define a map $J: E \times O \rightarrow E$ by $J(v, w)=v-f(w)$. Then J is continuously differentiable at the point $(f(x), x)$, and

$$
d J_{(f(x), x)}(0, y)=-d f_{x}(y)
$$

which is 1-1 from E onto E. Applying the implicit function theorem to J, there exist neighborhoods U_{1} of the point $f(x), U_{2}$ of the point x, and a continuous function $g: U_{1} \rightarrow U_{2}$ whose graph coincides with the level set $J^{-1}(0) \cap\left(U_{1} \times U_{2}\right)$. But this level set consists precisely of the pairs (v, w) in $U_{1} \times U_{2}$ for which $v=f(w)$, while the graph of g consists precisely of the pairs (v, w) in $U_{1} \times U_{2}$ for which $w=g(v)$. Clearly, then, g is the inverse of the restriction of f to U_{2}. Setting $O_{1}=U_{2}$ and $O_{2}=U_{1}$ gives the first part of the theorem. Also, from the implicit function theorem, $g=f^{-1}$ is differentiable at $f(x)$, and then the fact that $d\left(f^{-1}\right)_{f(x)}=\left(d f_{x}\right)^{-1}$ follows directly from the chain rule.

EXERCISE 12.11. Let H be a Hilbert space and let $E=B(H)$.
(a) Show that the exponential map $T \rightarrow e^{T}$ is 1-1 from a neighborhood $U=B_{\epsilon}(0)$ of 0 onto a neighborhood V of I.
(b) Let U and V be as in part a. Show that, for $T \in U$, we have e^{T} is a positive operator if and only if T is selfadjoint, and e^{T} is unitary if and only if T is skewadjoint, i.e., $T^{*}=-T$.

THEOREM 12.10. (Foliated Implicit Function Theorem) Let E and F be Banach spaces, let O be an open subset of $E \times F$, and let $f: O \rightarrow F$ be continuously differentiable at every point $y \in O$. Suppose $x=\left(x_{1}, x_{2}\right)$ is a point in O for which the map $w \rightarrow d f_{x}(0, w)$ is 1-1 from F onto F. Then there exist neighborhoods U_{1} of x_{1}, U_{2} of $f(x), U$ of x, and a diffeomorphism $J: U_{1} \times U_{2} \rightarrow U$ such that $J\left(U_{1} \times\{z\}\right)$ coincides with the level set $f^{-1}(z) \cap U$ for all $z \in U_{2}$.

PROOF. For each $y \in O$, define $T_{y}: F \rightarrow F$ by $T_{y}(w)=d f_{y}(0, w)$. Because T_{x} is an invertible element in $L(F, F)$, and because f is continuously differentiable at x, we may assume that O is small enough so that T_{y} is 1-1 and onto for every $y \in O$.

Define $h: O \rightarrow E \times F$ by

$$
h(y)=h\left(y_{1}, y_{2}\right)=\left(y_{1}, f(y)\right)
$$

Observe that h is continuously differentiable on O, and that

$$
d h_{x}(v, w)=\left(v, d f_{x}(v, w)\right)
$$

whence, if $d h_{x}\left(v_{1}, w_{1}\right)=d h_{x}\left(v_{2}, w_{2}\right)$, then $v_{1}=v_{2}$. But then $d f_{x}\left(0, w_{1}-\right.$ $\left.w_{2}\right)=0$, implying that $w_{1}=w_{2}$, and therefore $d h_{x}$ is 1-1 from $E \times F$ into $E \times F$. The exercise that follows this proof shows that $d h_{x}$ is also onto, so we may apply the inverse function theorem to h. Thus, there exist neighborhoods O_{1} of x and O_{2} of $h(x)$ such that h is a homeomorphism of O_{1} onto O_{2}. Now, there exist neighborhoods U_{1} of x_{1} and U_{2} of $f(x)$ such that $U_{1} \times U_{2} \subseteq O_{2}$, and we define U to be the neighborhood $h^{-1}\left(U_{1} \times U_{2}\right)$ of x. Define J to be the restriction of h^{-1} to $U_{1} \times U_{2}$. Just as in the above argument for $d h_{x}$, we see that $d h_{y}$ is 1-1 and onto if $y \in U$, whence, again by the inverse function theorem, J is differentiable at each point of its domain and is therefore a diffeomorphism of $U_{1} \times U_{2}$ onto U.

We leave the last part of the proof to the following exercise.
EXERCISE 12.12. (a) Show that the linear transformation $d h_{x}$ of the preceding proof is onto.
(b) Prove the last part of Theorem 12.10; i.e., show that $J\left(U_{1} \times\{z\}\right)$ coincides with the level set $f^{-1}(z) \cap U$.

We close this chapter with some exercises that examine the important special case when the Banach space E is actually a (real) Hilbert space.

EXERCISE 12.13. (Implicit Function Theorem in Hilbert Space) Suppose E is a Hilbert space, F is a Banach space, D is a subset of E, f : $D \rightarrow F$ is continuously differentiable on D, and that the differential $d f_{x}$ maps E onto F for each $x \in D$. Let c be an element of the range of f, let S denote the level set $f^{-1}(c)$, let x be in S, and write M for the kernel of $d f_{x}$. Prove that there exists a neighborhood U_{x} of $0 \in M$, a neighborhood V_{x} of $x \in E$, and a continuously differentiable 1-1 function $g_{x}: U_{x} \rightarrow V_{x}$ such that the range of g_{x} coincides with the intersection $V_{x} \cap S$ of V_{x} and S. HINT: Write $E=M \oplus M^{\perp}$. Show also that $d\left(g_{x}\right)_{0}(h)=h$. We say that the level set $S=f^{-1}(c)$ is locally parameterized by an open subset of M.

DEFINITION. Suppose E is a Hilbert space, F is a Banach space, D is a subset of $E, f: D \rightarrow F$ is continuously differentiable on D, and that the differential $d f_{x}$ maps E onto F for each $x \in D$. Let c be an element of the range of f, and let S denote the level set $f^{-1}(c)$. We say that S is a differentiable manifold, and if $x \in S$, then a vector $v \in E$ is called a tangent vector to S at x if there exists an $\epsilon>0$ and a continuously differentiable function $\phi:[-\epsilon, \epsilon] \rightarrow S \subseteq E$ such that $\phi(0)=x$ and $\phi^{\prime}(0)=v$.

EXERCISE 12.14. Let x be a point in a differentiable manifold S, and write M for the kernel of $d f_{x}$. Prove that v is a tangent vector to S at x if and only if $v \in M$. HINT: If $v \in M$, use Exercise 12.13 to define $\phi(t)=g_{x}(t v)$.

DEFINITION. Let D be a subset of a Banach space E, and suppose $f: D \rightarrow \mathbb{R}$ is differentiable at a point $x \in D$. We identify the conjugate space \mathbb{R}^{*} with \mathbb{R}. By the gradient of f at x we mean the element of E^{*} defined by $\operatorname{grad} f(x)=d f_{x}^{*}(1)$, where $d f_{x}^{*}$ denotes the adjoint of the continuous linear transformation $d f_{x}$.

If E is a Hilbert space, then $\operatorname{grad} f(x)$ can by the Riesz representation theorem for Hilbert spaces be identified with an element of $E \equiv E^{*}$.

EXERCISE 12.15. Let S be a manifold in a Hilbert space E, and let g be a real-valued function that is differentiable at each point of an open set D that contains S. Suppose $x \in S$ is such that $g(x) \geq g(y)$ for all $y \in S$, and write $M=\operatorname{ker}\left(d f_{x}\right)$. Prove that the vector $\operatorname{grad} g(x)$ is orthogonal to M.

EXERCISE 12.16. (Method of Lagrange Multipliers) Let E be a Hilbert space, let D be an open subset of E, let $f=\left\{f_{1}, \ldots, f_{n}\right\}: D \rightarrow$ \mathbb{R}^{n} be continuously differentiable at each point of D, and assume that each differential $d f_{x}$ for $x \in D$ maps onto \mathbb{R}^{n}. Let S be the level set $f^{-1}(c)$ for $c \in \mathbb{R}^{n}$. Suppose g is a real-valued differentiable function on D and that g attains a maximum on S at the point x. Prove that there exist real constants $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ such that

$$
\operatorname{grad} g(x)=\sum_{i=1}^{n} \lambda_{i} \operatorname{grad} f_{i}(x)
$$

The constants $\left\{\lambda_{i}\right\}$ are called the Lagrange multipliers.
EXERCISE 12.17. Let S be the unit sphere in $L^{2}([0,1])$; i.e., S is the manifold consisting of the functions $f \in L^{2}([0,1])$ for which $\|f\|_{2}=$ 1.
(a) Define g on S by $g(f)=\int_{0}^{1} f(x) d x$. Use the method of Lagrange multipliers to find all points where g attains its maximum value on S.
(b) Define g on S by $g(f)=\int_{0}^{1}|f|^{3 / 2}(x) d x$. Find the maximum value of g on S.

