
CHAPTER XII

NONLINEAR FUNCTIONAL ANALYSIS,
INFINITE-DIMENSIONAL CALCULUS

DEFINITION Let E and F be (possibly infinite dimensional) real or
complex Banach spaces, and let f be a map from a subset D of E into
F. We say that f is differentiable at a point x ∈ D if:

(1) x belongs to the interior of D; i.e., there exists an ε > 0 such
that Bε(x) ⊆ D.

(2) There exists a continuous linear transformation L : E → F and
a function θ : Bε(0) → F such that

f(x + h)− f(x) = L(h) + θ(h), (12.1)

for all h ∈ Bε(0), and

lim
h→0

‖θ(h)‖/‖h‖ = 0. (12.2)

The function f is said to be differentiable on D if it is differentiable at
every point of D.

If E = R, i.e., if f is a map from a subset D of R into a Banach space
F, then f is said to have a derivative at a point x ∈ D if limt→0[f(x +
t)− f(x)]/t exists, in which case we write

f ′(x) = lim
t→0

f(x + t)− f(x)
t

. (12.3)
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If D ⊆ E, D′ ⊆ F, and f : D → D′, then f is called a diffeomorphism
of D onto D′ if f is a homeomorphism of D onto D′ and f and f−1 are
differentiable on D and D′ respectively.

EXERCISE 12.1. (a) Suppose f : D → F is differentiable at a point
x ∈ D, and write

f(x + h)− f(x) = L(h) + θ(h)

as in Equation (12.1). Prove that θ(0) = 0.
(b) Let D ⊆ R, and suppose f is a function from D into a Banach

space F. Show that f is differentiable at a point x ∈ D if and only if f
has a derivative at x. If f has a derivative at x, what is the continuous
linear transformation L : R → F and what is the map θ that satisfy
Equation (12.1)?

THEOREM 12.1. Suppose f : D → F is differentiable at a point
x. Then both the continuous linear transformation L and the map θ of
Equation (12.1) are unique.

PROOF. Suppose, as in Equations (12.1) and (12.2), that

f(x + h)− f(x) = L1(h) + θ1(h),

f(x + h)− f(x) = L2(h) + θ2(h),

lim
h→0

‖θ1(h)‖/‖h‖ = 0,

and
lim
h→0

‖θ2(h)‖/‖h‖ = 0.

Then
L1(h)− L2(h) = θ2(h)− θ1(h).

If L1 6= L2, choose a unit vector u ∈ E such that ‖L1(u)−L2(u)‖ = c >
0. But then,

0 = lim
t→0

(‖θ2(tu)‖/‖tu‖+ ‖θ1(tu)‖/‖tu‖)

≥ lim
t→0

‖θ2(tu)− θ1(tu)‖/‖tu‖

= lim
t→0

‖L1(tu)− L2(tu)‖/‖tu‖

= lim
t→0

|t|c/(|t|‖u‖)

= c

> 0,
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which is a contradiction. Therefore, L1 = L2, whence θ1 = θ2 as well.

DEFINITION. Suppose f : D → F is differentiable at a point x.
The (unique) continuous linear transformation L is called the differential
of f at x, and is denoted by dfx. The differential is also called the Fréchet
derivative of f at x.

THEOREM 12.2. Let E and F be real or complex Banach spaces.
(1) Let f : E → F be a constant function; i.e., f(x) ≡ y0. Then

f is differentiable at every x ∈ E, and dfx is the zero linear
transformation for all x.

(2) Let f be a continuous linear transformation from E into F. Then
f is differentiable at every x ∈ E, and dfx = f for all x ∈ E.

(3) Suppose f : D → F and g : D′ → F are both differentiable at
a point x. Then f + g : D ∩D′ → F is differentiable at x, and
d(f + g)x = dfx + dgx.

(4) If f : D → F is differentiable at a point x, and if c is a scalar,
then the function g = cf is differentiable at x and dgx = cdfx.

(5) If f : D → F is differentiable at a point x, and if v is a vector
in E, then

dfx(v) = lim
t→0

f(x + tv)− f(x)
t

.

(6) Suppose f is a function from a subset D ⊆ R into F. If f is
differentiable at a point x (equivalently, f has a derivative at x),
then

f ′(x) = dfx(1).

PROOF. If f(x) ≡ y0, then we have

f(x + h)− f(x) = 0 + 0;

i.e., we may take both L and θ to be 0. Both Equations (12.1) and (12.2)
are satisfied, and dfx = 0 for every x.

If f is itself a continuous linear transformation of E into F, then

f(x + h)− f(x) = f(h) + 0;

i.e., we may take L = f and θ = 0. Then both Equations (12.1) and
(12.2) are satisfied, whence dfx = f for every x.
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To prove part 3, write

f(x + h)− f(x) = dfx(h) + θf (h)

and
g(x + h)− g(x) = dgx(h) + θg(h).

Then we have

(f + g)(x + h)− (f + g)(x) = [dfx + dgx](h) + [θf (h) + θg(h)],

and we may set L = dfx + dgx and θ = θf + θg. Again, Equations (12.1)
and (12.2) are satisfied, and d(f + g)x = dfx + dgx.

Part 4 is immediate.
To see part 5, suppose f is differentiable at x and that v is a vector

in E. Then we have

dfx(v) = lim
t→0

dfx(tv)/t

= lim
t→0

f(x + tv)− f(x)− θ(tv)
t

= lim
t→0

f(x + tv)− f(x)
t

+ lim
t→0

θ(tv)
t

= lim
t→0

f(x + tv)− f(x)
t

,

showing part 5.
Finally, if f is a map from a subset D of R into a Banach space F,

and if f is differentiable at a point x, then we have from part 5 that

dfx(1) = lim
t→0

f(x + t)− f(x)
t

,

which proves that f ′(x) = dfx(1).

EXERCISE 12.2. Show that the following functions are differen-
tiable at the indicated points, and verify that their differentials are as
given below in parentheses.

(a) f : B(H) → B(H) is given by f(T ) = T 2.
( dfT (S) = TS + ST. )

(b) f : B(H) → B(H) is given by f(T ) = Tn.

( dfT (S) =
∑n−1

j=0 T jSTn−1−j .)
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(c) f maps the invertible elements of B(H) into themselves and is
given by f(T ) = T−1.
( dfT (S) = −T−1ST−1. )

(d) Let µ be a σ-finite measure, let p be an integer > 1, and let
f : Lp(µ) → L1(µ) be given by f(g) = gp.
(dfg(h) = pgp−1h.)

(e) Suppose E,F, and G are Banach spaces, and let f : E × F → G
be continuous and bilinear.
( dfx,y(z, w) = f(x,w) + f(z, y). )

(f) Let E,F and G be Banach spaces, let D be a subset of E, let
f : D → F, let g : D → G, and assume that f and g are differentiable
at a point x ∈ D. Define h : D → F ⊕ G by h(y) = (f(y), g(y)). Show
that h is differentiable at x.
( dhx(v) = (dfx(v), dgx(v)). )

EXERCISE 12.3. Suppose D is a subset of Rn and that f : D → Rk

is differentiable at a point x ∈ D. If we express each element of Rk in
terms of the standard basis for Rk, then we may write f in component
form as {f1, . . . , fk}.

(a) Prove that each component function fi of f is differentiable at x.
(b) If we express the linear transformation dfx as a matrix J(x) with

respect to the standard bases in Rn and Rk, show that the ijth entry
of J(x) is the partial derivative of fi with respect to the jth variable xj

evaluated at x. That is, show that

J(x)ij =
∂fi

∂xj
(x).

The matrix J(x) is called the Jacobian of f at x.

EXERCISE 12.4. Let A be a Banach algebra with identity I, and
define f : A → A by f(x) = ex.

(a) Prove that f is differentiable at 0, and compute df0.
(b) Prove that f is differentiable at every x ∈ A, and compute dfx(y)

for arbitrary x and y.

THEOREM 12.3. If f : D → F is differentiable at a point x, then
f is continuous at x.

PROOF. Suppose ε > 0 is such that Bε(x) ⊆ D, and let y satisfy
0 < ‖y − x‖ < ε. Then

‖f(y)− f(x)‖ = ‖f(x + (y − x))− f(x)‖
= ‖dfx(y − x) + θ(y − x)‖
≤ ‖dfx‖‖y − x‖+ ‖y − x‖‖θ(y − x)‖/‖y − x‖,
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which tends to 0 as y tends to x. This shows the continuity of f at x.

THEOREM 12.4. (Chain Rule) Let E,F, and G be Banach spaces
and let D ⊆ E and D′ ⊆ F. Suppose f : D → F, that g : D′ → G, that
f is differentiable at a point x ∈ D, and that g is differentiable at the
point f(x) ∈ D′. Then the composition g ◦ f is differentiable at x, and

d(g ◦ f)x = dgf(x) ◦ dfx.

PROOF. Write y for the point f(x) ∈ D′, and define the functions
θf and θg by

f(x + h)− f(x) = dfx(h) + θf (h), (12.4)

and
g(y + k)− g(y) = dgy(k) + θg(k). (12.5)

Let ε > 0 be such that Bε(y) ⊆ D′, and let δ > 0 be such that Bδ(x) ⊆ D,
that f(Bδ(x)) ⊆ Bε(y), and that

‖θf (h)‖/‖h‖ ≤ 1 (12.6)

if ‖h‖ < δ. For ‖h‖ < δ, define k(h) = f(x+h)− f(x), and observe from
Equations (12.4) and (12.6) that ‖k(h)‖ ≤ M‖h‖, where M = ‖dfx‖+1.

To prove the chain rule, we must show that

lim
h→0

‖g(f(x + h))− g(f(x))− dgf(x)(dfx(h))‖
‖h‖

= 0.

But,
g(f(x + h))− g(f(x))− dgf(x)(dfx(h))

= g(y + k(h))− g(y)− dgy(dfx(h))

= dgy(k(h)) + θg(k(h))− dgy(dfx(h))

= dgy(f(x + h)− f(x))− dgy(dfx(h))

+ θg(k(h))

= dgy(θf (h)) + θg(k(h)),
so,

‖g(f(x + h))− g(f(x))− dgf(x)(dfx(h))‖ ≤ ‖dgy‖‖θf (h)‖+ ‖θg(k(h))‖,

so that it will suffice to show that

lim
h→0

‖θg(k(h))‖/‖h‖ = 0.
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If k(h) = 0, then ‖θg(k(h))‖/‖h‖ = 0. Otherwise,

‖θg(k(h))‖
‖h‖

=
‖k(h)‖
‖h‖

‖θg(k(h))‖
‖k(h)‖

≤ M
‖θg(k(h))‖
‖k(h)‖

,

so we need only show that

lim
h→0

‖θg(k(h))‖
‖k(h)‖

= 0.

But, since f is continuous at x, we have that k(h) approaches 0 as h
approaches 0, so that the desired result follows from Equation (12.5).

EXERCISE 12.5. Let E,F, and G be Banach spaces, and let D be
a subset of E.

(a) Let f : D → F and g : D → G, and suppose B is a continuous
bilinear map of F × G into a Banach space H. Define p : D → H by
p(y) = B(f(y), g(y)). Assume that f and g are both differentiable at a
point x ∈ D. Show that p is differentiable at x and compute dpx(y).

(b) Derive the “Product Formula” for differentials. That is, let A be a
Banach algebra, let f : D → A and g : D → A, and suppose both f and
g are differentiable at a point x ∈ D. Show that the product function
f(y)g(y) is differentiable at x, and derive the formula for its differential.

(c) Suppose E is a Hilbert space and that f : E → R is defined by
f(x) = ‖x‖. Prove that f is differentiable at every nonzero x.

(d) Let E = L1(R), and define f : E → R by f(x) = ‖x‖1. Show that
f is not differentiable at any point.

THEOREM 12.5. (First Derivative Test) Let E be a Banach space,
let D be a subset of E, and suppose f : D → R is differentiable at a
point x ∈ D. Assume that the point f(x) is an extreme point of the
set f(D). Then dfx is the 0 linear transformation. That is, if a function
achieves an extreme value at a point where it is differentiable, then the
differential at that point must be 0.

PROOF. Let v be a vector in E. Since x belongs to the interior of
D, we let ε > 0 be such that x + tv ∈ D if |t| < ε, and define a function
h : (−ε, ε) → R by h(t) = f(x + tv). Then, by the chain rule, h is
differentiable at 0. Furthermore, since f(x) is an extreme point of the
set f(D), it follows that h attains either a local maximum or a local
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minimum at 0. From the first derivative test in elementary calculus, we
then have that h′(0) = dh0(1) = 0, implying that dfx(v) = 0. Since this
is true for arbitrary elements v ∈ E, we see that dfx = 0.

THEOREM 12.6. (Mean Value Theorem) Suppose E and F are
Banach spaces, D is a subset of E, and f : D → F. Suppose x and y
are elements of D and that the closed line segment joining x and y is
contained in D. Assume that f is continuous at each point of the closed
line segment joining x to y, i.e., at each point (1− t)x+ ty for 0 ≤ t ≤ 1,
and assume that f is differentiable at each point on the open segment
joining x and y, i.e., at each point (1− t)x + ty for 0 < t < 1. Then:

(1) There exists a t∗ ∈ (0, 1) such that

‖f(y)− f(x)‖ ≤ ‖dfz(y − x)‖ ≤ ‖dfz‖‖y − x‖,

for z = (1− t∗)x + t∗y.
(2) If F = R, then there exists a t∗ in (0,1) such that

f(y)− f(x) = dfz(y − x)

for z = (1− t∗)x + t∗y.

PROOF. Using the Hahn-Banach Theorem, choose φ in the conju-
gate space F ∗ of F so that ‖φ‖ = 1 and

‖f(y)− f(x)‖ = φ(f(y)− f(x)).

Let h be the map of [0,1] into E defined by h(t) = (1 − t)x + ty, and
observe that

‖f(y)− f(x)‖ = φ(f(h(1)))− φ(f(h(0))).

Defining j = φ◦f ◦h, we have from the chain rule that j is continuous on
[0,1] and differentiable on (0,1). Then, using the Mean Value Theorem
from elementary calculus, we have:

‖f(y)− f(x)‖ = j(1)− j(0)

= j′(t∗)

= djt∗(1)

= d(φ ◦ f ◦ h)t∗(1)

= dφf(h(t∗))(dfh(t∗)(dht∗(1)))

= φ(dfh(t∗)(dht∗(1)))

= φ(dfh(t∗)(y − x)),
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whence
‖f(y)− f(x)‖ ≤ ‖φ‖‖dfh(t∗)(y − x)‖

= ‖dfz(y − x)‖,

as desired.
We leave the proof of part 2 to the exercises.

EXERCISE 12.6. (a) Prove part 2 of the preceding theorem.
(b) Define f : [0, 1] → R2 by

f(x) = (x3, x2).

Show that part 1 of the Mean Value Theorem cannot be strengthened to
an equality. That is, show that there is no t∗ between 0 and 1 satisfying
f(1)− f(0) = dft∗(1).

(c) Define D to be the subset of R2 given by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,
and define f : D → R2 by

f(x, y) = (y cos x, y sinx).

Show that every point f(x, 1) is an extreme point of the set f(D) but
that df(x,1) 6= 0. Conclude that the first derivative test only works when
the range space is R.

DEFINITION. Let f be a map from a subset D of a Banach space
E into a Banach space F. We say that f is continuously differentiable
at a point x if f is differentiable at each point y in a neighborhood of x
and if the map y → dfy is continuous at x. ( y → dfy is a map from a
neighborhood of x ∈ E into the Banach space L(E,F ). )

The map f is twice differentiable at x if it is continuously differen-
tiable at x and the map y → dfy is differentiable at x. The differential
of this map y → dfy at the point x is denoted by d2fx. The map f is 2
times continuously differentiable at x if the map y → dfy is continuously
differentiable at x.

The notions of n times continuously differentiable are defined by in-
duction.

EXERCISE 12.7. (a) Let E and F be Banach spaces, let D be a
subset of E, and suppose f : D → F is twice differentiable at a point
x ∈ D. For each v ∈ E, show that d2fx(v) is an element of L(E,F ),
whence for each pair (v, w) of elements in E, [d2fx(v)](w) is an element
of F.



254 CHAPTER XII

(b) Let f be as in part a. Show that d2fx represents a continuous
bilinear map of E ⊕ E into F.

(c) Suppose f is a continuous linear transformation of E into F. Show
that f is twice differentiable everywhere, and compute d2fx for any x.

(d) Suppose H is a Hilbert space, that E = F = B(H) and that
f(T ) = T−1. Show that f is twice differentiable at each invertible T,
and compute d2fT .

THEOREM 12.7. (Theorem on Mixed Partials) Suppose E and F
are Banach spaces, D is a subset of E, and f : D → F is twice differen-
tiable at each point of D. Suppose further that f is 2 times continuously
differentiable at a point x ∈ D. Then

[d2fx(v)](w) = [d2fx(w)](v);

i.e., the bilinear map d2fx is symmetric.

PROOF. Let v and w be in E, and let φ ∈ F ∗. Write φ = U + iV
in its real and imaginary parts. Then

U([d2fx(v)](w))

= lim
t→0

U(
[dfx+tv − dfx](w)

t
)

= lim
t→0

lim
s→0

U(
f(x + tv + sw)− f(x + tv)− f(x + sw) + f(x)

st
)

= lim
t→0

lim
s→0

Js(t)− Js(0)
st

,

where Js(t) = U(f(x+sw+tv)−f(x+tv)). Therefore, using the ordinary
Mean Value Theorem on the real-valued function Js, we have that

U([d2fx(v)](w)) = lim
t→0

lim
s→0

J ′s(t
∗)/s

= lim
t→0

lim
s→0

U(dfx+sw+t∗v(v)− dfx+t∗v(v))/s

= lim
t→0

lim
s→0

U([dfx+t∗v+sw − dfx+t∗v](v))/s

= lim
t→0

U([d2fx+t∗v(w)](v))

= U([d2fx(w)](v)),

because of the continuity of d2fy at y = x. A similar computation shows
that

V ([d2fx(v)](w)) = V ([d2fx(w)](v)),



NONLINEAR FUNCTIONAL ANALYSIS 255

which implies that

φ([d2fx(v)](w)) = φ([d2fx(w)](v)).

This equality being valid for every φ ∈ F ∗ implies that

[d2fx(v)](w) = [d2fx(w)](v),

as desired.

EXERCISE 12.8. (Second Derivative Test) Let E and F be Banach
spaces, let D be a subset of E, and suppose f : D → F is 2 times
continuously differentiable at a point x ∈ D.

(a) Show that for each pair v, w of elements in E, the function

y → [d2fy(v)](w)

is continuous at x.
(b) Suppose F = R, that f is 2 times continuously differentiable at

x, that dfx = 0, and that the bilinear form d2fx is positive definite; i.e.,
there exists a δ > 0 such that [d2fx(v)](v) ≥ δ for every unit vector
v ∈ E. Prove that f attains a local minimum at x. That is, show that
there exists an ε > 0 such that if ‖y − x‖ < ε then f(x) < f(y). HINT:
Use the Mean Value Theorem twice to show that f(y)− f(x) > 0 for all
y in a sufficiently small ball around x.

EXERCISE 12.9. Let (X, d) be a metric space. A map φ : X → X
is called a contraction map on X if there exists an α with 0 ≤ α < 1
such that

d(φ(x), φ(y)) ≤ αd(x, y)

for all x, y ∈ X.
(a) If φ is a contraction map on (X, d), x0 ∈ X, and k < n are positive

integers, show that

d(φn(x0), φk(x0)) ≤
n−1∑
j=k

d(φj+1(x0), φj(x0))

≤
n−1∑
j=k

αjd(φ(x0), x0)

= d(φ(x0), x0)αk 1− αn−k

1− α
,
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where φi denotes the composition of φ with itself i times.
(b) If φ is a contraction map on a complete metric space (X, d), and

x0 ∈ X, show that the sequence {φn(x0)} has a limit in X.
(c) If φ is a contraction map on a complete metric space (X, d), and

x0 ∈ X, show that the limit y0 of the sequence {φn(x0)} is a fixed point
of φ; i.e., φ(y0) = y0.

(d) (Contraction mapping theorem) Show that a contraction map on
a complete metric space (X, d) has one and only one fixed point y0, and
that y0 = limn φn(x) for each x ∈ X.

THEOREM 12.8. (Implicit Function Theorem) Let E and F be
Banach spaces, and equip E ⊕ F with the max norm. Let f be a map
of an open subset O in E ⊕ F into F, and suppose f is continuously
differentiable at a point x = (x1, x2) ∈ O. Assume further that the linear
transformation T : F → F, defined by T (w) = dfx(0, w), is 1-1 and onto
F. Then there exists a neighborhood U1 of x1 in E, a neighborhood U2

of x2 in F, and a unique continuous function g : U1 → U2 such that

(1) The level set f−1(f(x))∩U coincides with the graph of g, where
U = U1 × U2.

(2) g is differentiable at x1, and

dgx1(h) = −T−1(dfx(h, 0)).

PROOF. We will use the contraction mapping theorem. (See the
previous exercise.) By the Isomorphism Theorem for continuous linear
transformations on Banach spaces, we know that the inverse T−1 of T is
an element of the Banach space L(F, F ). From the hypothesis of contin-
uous differentiability at x, we may assume then that O is a sufficiently
small neighborhood of x so that

‖dfz − dfx‖ < 1/2‖T−1‖ (12.7)

if z ∈ O. Write

f(x + h)− f(x) = dfx(h) + θ(h).

We may assume also that O is sufficiently small so that

‖θ(h)‖ ≤ ‖h‖/2‖T−1‖ (12.8)
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if x+h ∈ O. Now there exist neighborhoods O1 of x1 and O2 of x2 such
that O1 ×O2 ⊆ O. Choose ε > 0 such that the closed ball B̄ε(x2) ⊆ O2,
and then choose δ > 0 such that Bδ(x1) ⊆ O1 and such that

δ < max(ε, ε/2‖T−1‖‖dfx‖). (12.9)

Set U1 = Bδ(x1), U2 = B̄ε(x2), and U = U1 × U2.

Let X be the set of all continuous functions from U1 into U2, and
make X into a metric space by defining

d(g1, g2) = sup
v∈U1

‖g1(v)− g2(v)‖.

Then, in fact, X is a complete metric space. (See the following exercise.)
Define a map φ, from X into the set of functions from U1 into F, by

[φ(g)](v) = g(v)− T−1(f(v, g(v))− f(x)).

Notice that each function φ(g) is continuous on U1. Further, if v ∈ U1,
i.e., if ‖v − x1‖ < δ, then using inequalities (12.8) and (12.9) we have
that

‖[φ(g)](v)− x2‖
= ‖g(v)− x2 − T−1(f(v, g(v))− f(x))‖
≤ ‖T−1‖‖T (g(v)− x2)− f(v, g(v)) + f(x)‖
= ‖T−1‖
× ‖dfx(0, g(v)− x2)− dfx(v − x1, g(v)− x2)− θ(v − x1, g(v)− x2)‖

= ‖T−1‖‖dfx(v − x1, 0) + θ(v − x1, g(v)− x2)‖
≤ ‖T−1‖‖dfx‖δ + ‖T−1‖‖θ(v − x1, g(v)− x2)‖
< ‖T−1‖‖dfx‖δ + ‖(v − x1, g(v)− x2)‖/2

< ‖T−1‖‖dfx‖δ + max(‖v − x1‖, ‖g(v)− x2‖)/2

< ‖T−1‖‖dfx‖δ + ε/2

< ε,

showing that φ(g) ∈ X.
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Next, for g1, g2 ∈ X, we have:

d(φ(g1), φ(g2))

= sup
v∈U1

‖g1(v)− g2(v)− T−1(f(v, g1(v))− f(v, g2(v)))‖

≤ sup
v∈U1

‖T−1‖

× ‖T (g1(v)− g2(v))− [f(v, g1(v))− f(v, g2(v))]‖
= sup

v∈U1

‖T−1‖

× ‖[T (g1(v))− f(v, g1(v))]− [T (g2(v))− f(v, g2(v))]‖
≤ sup

v∈U1

‖T−1‖

× ‖Jv(w1)− Jv(w2)‖,

where wi = gi(v), and where Jv is the function defined on O2 by

Jv(w) = T (w)− f(v, w).

So, by the Mean Value Theorem and inequality (12.7), we have

d(φ(g1), φ(g2)) ≤ sup
v∈U1

‖T−1‖‖d(Jv)z(w1 − w2)‖

= sup
v∈U1

‖T−1‖‖[T − df(v,z)](g1(v)− g2(v))‖

≤ sup
v∈U1

‖T−1‖‖dfx − df(v,z)‖‖g1(v)− g2(v)‖

≤ d(g1, g2)/2,

showing that φ is a contraction mapping on X.
Let g be the unique fixed point of φ. Then, φ(g) = g, whence f(v, g(v))

= f(x) for all v ∈ U1, which shows that the graph of g is contained
in the level set f−1(f(x)) ∩ U. On the other hand, if (v0, w0) ∈ U
satisfies f(v0, w0) = f(x), we may set g0(v) ≡ w0, and observe that
[φn(g0)](v0) = w0 for all n. Therefore, the unique fixed point g of φ
must satisfy g(v0) = w0, because g = lim φn(g0). Hence, any element
(v0, w0) of the level set f−1(f(x)) ∩ U belongs to the graph of g.

Finally, to see that g is differentiable at x1 and has the prescribed
differential, it will suffice to show that

lim
h→0

‖g(x1 + h)− g(x1) + T−1(dfx(h, 0))‖/‖h‖ = 0.
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Now, because

f(x1 + h, x2 + (g(x1 + h)− x2))− f(x1, x2) = 0,

we have that

0 = dfx(h, 0) + dfx(0, g(x1 + h)− x2) + θ(h, g(x1 + h)− x2),

or

g(x1 + h)− g(x1) = −T−1(dfx(h, 0))− T−1(θ(h, g(x1 + h)− g(x1))).

Hence, there exists a constant M ≥ 1 such that

‖g(x1 + h)− g(x1)‖ ≤ M‖h‖

whenever x1 + h ∈ U1. (How?) But then

‖g(x1 + h)− g(x1) + T−1(dfx(h, 0))‖
‖h‖

≤ ‖T−1‖‖θ(h, g(x1 + h)− g(x1))‖
‖h‖

≤ ‖T−1‖M‖θ(h, g(x1 + h)− g(x1))‖
‖(h, g(x1 + h)− g(x1))‖

,

and this tends to 0 as h tends to 0 since g is continuous at x1.
This completes the proof.

EXERCISE 12.10. Verify that the set X used in the preceding proof
is a complete metric space with respect to the function d defined there.

THEOREM 12.9. (Inverse Function Theorem) Let f be a mapping
from an open subset O of a Banach space E into E, and assume that
f is continuously differentiable at a point x ∈ O. Suppose further that
the differential dfx of f at x is 1-1 from E onto E. Then there exist
neighborhoods O1 of x and O2 of f(x) such that f is a homeomorphism
of O1 onto O2. Further, the inverse f−1 of the restriction of f to O1 is
differentiable at the point f(x), whence

d(f−1)f(x) = (dfx)−1.
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PROOF. Define a map J : E×O → E by J(v, w) = v− f(w). Then
J is continuously differentiable at the point (f(x), x), and

dJ(f(x),x)(0, y) = −dfx(y),

which is 1-1 from E onto E. Applying the implicit function theorem to
J, there exist neighborhoods U1 of the point f(x), U2 of the point x,
and a continuous function g : U1 → U2 whose graph coincides with the
level set J−1(0) ∩ (U1 × U2). But this level set consists precisely of the
pairs (v, w) in U1×U2 for which v = f(w), while the graph of g consists
precisely of the pairs (v, w) in U1 × U2 for which w = g(v). Clearly,
then, g is the inverse of the restriction of f to U2. Setting O1 = U2 and
O2 = U1 gives the first part of the theorem. Also, from the implicit
function theorem, g = f−1 is differentiable at f(x), and then the fact
that d(f−1)f(x) = (dfx)−1 follows directly from the chain rule.

EXERCISE 12.11. Let H be a Hilbert space and let E = B(H).
(a) Show that the exponential map T → eT is 1-1 from a neighbor-

hood U = Bε(0) of 0 onto a neighborhood V of I.
(b) Let U and V be as in part a. Show that, for T ∈ U, we have eT

is a positive operator if and only if T is selfadjoint, and eT is unitary if
and only if T is skewadjoint, i.e., T ∗ = −T.

THEOREM 12.10. (Foliated Implicit Function Theorem) Let E
and F be Banach spaces, let O be an open subset of E × F, and let
f : O → F be continuously differentiable at every point y ∈ O. Suppose
x = (x1, x2) is a point in O for which the map w → dfx(0, w) is 1-1 from
F onto F. Then there exist neighborhoods U1 of x1, U2 of f(x), U of x,
and a diffeomorphism J : U1 ×U2 → U such that J(U1 × {z}) coincides
with the level set f−1(z) ∩ U for all z ∈ U2.

PROOF. For each y ∈ O, define Ty : F → F by Ty(w) = dfy(0, w).
Because Tx is an invertible element in L(F, F ), and because f is con-
tinuously differentiable at x, we may assume that O is small enough so
that Ty is 1-1 and onto for every y ∈ O.

Define h : O → E × F by

h(y) = h(y1, y2) = (y1, f(y)).

Observe that h is continuously differentiable on O, and that

dhx(v, w) = (v, dfx(v, w)),
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whence, if dhx(v1, w1) = dhx(v2, w2), then v1 = v2. But then dfx(0, w1−
w2) = 0, implying that w1 = w2, and therefore dhx is 1-1 from E×F into
E × F. The exercise that follows this proof shows that dhx is also onto,
so we may apply the inverse function theorem to h. Thus, there exist
neighborhoods O1 of x and O2 of h(x) such that h is a homeomorphism
of O1 onto O2. Now, there exist neighborhoods U1 of x1 and U2 of
f(x) such that U1 × U2 ⊆ O2, and we define U to be the neighborhood
h−1(U1×U2) of x. Define J to be the restriction of h−1 to U1×U2. Just
as in the above argument for dhx, we see that dhy is 1-1 and onto if
y ∈ U, whence, again by the inverse function theorem, J is differentiable
at each point of its domain and is therefore a diffeomorphism of U1×U2

onto U.

We leave the last part of the proof to the following exercise.

EXERCISE 12.12. (a) Show that the linear transformation dhx of
the preceding proof is onto.

(b) Prove the last part of Theorem 12.10; i.e., show that J(U1×{z})
coincides with the level set f−1(z) ∩ U.

We close this chapter with some exercises that examine the important
special case when the Banach space E is actually a (real) Hilbert space.

EXERCISE 12.13. (Implicit Function Theorem in Hilbert Space)
Suppose E is a Hilbert space, F is a Banach space, D is a subset of E, f :
D → F is continuously differentiable on D, and that the differential dfx

maps E onto F for each x ∈ D. Let c be an element of the range of f, let
S denote the level set f−1(c), let x be in S, and write M for the kernel of
dfx. Prove that there exists a neighborhood Ux of 0 ∈ M, a neighborhood
Vx of x ∈ E, and a continuously differentiable 1-1 function gx : Ux → Vx

such that the range of gx coincides with the intersection Vx ∩ S of Vx

and S. HINT: Write E = M ⊕M⊥. Show also that d(gx)0(h) = h. We
say that the level set S = f−1(c) is locally parameterized by an open
subset of M.

DEFINITION. Suppose E is a Hilbert space, F is a Banach space,
D is a subset of E, f : D → F is continuously differentiable on D,
and that the differential dfx maps E onto F for each x ∈ D. Let c be
an element of the range of f, and let S denote the level set f−1(c).
We say that S is a differentiable manifold, and if x ∈ S, then a vector
v ∈ E is called a tangent vector to S at x if there exists an ε > 0 and
a continuously differentiable function φ : [−ε, ε] → S ⊆ E such that
φ(0) = x and φ′(0) = v.
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EXERCISE 12.14. Let x be a point in a differentiable manifold S,
and write M for the kernel of dfx. Prove that v is a tangent vector to S
at x if and only if v ∈ M. HINT: If v ∈ M, use Exercise 12.13 to define
φ(t) = gx(tv).

DEFINITION. Let D be a subset of a Banach space E, and suppose
f : D → R is differentiable at a point x ∈ D. We identify the conjugate
space R∗ with R. By the gradient of f at x we mean the element of
E∗ defined by grad f(x) = df∗x(1), where df∗x denotes the adjoint of the
continuous linear transformation dfx.

If E is a Hilbert space, then grad f(x) can by the Riesz representation
theorem for Hilbert spaces be identified with an element of E ≡ E∗.

EXERCISE 12.15. Let S be a manifold in a Hilbert space E, and
let g be a real-valued function that is differentiable at each point of an
open set D that contains S. Suppose x ∈ S is such that g(x) ≥ g(y) for
all y ∈ S, and write M = ker(dfx). Prove that the vector grad g(x) is
orthogonal to M.

EXERCISE 12.16. (Method of Lagrange Multipliers) Let E be a
Hilbert space, let D be an open subset of E, let f = {f1, . . . , fn} : D →
Rn be continuously differentiable at each point of D, and assume that
each differential dfx for x ∈ D maps onto Rn. Let S be the level set
f−1(c) for c ∈ Rn. Suppose g is a real-valued differentiable function on
D and that g attains a maximum on S at the point x. Prove that there
exist real constants {λ1, . . . , λn} such that

grad g(x) =
n∑

i=1

λigrad fi(x).

The constants {λi} are called the Lagrange multipliers.

EXERCISE 12.17. Let S be the unit sphere in L2([0, 1]); i.e., S is
the manifold consisting of the functions f ∈ L2([0, 1]) for which ‖f‖2 =
1.

(a) Define g on S by g(f) =
∫ 1

0
f(x) dx. Use the method of Lagrange

multipliers to find all points where g attains its maximum value on S.

(b) Define g on S by g(f) =
∫ 1

0
|f |3/2(x) dx. Find the maximum value

of g on S.


