
CHAPTER III

TOPOLOGICAL VECTOR SPACES AND
CONTINUOUS LINEAR FUNCTIONALS

The marvelous interaction between linearity and topology is introduced
in this chapter. Although the most familiar examples of this interaction
may be normed linear spaces, we have in mind here the more subtle, and
perhaps more important, topological vector spaces whose topologies are
defined as the weakest topologies making certain collections of functions
continuous. See the examples in Exercises 3.8 and 3.9, and particularly
the Schwartz space S discussed in Exercise 3.10.

DEFINITION. A topological vector space is a real (or complex)
vector space X on which there is a Hausdorff topology such that:

(1) The map (x, y) → x+y is continuous fromX×X intoX. (Addition
is continuous.) and

(2) The map (t, x) → tx is continuous from R×X into X (or C×X
into X). (Scalar multiplication is continuous.)

We say that a topological vector space X is a real or complex topolog-
ical vector space according to which field of scalars we are considering.
A complex topological vector space is obviously also a real topological
vector space.

A metric d on a vector space X is called translation-invariant if d(x+
z, y + z) = d(x, y) for all x, y, z ∈ X. If the topology on a topological
vector space X is determined by a translation-invariant metric d, we
call X (or (X, d)) a metrizable vector space. If x is an element of a
metrizable vector space (X, d), we denote by Bε(x) the ball of radius
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ε around x; i.e., Bε(x) = {y : d(x, y) < ε}. If the topology on a vector
space X is determined by the translation-invariant metric d defined by a
norm on X, i.e., d(x, y) = ‖x−y‖, we call X a normable vector space. If
the topology on X is determined by some complete translation-invariant
metric, we call X a Fréchet space.

The topological vector space X is called separable if it contains a
countable dense subset.

Two topological vector spacesX1 andX2 are topologically isomorphic
if there exists a linear isomorphism T from X1 onto X2 that is also a
homeomorphism. In this case, T is called a topological isomorphism.

EXERCISE 3.1. (a) Let X be a topological vector space, and let x
be a nonzero element of X. Show that the map y → x+y is a (nonlinear)
homeomorphism of X onto itself. Hence, U is a neighborhood of 0 if and
only if x+ U is a neighborhood of x. Show further that if U is an open
subset of X and S is any subset of X, then S + U is an open subset of
X.

(b) Show that x→ −x is a topological isomorphism of X onto itself.
Hence, if U is a neighborhood of 0, then −U also is a neighborhood of 0,
and hence V = U ∩ (−U) is a symmetric neighborhood of 0; i.e., x ∈ V
if and only if −x ∈ V.

(c) If U is a neighborhood of 0 in a topological vector space X, use
the continuity of addition to show that there exists a neighborhood V
of 0 such that V + V ⊆ U.

(d) If X1, . . . , Xn are topological vector spaces, show that the (alge-
braic) direct sum

⊕n
i=1Xi is a topological vector space, with respect to

the product topology. What about the direct product of infinitely many
topological vector spaces?

(e) If Y is a linear subspace of X, show that Y is a topological vector
space with respect to the relative topology.

(f) Show that, with respect to its Euclidean topology, Rn is a real
topological vector space, and Cn is a complex topological vector space.

THEOREM 3.1. Let X be a topological vector space. Then:

(1) X is a regular topological space; i.e., if A is a closed subset of
X and x is an element of X that is not in A, then there exist
disjoint open sets U1 and U2 such that x ∈ U1 and A ⊆ U2.

(2) X is connected.
(3) X is compact if and only if X is {0}.
(4) Every finite dimensional subspace Y of X is a closed subset of

X.
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(5) If T is a linear transformation of X into another topological
vector space X ′, then T is continuous at each point of X if and
only if T is continuous at the point 0 ∈ X.

PROOF. To see 1, let A be a closed subset of X and let x be a
point of X not in A. Let U denote the open set Ã, and let U ′ be the
open neighborhood U − x of 0. (See part a of Exercise 3.1.) Let V be a
neighborhood of 0 such that V + V ⊂ U ′. Now −V is a neighborhood
of 0, and we let W = V ∩ (−V ). Then W = −W and W +W ⊂ U ′. Let
U1 = W + x and let U2 = W +A. Then x ∈ U1 and A ⊆ U2. Clearly U1

is an open set, and, because U2 = ∪y∈A(W + y), we see also that U2 is
an open set. Further, if z ∈ U1 ∩U2, then we must have z = x+w1 and
z = a + w2, where both w1 and w2 belong to W and a ∈ A. But then
we would have

a = x+ w1 − w2 ∈ x+W −W ⊂ x+ U ′ = U = Ã,

which is a contradiction. Therefore, U1 ∩ U2 = ∅, and X is a regular
topological space.

Because the map t→ (1− t)x+ ty is continuous on R, it follows that
any two elements of X can be joined by a curve, in fact by a line segment
in X. Therefore, X is pathwise connected, hence connected, proving part
2.

Part 3 is left to an exercise.
We prove part 4 by induction on the dimension of the subspace Y.

Although the assertion in part 4 seems simple enough, it is surprisingly
difficult to prove. First, if Y has dimension 1, let y 6= 0 ∈ Y be a basis
for Y. If {tαy} is a net in Y that converges to an element x ∈ X, then
the net {tα} must be eventually bounded in R (or C), in the sense that
there must exist an index α0 and a constant M such that |tα| ≤ M for
all α ≥ α0. Indeed, if the net {tα} were not eventually bounded, let
{tαβ

} be a subnet for which limβ |tαβ
| = ∞. Then

y = lim
β

(1/tαβ
)tαβ

y

= lim
β

(1/tαβ
) lim

β
tαβ

y

= 0× x

= 0,

which is a contradiction. So, the net {tα} is bounded. Let {tαβ
} be a

convergent subnet of {tα} with limit t. Then

x = lim
α
tαy = lim

β
tαβ

y = ty,
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whence x ∈ Y, and Y is closed.
Assume now that every n− 1-dimensional subspace is closed, and let

Y have dimension n > 1. Let {y1, . . . , yn} be a basis for Y, and write Y ′

for the linear span of y1, . . . , yn−1. Then elements y of Y can be written
uniquely in the formy = y′ + tyn, for y′ ∈ Y ′ and t real (complex).
Suppose that x is an element of the closure of Y, i.e., x = limα(y′α+tαyn).
As before, we have that the net {tα} must be bounded. Indeed, if
the net {tα} were not bounded, then let {tαβ

} be a subnet for which
limβ |tαβ

| = ∞. Then

0 = lim
β

(1/tαβ
)x = lim

β
(y′αβ

/tαβ
) + yn,

or
yn = lim

β
−(y′αβ

/tαβ
),

implying that yn belongs to the closure of the closed subspace Y ′. Since
yn is linearly independent of the subspace Y ′, this is impossible, showing
that the net {tα} is bounded. Hence, letting {tαβ

} be a convergent
subnet of {tα}, say t = limβ tαβ

, we have

x = lim
β

(y′αβ
+ tαβ

yn),

showing that
x− tyn = lim y′αβ

,

whence, since Y ′ is closed, there exists a y′ ∈ Y ′ such that x− tyn = y′.
Therefore, x = y′ + tyn ∈ Y, and Y is closed, proving part 4.

Finally, if T is a linear transformation from X into X ′, then T being
continuous at every point of X certainly implies that T is continuous at
0. Conversely, suppose T is continuous at 0, and let x ∈ X be given. If
V is a neighborhood of T (x) ∈ X ′, let U be the neighborhood V − T (x)
of 0 ∈ X ′. Because T is continuous at 0, there exists a neighborhood W
of 0 ∈ X such that T (W ) ⊆ U. But then the neighborhood W + x of x
satisfies T (W + x) ⊆ U + T (x) = V, and this shows the continuity of T
at x.

EXERCISE 3.2. (a) Prove part 3 of the preceding theorem.
(b) Prove that any linear transformation T, from Rn (or Cn), equipped

with its ordinary Euclidean topology, into a real (complex) topological
vector space X, is necessarily continuous. HINT: Let e1, . . . , en be the
standard basis, and write xi = T (ei).
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(c) Let ρ be a seminorm (or subadditive functional) on a real topo-
logical vector space X. Show that ρ is continuous everywhere on X if
and only if it is continuous at 0.

(d) Suppose ρ is a continuous seminorm on a real topological vector
space X and that f is a linear functional on X that is bounded by ρ;
i.e., f(x) ≤ ρ(x) for all x ∈ X. Prove that f is continuous.

(e) Suppose X is a vector space on which there is a topology T such
that (x, y) → x − y is continuous from X ×X into X. Show that T is
Hausdorff if and only if it is T0. (A topological space is called T0 if, given
any two points, there exists an open set that contains one of them but
not the other.)

(f) Show that Lp(R) is a topological vector space with respect to the
topology defined by the (translation-invariant) metric

d(f, g) = ‖f − g‖p.

Show, in fact, that any normed linear space is a topological vector space
with respect to the topology defined by the metric given by

d(x, y) = ‖x− y‖.

(g) Let cc denote the set of all real (or complex) sequences {a1, a2, . . . }
that are nonzero for only finitely many terms. If {aj} ∈ cc, define the
norm of {aj} by ‖{aj}‖ = maxj |aj |. Verify that cc is a normed linear
space with respect to this definition of norm.

(h) Give an example of a (necessarily infinite dimensional) subspace
of Lp(R) which is not closed.

THEOREM 3.2. (Finite-Dimensional Topological Vector Spaces)
(1) If X is a finite dimensional real (or complex) topological vector

space, and if x1, . . . , xn is a basis for X, then the map T : Rn →
X (or T : Cn → X), defined by T (t1, . . . , tn) =

∑
tixi, is a topo-

logical isomorphism of Rn (or Cn), equipped with its Euclidean
topology, onto X. That is, specifically, a net {xα} = {

∑n
i=1 t

α
i xi}

converges to an element x =
∑n

i=1 tixi ∈ X if and only if each
net {tαi } converges to ti, 1 ≤ i ≤ n.

(2) The only topology on Rn (or Cn), in which it is a topological
vector space, is the usual Euclidean topology.

(3) Any linear transformation, from one finite dimensional topologi-
cal vector space into another finite dimensional topological vector
space, is necessarily continuous.
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PROOF. We verify these assertions for real vector spaces, leaving
the complex case to the exercises. The map T : Rn → X in part 1 is
obviously linear, 1-1 and onto. Also, it is continuous by part b of Exercise
3.2. Let us show that T−1 is continuous. Thus, let the net {xα} =
{
∑n

i=1 t
α
i xi} converge to 0 in X. Suppose, by way of contradiction, that

there exists an i for which the net {tαi } does not converge to 0. Then
let {tαβ

i } be a subnet for which limβ t
αβ

i = t, where t either is ±∞ or is
a nonzero real number. Write xα = tαi xi + x′

α
. Then

(1/tα
β

i )xαβ

= xi + (1/tα
β

i )x′α
β

,

whence,

xi = − lim
β

(1/tα
β

i )x′α
β

,

implying that xi belongs to the (closed) subspace spanned by the vectors

x1, . . . , xi−1, xi+1, . . . , xn,

and this is a contradiction, since the xi’s form a basis of X. Therefore,
each of the nets {tαi } converges to 0, and T−1 is continuous.

We leave the proofs of parts 2 and 3 to the exercises.

EXERCISE 3.3. (a) Prove parts 2 and 3 of the preceding theorem
in the case that X is a real topological vector space.

(b) Prove the preceding theorem in the case that X is a complex
topological vector space.

EXERCISE 3.4. (Quotient Topological Vector Spaces) Let M be a
linear subspace of a topological vector space X.

(a) Prove that the natural map π, which sends x ∈ X to x + M ∈
X/M, is continuous and is an open map, where X/M is given the quo-
tient topology.

(b) Show that X/M, equipped with the quotient topology, is a topo-
logical vector space if and only if M is a closed subspace of X. HINT:
Use part e of Exercise 3.2.

(c) SupposeM is not closed inX. Show that, if U is any neighborhood
of 0 ∈ X, then U +M contains the closure M of M.

(d) Conclude from part c that, if M is dense in X, then the only open
subsets of X/M are X/M and ∅.
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THEOREM 3.3. Let X be a real topological vector space. Then X
is locally compact if and only if X is finite dimensional.

PROOF. IfX is finite dimensional it is clearly locally compact, since
the only topology on Rn is the usual Euclidean one. Conversely, suppose
U is a compact neighborhood of 0 ∈ X, and let V be a neighborhood of
0 for which V + V ⊆ U. Because U is compact, there exists a finite set
x1, . . . , xn of points in U such that

U ⊆ ∪n
i=1(xi + V ).

Let M denote the subspace of X spanned by the points x1, . . . , xn. Then
M is a closed subspace, and the neighborhood π(U) of 0 in X/M equals
π(V ). Indeed, if π(y) ∈ π(U), with y ∈ U, then there exists an 1 ≤ i ≤ n
such that y ∈ xi + V, whence π(y) ∈ π(V ).

It then follows that

π(U) = π(U) + π(U) = Nπ(U)

for every positive integer N,which implies that π(U) = X/M. So X/M
is compact and hence is {0}. Therefore, X = M, and X is finite dimen-
sional.

THEOREM 3.4. Let T be a linear transformation of a real topolog-
ical vector space X into a real topological vector space Y, and let M be
the kernel of T. If π denotes the quotient map of X onto X/M, and if
S is the unique linear transformation of the vector space X/M into Y
satisfying T = S ◦π, then S is continuous if and only if T is continuous,
and S is an open map if and only if T is an open map.

PROOF. Since π is continuous and is an open map, see Exercise 3.4,
It follows that T is continuous or open if S is continuous or open. If T is
continuous, and if U is an open subset of Y, then S−1(U) = π(T−1(U)),
and this is open because T is continuous and π is an open map. Hence,
S is continuous.

Finally, if T is an open map and U is an open subset of X/M, then
S(U) = S(π(π−1(U))) = T (π−1(U)), which is open because T is an open
map and π is continuous. So, S is an open map.

THEOREM 3.5. (Characterization of Continuity) If T is a linear
transformation of a real (or complex) topological vector space X into
Rn (or Cn), then T is continuous if and only if ker(T ) is closed. Further,
T is continuous if and only if there exists a neighborhood of 0 in X
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on which T is bounded. If f is a linear functional on X, then f is
continuous if and only if there exists a neighborhood of 0 on which f
either is bounded above or is bounded below.

PROOF. Suppose that X is a real vector space. If M = ker(T ) is
closed, and if T = S ◦ π, then T is continuous because S is, X/M being
finite dimensional. The converse is obvious.

If T is not continuous, then, from the preceding paragraph, M is not
closed. So, by part c of Exercise 3.4, every neighborhood U of 0 is such
that U +M contains M. If x is an element of M −M, then T (x) 6= 0.
Also, for any scalar λ, λx ∈M ⊆ U +M, whence there exists an m ∈M
such that λx −m ∈ U. But then, T (λx −m) = λT (x), showing that T
is not bounded on U. Again, the converse is immediate.

The third claim of this theorem follows in the same manner as the
second, and the complex cases for all parts are completely analogous to
the real ones.

REMARK. We shall see that the graph of a linear transformation
is important vis a vis the continuity of T. The following exercise demon-
strates the initial aspects of this connection.

EXERCISE 3.5. (Continuity and the Graph) Let X and Y be topo-
logical vector spaces, and let T be a linear transformation from X into
Y.

(a) Show that if T is continuous then the graph of T is a closed
subspace of X × Y.

(b) Let X and Y both be the normed linear space cc (see part g of
Exercise 3.2), and define T by T ({aj}) = {jaj}. Verify that the graph
of T is a closed subset of X × Y but that T is not continuous.

(c) Show that, if the graph of T is closed, then the kernel of T is
closed.

(d) Let Y = Rn or Cn. Show that T is continuous if and only if the
graph of T is closed.

EXERCISE 3.6. (a) Let T be a linear transformation from a normed
linear space X into a normed linear space Y. Show that T is continuous
if and only if there exists a constant M such that

‖T (x)‖ ≤M‖x‖

for every x ∈ X.
(b) Let X be an infinite dimensional normed linear space. Prove

that there exists a discontinuous linear functional on X. HINT: Show
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that there exists an infinite set of linearly independent vectors of norm 1.
Then, define a linear functional that is not bounded on any neighborhood
of 0.

(c) Show that, if 1 ≤ p <∞, then Lp(R) is a separable normed linear
space. What about L∞(R)?

(d) Let µ be counting measure on an uncountable set X. Show that
each Lp(µ) (1 ≤ p ≤ ∞) is a normed linear space but that none is
separable.

(e) Let ∆ be a second-countable, locally compact, Hausdorff, topo-
logical space. Show that X = C0(∆) is a separable normed linear space,
where the norm on X is the supremum norm. (See Exercise 1.9.)

DEFINITION. Let X be a set, and let {fν} be a collection of real-
valued (or complex-valued) functions on X. The weak topology on X,
generated by the fν ’s, is the smallest topology on X for which each fν

is continuous. A basis for this topology consists of sets of the form

V = ∩n
i=1f

−1
νi

(Ui),

where each Ui is an open subset of R (or C).

EXERCISE 3.7. (Vector Space Topology Generated by a Set of Lin-
ear Functionals) Let X be a real vector space and let {fν} be a collection
of linear functionals on X that separates the points of X. Let Y =

∏
ν R,

and define a function F : X → Y by [F (x)](ν) = fν(x).
(a) Show that F is 1-1, and that with respect to the weak topology on

X, generated by the fν ’s, F is a homeomorphism of X onto the subset
F (X) of Y. HINT: Compare the bases for the two topologies.

(b) Conclude that convergence in the weak topology on X, generated
by the fν ’s, is described as follows:

x = lim
α
xα ≡ fν(x) = lim

α
fν(xα)

for all ν.
(c) Prove that X, equipped with the weak topology generated by the

fν ’s, is a topological vector space.
(d) Show that Y is metrizable, and hence this weak topology on X is

metrizable, if the set of fν ’s is countable.
(e) Verify that parts a through d hold if X is a complex vector space

and each fν is a complex linear functional.

An important kind of topological vector space is obtained as a gener-
alization of the preceding exercise, and is constructed as follows. Let X
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be a (real or complex) vector space, and let {ρν} be a collection of semi-
norms on X that separates the nonzero points of X from 0 in the sense
that for each x 6= 0 there exists a ν such that ρν(x) > 0. For each y ∈ X
and each index ν, define gy,ν(x) = ρν(x − y). Then X, equipped with
the weakest topology making all of the gy,ν ’s continuous, is a topological
vector space, i.e., is Hausdorff and addition and scalar multiplication are
continuous. A net {xα} of elements in X converges in this topology to
an element x if and only if ρν(x−xα) converges to 0 for every ν. Further,
this topology is a metrizable topology if the collection {ρν} is countable.

We call this the vector space topology on X generated by the semi-
norms {ρν} and denote this topological vector space by (X, {ρν}).

If ρ1, ρ2, . . . is a sequence of norms on X, then we call the topological
vector space (X, {ρn}) a countably normed space.

EXERCISE 3.8. (Vector Space Topology Generated by a Set of
Seminorms) Let X be a real (or complex) vector space and let {ρν}
be a collection of seminorms on X that separates the nonzero points of
X from 0 in the sense that for each x 6= 0 there exists a ν such that
ρν(x) > 0. For each y ∈ X and each index ν, define gy,ν(x) = ρν(x− y).
Finally, let T be the topology on X generated by the gy,ν ’s.

(a) Let x be an element of X and let V be an open set containing x.
Show that there exist indices ν1, . . . , νn, elements y1, . . . , yn ∈ X, and
open sets U1, . . . , Un ⊆ R (C) such that

x ∈ ∩n
i=1g

−1
yi,νi

(Ui) ⊆ V.

(b) Conclude that convergence in the topology on X generated by the
gy,ν ’s is described by

x = lim
α
xα ≡ lim

α
ρν(x− xα) = 0

for each ν.
(c) Prove that X, equipped with the topology generated by the gy,ν ’s,

is a topological vector space. (HINT: Use nets.) Show further that this
topology is metrizable if the collection {ρν} is countable, i.e., if ρ1, ρ2, . . .
is a sequence of seminorms. (HINT: Use the formula

d(x, y) =
∞∑

n=1

2−n min(ρn(x− y), 1).

Verify that d is a translation-invariant metric and that convergence with
respect to this metric is equivalent to convergence in the topology T .)
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(d) Let X be a vector space, and let ρ1, ρ2, . . . be a sequence of
seminorms that separate the nonzero points of X from 0. For each n ≥ 1,
define pn = maxk≤n ρk. Prove that each pn is a seminorm on X, that
pn ≤ pn+1 for all n, and that the two topological vector spaces (X, {ρn})
and (X, {pn}) are topologically isomorphic.

(e) Let X and {pn} be as in part d. Show that if V is a neighborhood
of 0, then there exists an integer n and an ε > 0 such that if pn(x) <
ε, then x ∈ V. Deduce that, if f is a continuous linear functional on
(X, {pn}), then there exists an integer n and a constant M such that
|f(x)| ≤Mpn(x) for all x ∈ X.

(f) Let X be a normed linear space, and define ρ(x) = ‖x‖. Prove that
the topology on X determined by the norm coincides with the vector
space topology generated by ρ.

EXERCISE 3.9. (a) Let X be the complex vector space of all infin-
itely differentiable complex-valued functions on R. For each nonnegative
integer n, define ρn on X by

ρn(f) = sup
|x|≤n

sup
0≤i≤n

|f (i)(x)|,

where f (i) denotes the ith derivative of f. Show that the ρn’s are semi-
norms (but not norms) that separate the nonzero points of X from 0,
whence X is a metrizable complex topological vector space in the weak
vector space topology generated by the ρn’s. This vector space is usually
denoted by E .

(b) Let X be the complex vector space C0(∆), where ∆ is a locally
compact Hausdorff space. For each δ ∈ ∆, define ρδ on X by

ρδ(f) = |f(δ)|.

Show that, with respect to the weak vector space topology generated by
the ρδ’s, convergence is pointwise convergence of the functions.

EXERCISE 3.10. (Schwartz Space) Let S denote the set of all C∞

complex-valued functions f on R that are rapidly decreasing, i.e., such
that xnf (j)(x) ∈ C0(R) for every pair of nonnegative integers n and j.
In other words, f and all its derivatives tend to 0 at ±∞ faster than the
reciprocal of any polynomial.

(a) Show that every C∞ function having compact support belongs to
S, and verify that f(x) = xke−x2

belongs to S for every integer k ≥ 0.
(b) Show that S is a complex vector space, that each element of S

belongs to every Lp space, and that S is closed under differentiation and
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multiplication by polynomials. What about antiderivatives of elements
of S? Are they again in S?

(c) For each nonnegative integer n, define pn on S by

pn(f) = max
0≤i,j≤n

sup
x
|xjf (i)(x)|.

Show that each pn is a norm on S, that pn(f) ≤ pn+1(f) for all f ∈ S,
and that the topological vector space (S, {pn}) is a countably normed
space. This countably normed vector space is called Schwartz space.

(d) Show that f = lim fk in S if and only if {xjf
(i)
k (x)} converges

uniformly to xjf (i)(x) for every i and j.
(e) Prove that the set D of C∞ functions having compact support

is a dense subspace of S. HINT: Let χ be a nonnegative C∞ function,
supported on [−2, 2], and satisfying χ(x) = 1 for −1 ≤ x ≤ 1. Define
χn(x) = χ(x/n). If f ∈ S, show that f = lim fχn in the topology of S.

(f) Prove that the map f → f ′ is a continuous linear transformation
from S into itself. Is this transformation onto?

We introduce next a concept that is apparently purely from alge-
braic linear space theory and one that is of extreme importance in the
topological aspect of Functional Analysis.

DEFINITION. A subset S of a vector space is called convex if (1−
t)x+ ty ∈ S whenever x, y ∈ S and 0 ≤ t ≤ 1. The convex hull of a set
S is the smallest convex set containing S (the intersection of all convex
sets containing S). A topological vector space X is called locally convex
if there exists a neighborhood basis at 0 consisting of convex subsets
of X. That is, if U is any neighborhood of 0 in X, then there exists a
convex open set V such that 0 ∈ V ⊆ U.

EXERCISE 3.11. (a) Let X be a real vector space. Show that
the intersection of two convex subsets of X and the sum of two convex
subsets of X is a convex set. If S is a subset of X, show that the
intersection of all convex sets containing S is a convex set. Show also
that if X is a topological vector space then the closure of a convex set
is convex.

(b) Prove that a normed linear space is locally convex by showing
that each ball centered at 0 in X is a convex set.

(c) Let X be a vector space and let {fν} be a collection of linear
functionals on X that separates the points of X. Show that X, equipped
with the weakest topology making all of the fν ’s continuous, is a locally
convex topological vector space. (See Exercise 3.7.)
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(d) Let X be a vector space, and let {ρν} be a collection of seminorms
on X that separates the nonzero points of X from 0. Prove that X,
equipped with the weak vector space topology generated by the ρν ’s, is
a locally convex topological vector space. (See Exercise 3.8.)

(e) Suppose X is a locally convex topological vector space and that
M is a subspace of X. Show that M is a locally convex topological vector
space with respect to the relative topology. If M is a closed subspace
of X, show that the quotient space X/M is a locally convex topological
vector space.

(f) Show that all the Lp spaces are locally convex as well as the spaces
C0(∆) under pointwise convergence, E , and S of Exercises 3.9 and 3.10.

If X is a real vector space, recall that a function ρ : X → R is called
a subadditive functional if

(1) ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X.
(2) ρ(tx) = tρ(x) for all x ∈ X and t ≥ 0.

THEOREM 3.6. (Convex Neighborhoods of 0 and Continuous Sub-
additive Functionals) Let X be a real topological vector space. If ρ is
a continuous subadditive functional onX, then ρ−1(−∞, 1) is a convex
neighborhood of 0 in X. Conversely, if U is a convex neighborhood of
0, then there exists a continuous nonnegative subadditive functional ρ
such that ρ−1(−∞, 1) ⊆ U ⊆ ρ−1(−∞, 1]. In addition, if U is symmetric,
then ρ may be chosen to be a seminorm.

PROOF. If ρ is a continuous subadditive functional, then it is im-
mediate that ρ−1(−∞, 1) is open, contains 0, and is convex.

Conversely, if U is a convex neighborhood of 0, define ρ on X by

ρ(x) =
1

supt>0,tx∈U t
= inf

r>0,x∈rU
r.

(We interpret ρ(x) as 0 if the supremum in the denominator is ∞, i.e., if
x ∈ rU for all r > 0.) Because U is an open neighborhood of 0 = 0× x,
and because scalar multiplication is continuous, the supremum in the
above formula is always > 0, so that 0 ≤ ρ(x) < ∞ for every x. Notice
also that if t > 0 and t× x ∈ U, then 1/t ≥ ρ(x).

It follows immediately that ρ(rx) = rρ(x) if r ≥ 0, and, if U is
symmetric, then ρ(rx) = |r|ρ(x) for arbitrary real r.

If x and y are in X and ε > 0 is given, choose real numbers t and s
such that tx ∈ U, sy ∈ U, 1/t ≤ ρ(x) + ε, and 1/s ≤ ρ(y) + ε. Because U
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is convex, we have that

s

t+ s
tx +

t

t+ s
sy =

st

t+ s
(x+ y) ∈ U.

Therefore, ρ(x+ y) ≤ (s+ t)/st, whence

ρ(x+ y) ≤ (t+ s)/st = (1/t) + (1/s) ≤ ρ(x) + ρ(y) + 2ε,

completing the proof that ρ is a subadditive functional in general and a
seminorm if U is symmetric.

If ρ(x) < 1, then there exists a t > 1 so that tx ∈ U. Since U is
convex, it then follows that x ∈ U. Also, if x = 1×x ∈ U, then ρ(x) ≤ 1.
Hence, ρ−1(−∞, 1) ⊆ U ⊆ ρ−1(−∞, 1].

Finally, ρ−1(−∞, ε) ⊆ εU ⊆ ρ−1(−∞, ε] for every positive ε, which
shows that ρ is continuous at 0 and hence everywhere.

REMARK. The subadditive functional ρ constructed in the preced-
ing proof is called the Minkowski functional associated to the convex
neighborhood U.

THEOREM 3.7. (Hahn-Banach Theorem, Locally Convex Version)
Let X be a real locally convex topological vector space, let Y be a
subspace of X, and let f be a continuous linear functional on Y with
respect to the relative topology. Then there exists a continuous linear
functional g on X whose restriction to Y is f.

PROOF. By Theorem 3.5, there exists a neighborhood V of 0 in Y
on which f is bounded, and by scaling we may assume that it is bounded
by 1; i.e., |f(y)| ≤ 1 if y ∈ V. Let W be a neighborhood of 0 in X such
that V = W ∩ Y, and let U be a symmetric convex neighborhood of 0
in X such that U ⊆ W. Let ρ be the continuous seminorm (Minkowski
functional) on X associated to U as in the preceding theorem.

Now, if y ∈ Y, t > 0, and ty ∈ U, then

|f(y)| = (1/t)|f(ty)| ≤ 1/t,

whence, by taking the supremum over all such t’s,

|f(y)| ≤ ρ(y),

showing that f is bounded by ρ on Y. Using Theorem 2.2, let g be a
linear functional on X that extends f and such that |g(x)| ≤ ρ(x) for
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all x ∈ X. Then g is an extension of f and is continuous, so the proof is
complete.

EXERCISE 3.12. Let M be a subspace of a locally convex topolog-
ical vector space X. Prove that M is dense in X if and only if the only
continuous linear functional f on X that is identically 0 on M is the 0
functional.

THEOREM 3.8. (Local Convexity and Existence of Continuous
Linear Functionals) A locally convex topological vector space has suffi-
ciently many continuous linear functionals to separate its points.

PROOF. Assume first that X is a real topological vector space. We
will apply the Hahn-Banach Theorem. Suppose that x 6= y are elements
of X, and let Y be the subspace of X consisting of the real multiples of
the nonzero vector y − x. Define a linear functional f on Y by

f(t(y − x)) = t.

Because Y is one-dimensional, this linear functional f is continuous.
By the Hahn-Banach Theorem above, there exists a continuous linear
functional g on X that is an extension of f. We have that

g(y)− g(x) = g(y − x) = f(y − x) = 1 6= 0,

showing that g separates the two points x and y.
Now, if X is a complex locally convex topological vector space, then

it is obviously a real locally convex topological vector space. Hence,
if x 6= y are elements of X, then there exists a continuous real linear
functional g onX such that g(x) 6= g(y). But, as we have seen in Chapter
I, the formula

f(z) = g(z)− ig(iz)

defines a complex linear functional on X, and clearly f is continuous
and f(x) 6= f(y).

EXERCISE 3.13. (Example of a Non-Locally-Convex Topological
Vector Space) Let X ′ be the vector space of all real-valued Lebesgue
measurable functions on [0, 1]. and define an equivalence relation ≡ on
X ′ by f ≡ g if f(x) = g(x) a.e.m, where m denotes Lebesgue measure.
For f, g ∈ X ′, set

d′(f, g) =
∞∑

n=1

1
2n
m({x : |f(x)− g(x)| ≥ 1

n
}).
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(a) Prove that X = X ′/ ≡ is a vector space, and show that d′

determines a translation-invariant metric d on X. HINT: Show that
{x : |f(x)− h(x)| ≥ 1/n} is a subset of {x : |f(x)− g(x)| ≥ 1/2n} ∪ {x :
|g(x)− h(x)| ≥ 1/2n}.

(b) Show that d′(fn−f) → 0 if and only if the sequence {fn} converges
in measure to f. Conclude that the metric d is a complete metric.

(c) Prove that, with respect to the topology on X determined by
the metric d, X is a topological vector space (in fact a Fréchet space),
and that the subspace Y ⊆ X consisting of the equivalence classes [φ]
corresponding to measurable simple functions φ is dense in X.

(d) Let δ > 0 be given. Show that if E is a measurable set of measure
< δ, then for every scalar c ≥ 1 the equivalence class [cχE ] belongs to
the ball Bδ(0) of radius δ around 0 ∈ X.

(e) Let f be a continuous linear functional on the topological vector
space X, and let Bδ(0) be a neighborhood of 0 ∈ X on which f is
bounded. See Theorem 3.5. Show that f([χE ]) = 0 for all E with
m(E) < δ, whence f([φ]) = 0 for all measurable simple functions φ.

(f) Conclude that the only continuous linear functional on X is the
zero functional, whence the topology on X is not locally convex.

THEOREM 3.9. (Separation Theorem) Let C be a closed convex
subset of a locally convex real topological vector space X, and let x be
an element of X that is not in C. Then there exists a continuous linear
functional φ on X and a real number s such that φ(c) ≤ s < φ(x) for all
c ∈ C.

PROOF. Again, we apply the Hahn-Banach Theorem. Let U be a
neighborhood of 0 such that x + U does not intersect C. Let V be a
convex symmetric neighborhood of 0 for which V + V ⊆ U, and write
C ′ for the open convex set V + C. Then (x + V ) ∩ C ′ = ∅. If y is an
element of C ′, write W for the convex neighborhood C ′ − y of 0, and
observe that (x− y + V ) ∩W = ∅. Let ρ be the continuous subadditive
functional associated to W as in Theorem 3.6. (ρ is not necessarily a
seminorm since W need not be symmetric.) If Y is the linear span of the
nonzero vector x− y, let f be defined on Y by f(t(x− y)) = tρ(x− y).
Then f is a linear functional on Y satisfying f(z) ≤ ρ(z) for all z ∈ Y.
By part c of Exercise 2.6, there exists a linear functional φ on X, which
is an extension of f and which satisfies φ(w) ≤ ρ(w) for all w ∈ X.

Since ρ is continuous, it follows that φ is continuous. Also, by the
definition of ρ, if z ∈W, then ρ(z) ≤ 1, whence φ(z) ≤ 1. Now ρ(x−y) >
1. For, if t is sufficiently close to 1, then t(x − y) ∈ x − y + V, whence
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t(x − y) /∈ W, and ρ(x − y) ≥ 1/t > 1. So, φ(x − y) = f(x − y) =
ρ(x− y) > 1. Setting s = φ(y) + 1, we have φ(c) ≤ s for all c ∈ C, and
φ(x) > s, as desired.

DEFINITION. Let C be a convex subset of a real vector space
X. We say that a nonempty convex subset F of C is a face of C if:
Whenever x ∈ F is a proper convex combination of points in C (i.e.,
x = (1− t)y+ tz, with y ∈ C, z ∈ C, and 0 < t < 1,) then both y and z
belong to F.

A point x ∈ C is called an extreme point of C if: Whenever x =
(1− t)y + tz, with y ∈ C, z ∈ C, and 0 < t < 1, then y = z = x.

EXERCISE 3.14. (a) Let C be the closed unit ball in Lp(R), for
1 < p <∞. Show that the extreme points of C are precisely the elements
of the unit sphere, i.e., the elements f for which ‖f‖p = 1. HINT: Use
the fact that |(1− t)y + tz|p < (1− t)|y|p + t|z|p if y 6= z and 0 < t < 1.

(b) If C is the closed unit ball in L1(R), show that C has no extreme
points.

(c) Find the extreme points of the closed unit ball in l∞(R).
(d) Find all the faces of a right circular cylinder, a tetrahedron, a

sphere. Are all these faces closed sets?
(e) Suppose C is a closed convex subset of a topological vector space

X. Is the closure of a face of C again a face? Is every face of C necessarily
closed?

(f) Show that a singleton, which is a face of a convex set C, is an
extreme point of C.

(g) Suppose C is a convex subset of a topological vector space X.
Show that the intersection of two faces of C is a face of C. Also, if φ is
a linear functional on X, and maxx∈C φ(x) = c, show that φ−1(c)∩C is
a face of C.

EXERCISE 3.15. (Hahn-Banach Theorem, Extreme Point Version)
Let X be a real vector space, and let ρ be a seminorm (or subadditive
functional) on X. If Z is a subspace of X, define FZ to be the set of all
linear functionals f on Z for which f(z) ≤ ρ(z) for all z ∈ Z.

(a) Prove that FZ is a convex set of linear functionals.
(b) Let Y be a subspace of X. If f is an extreme point of FY , show

that there is an extreme point g ∈ FX that is an extension of f. HINT:
Mimic the proof of Theorem 2.2. That is, use the Hausdorff maximality
principle to find a maximal pair (Z, h), for which h is an extension of
f and h is an extreme point of FZ . Then, following the notation in the
proof to Theorem 2.2, show that Z = X by choosing c to equal b.
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We give two main theorems concerning the set of extreme points of a
convex set.

THEOREM 3.10. (Krein-Milman Theorem) Let C be a nonempty
compact convex subset of a locally convex real topological vector space
X. Then

(1) There exists an extreme point of C.
(2) C is the closure of the convex hull of its extreme points.

PROOF. Let F be the collection of all closed faces of C, and consider
F to be a partially ordered set by defining F ≤ F ′ if F ′ ⊆ F. Then, F
is nonempty (C is an element of F), and we let {Fα} be a maximal
linearly ordered subset of F (the Hausdorff maximality principle). We
set F = ∩Fα, and note, since C is compact, that F is a nonempty
closed (compact) face of C. We claim that F is a singleton, whence an
extreme point of C. Indeed, if x ∈ F, y ∈ F, and x 6= y, let φ be a
continuous linear functional which separates x and y, and let z be a
point in the compact set F at which φ attains its maximum on F. Let
H = φ−1(φ(z)), and let F ′ = F ∩H. Then F ′ is a closed face of C which
is properly contained in F. See part g of Exercise 3.14. But then the
subset of F , consisting of the Fα’s together with F ′, is a strictly larger
linearly ordered subset of F , and this is a contradiction. Therefore, F
is a singleton, and part 1 is proved.

Next, let C ′ be the closure of the convex hull of the extreme points
of C. Then C ′ ⊆ C. If there is an x ∈ C which is not in C ′, then, using
the Separation Theorem (Theorem 3.9), let s be a real number and φ be
a continuous linear functional for which φ(y) ≤ s < φ(x) for all y ∈ C ′.
Because C is compact and φ is continuous, there exists a z ∈ C such
that φ(z) ≥ φ(w) for all w ∈ C, and we let C ′′ = C ∩ φ−1(φ(z)). Then
C ′′ is a nonempty compact convex subset of C, and C ′ ∩ C ′′ = ∅. By
part 1, there exists an extreme point p of C ′′. We claim that p is also an
extreme point of C. Thus, if p = (1 − t)q + tr, with q ∈ C, r ∈ C, and
0 < t < 1, then

φ(z) = φ(p)

= (1− t)φ(q) + tφ(r)

≤ (1− t)φ(z) + tφ(z)

= φ(z).

Therefore, φ(q) = φ(r) = φ(z), which implies that q ∈ C ′′ and r ∈ C ′′.
Then, since p is an extreme point of C ′′, we have that q = r = p, as
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desired. But this implies that p ∈ C ′, which is a contradiction. This
completes the proof of part 2.

The Krein-Milman theorem is a topological statement about the set
of extreme points of a compact convex set. Choquet’s theorem, to follow,
is a measure-theoretic statement about the set of extreme points of a
compact convex set.

THEOREM 3.11. (Choquet Theorem) Let X be a locally convex
real topological vector space, let K be a metrizable, compact, convex
subset of X, and let E denote the set of extreme points of K. Then:

(1) E is a Borel subset of K.
(2) For each x ∈ K, there exists a Borel probability measure µx on

E such that

f(x) =
∫

E

f(q) dµx(q),

for every continuous linear functional f on X.

PROOF. Let A be the complement in K ×K of the diagonal, i.e.,
the complement of the set of all pairs (x, x) for x ∈ K. Then A is an
open subset of a compact metric space, and therefore A is a countable
increasing union A = ∪An of compact sets {An}. Define a function
I : (0, 1) × A → K by I(t, y, z) = (1 − t)y + tz. Then the range of I is
precisely the complement of E inK. Also, since I is continuous, the range
of I is the countable union of the compact sets I([1/n, 1 − 1/n] × An),
whence the complement of E is an Fσ subset of K, so that E is a Gδ,
hence a Borel set. This proves part 1.

Now, let Y denote the vector space of all continuous affine functions
on K, i.e., all those continuous real-valued functions g on K for which

g((1− t)y + tz) = (1− t)g(y) + tg(z)

for all y, z ∈ K and 0 ≤ t ≤ 1. Note that the restriction to K of
any continuous linear functional on X is an element of Y. Now Y is a
subspace of C(K). Since K is compact and metrizable, we have that
C(K) is a separable normed linear space in the uniform norm, whence
Y is a separable normed linear space. Let {g1, g2, . . . } be a countable
dense set in the unit ball B1(0) of Y, and define

g′ =
∞∑

i=1

2−ig2
i .
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Then g′ is continuous on K, and is a proper convex function; i.e.,

g′((1− t)y + tz) < (1− t)g′(y) + tg′(z)

whenever y, z ∈ K, y 6= z, and 0 < t < 1. Indeed, the series defining
g′ converges uniformly by the Weierstrass M test, showing that g′ is
continuous. Also, if y, z ∈ K, with y 6= z, there exists a continuous
linear functional φ on X that separates y and z. In fact, any nonzero
multiple of φ separates y and z. So, there exists at least one i such that
gi(y) 6= gi(z). Now, for any such i, if 0 < t < 1, then

g2
i ((1− t)y + tz) < (1− t)g2

i (y) + tg2
i (z),

since
((1− t)a+ tb)2 − (1− t)a2 − tb2 < 0

for all a 6= b. Indeed, this function of b is 0 when b = a and has a negative
derivative for b > a. On the other hand, if i is such that gi(y) = gi(z),
then

g2
i ((1− t)y + tz) = (gi((1− t)y + tz))2 = g2

i (y) = (1− t)g2
i (y) + tg2

i (z).

Hence,

g′((1− t)y + tz) =
∞∑

i=1

2−ig2
i ((1− t)y + tz)

<

∞∑
i=1

2−i[(1− t)g2
i (y) + tg2

i (z)]

= (1− t)g′(y) + tg′(z).

We let Y1 be the linear span of Y and g′, so that we may write each
element of Y1 as g + rg′, where g ∈ Y and r ∈ R.

Now, given an x ∈ K, define a function ρx on C(K) by

ρx(h) = inf c(x),

where the infimum is taken over all continuous concave functions c on
K for which h(y) ≤ c(y) for all y ∈ K. Recall that a function c on K is
called concave if

c((1− t)y + tz) ≥ (1− t)c(y) + tc(z),
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for all y, z ∈ K and 0 ≤ t ≤ 1. Because the sum of two concave functions
is again concave and a positive multiple of a concave function is again
concave, it follows directly that ρx is a subadditive functional on C(K).
Note also that if c is a continuous concave function on K, then ρx(c) =
c(x). Define a linear functional ψx on Y1 by

ψx(g + rg′) = g(x) + rρx(g′).

Note that the identically 1 function I is an affine function, so it belongs
to Y and hence to Y1. It follows then that ψx(I) = 1. Also, we have that
ψx ≤ ρx on Y1 (see the exercise following), and we let φx be a linear
functional on C(K), which is an extension of ψx, and for which φx ≤ ρx

on C(K). (We are using part c of Exercise 2.6.)
Note that, if h ∈ C(K) ≤ 0, then ρx(h) ≤ 0 (the 0 function is concave

and 0 ≥ h). So, if h ≤ 0, then φx(h) ≤ ρx(h) ≤ 0. It follows from this
that φx is a positive linear functional. By the Riesz Representation
Theorem, we let νx be the unique (finite) Borel measure on K for which

φx(h) =
∫
h dνx

for all h ∈ C(K). Again letting I denote the identically 1 function on
K, we have that

νx(K) =
∫
I dνx

= φx(I)

= ψx(I)

= 1,

showing that νx is a probability measure.
If f is a continuous linear functional on X, then∫

f dνx = φx(f) = ψx(f) = f(x),

since the restriction of f to K is a continuous affine function, whence in
Y1.

We prove next that νx is supported on E. To do this, let {cn} be
a sequence of continuous concave functions on K for which cn ≥ g′

for all n and ρx(g′) = lim cn(x). Set c = lim inf cn. Then c is a Borel
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function, hence is νx-measurable, and c(y) ≥ g′(y) for all y ∈ K. Hence,∫
(c− g′) dνx ≥ 0. But,∫

(c− g′) dνx =
∫

(lim inf cn − g′) dνx

≤ lim inf
∫

(cn − g′) dνx

= lim inf φx(cn − g′)

= lim inf φx(cn)− φx(g′)

= lim inf φx(cn)− ρx(g′)

≤ lim inf ρx(cn)− ρx(g′)

= lim inf cn(x)− ρx(g′)

= lim cn(x)− ρx(g′)

= 0.

Therefore, νx is supported on the set where c and g′ agree. Let us show
that c(w) 6= g′(w) whenever w /∈ E. Thus, if w = (1 − t)y + tz, for
y, z ∈ K, y 6= z, and 0 < t < 1, then

c(w) = lim inf cn(w)

= lim inf cn((1− t)y + tz)

≥ lim inf[(1− t)cn(y) + tcn(z)]

≥ (1− t)g′(y) + tg′(z)

> g′((1− t)y + tz)

= g′(w).

Define µx to be the restriction of νx to E. Then µx is a Borel proba-
bility measure on E, and∫

E

f dµx =
∫

K

f dνx = f(x)

for all continuous linear functionals f on X. This completes the proof.

EXERCISE 3.16. (a) Verify that the function ρx in the preceding
proof is a subadditive functional and that ψx(h) ≤ ρx(h) for all h ∈ Y1.

(b) Let X = R2, let K = {(s, t) : |s| + |t| ≤ 1}, and let x = (0, 0)
be the origin. Show that there are uncountably many different Borel
probability measures µ on the set E of extreme points of K for which
f(x) =

∫
E
f(q) dµ(q) for all linear functionals on X. Conclude that there

can be no uniqueness assertion in Choquet’s Theorem.


