
CHAPTER VIII

HILBERT SPACES

DEFINITION Let X and Y be two complex vector spaces. A map
T : X → Y is called a conjugate-linear transformation if it is a real-
linear transformation from X into Y, and if

T (λx) = λT (x)

for all x ∈ X and λ ∈ C.
Let X be a complex vector space. An inner product or Hermitian

form on X is a mapping from X ×X into C (usually denoted by (x, y))
which satisfies the following conditions:

(1) (x, y) = (y, x) for all x, y ∈ X.
(2) For each fixed y ∈ X, the map x → (x, y) is a linear functional

on X.
(3) (x, x) > 0 for all nonzero x ∈ X.

Note that conditions 1 and 2 imply that for each fixed vector x the
map y → (x, y) is conjugate-linear. It also follows from condition 2 that
(0, x) = 0 for all x ∈ X.

The complex vector space X, together with an inner product ( , ), is
called an inner product space.

REMARK. We treat here primarily complex inner product spaces
and complex Hilbert spaces. Corresponding definitions can be given for
real inner product spaces and real Hilbert spaces, and the results about
these spaces are occasionally different from the complex cases.

143



144 CHAPTER VIII

EXERCISE 8.1. (a) Let X be the complex vector space of all con-
tinuous complex-valued functions on [0,1], and define

(f, g) =
∫ 1

0

f(x)g(x) dx.

Show that X, with this definition of ( , ), is an inner product space.
(b) Let X = Cn, and define

(x, y) =
n∑

j=1

xjyj ,

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Prove that X, with this
definition of ( , ), is an inner product space.

(c) (General l2) Let µ be counting measure on a countable set (se-
quence) S. Let X = L2(µ), and for f, g ∈ X define

(f, g) =
∫

S

f(s)g(s) dµ(s) =
∑
s∈S

f(s)g(s).

Prove that X is an inner product space with respect to this definition.
(d) Specialize the inner product space defined in part c to the two

cases first where S is the set of nonnegative integers and then second
where S is the set Z of all integers.

THEOREM 8.1. Let X be an inner product space.
(1) (Cauchy-Schwarz Inequality) For all x, y ∈ X,

|(x, y)| ≤
√

(x, x)
√

(y, y).

(2) The assignment x →
√

(x, x) is a norm on X, and X equipped
with this norm is a normed linear space.

PROOF. Fix x and y in X. If either x or y is 0, then part 1 is
immediate. Otherwise, define a function f of a complex variable λ by

f(λ) = (x+ λy , x+ λy),

and note that f(λ) ≥ 0 for all λ. We have that

f(λ) = (x, x) + λ(y, x) + λ(x, y) + (y, y)|λ|2.
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Substituting λ = −(x, y)/(y, y), and using the fact that f(λ) ≥ 0 for all
λ, the general case of part 1 follows.

To see that x→
√

(x, x) defines a norm ‖x‖ on X, we need only check
that ‖x+ y‖ ≤ ‖x‖+ ‖y‖. But

‖x+ y‖2 = (x+ y , x+ y)

= (x, x) + 2<((x, y)) + (y, y)

≤ ‖x‖2 + 2|(x, y)|+ ‖y‖2

≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2,

which completes the proof of part 2.

EXERCISE 8.2. (a) Show that equality holds in the Cauchy-Schwarz
inequality, i.e.,

|(x, y)| = ‖x‖‖y‖,

if and only if one of the vectors is a scalar multiple of the other. Conclude
that equality holds in the triangle inequality for the norm if and only if
one of the vectors is a nonnegative multiple of the other.

(b) Let y and z be elements of an inner product space X. Show that
y = z if and only if (x, y) = (x, z) for all x ∈ X.

(c) Prove the polarization identity and the parallelogram law in an
inner product space X; i.e., show that for x, y ∈ X, we have

(x, y) = (1/4)
3∑

j=0

ij‖x+ ijy‖2

and
‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

(d) Suppose X and Y are inner product spaces and that T is a linear
isometry of X into Y. Prove that T preserves inner products. That is,
if x1, x2 ∈ X, then

(T (x1), T (x2)) = (x1, x2).

(e) Suppose X is an inner product space, that Y is a normed linear
space, and that T is a linear isometry ofX onto Y. Show that there exists
an inner product ( , ) on Y such that ‖y‖ =

√
(y, y) for every y ∈ Y ;

i.e., Y is an inner product space and the norm on Y is determined by
that inner product.
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(f) Suppose Y is a normed linear space whose norm satisfies the par-
allelogram law:

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

for all x, y ∈ Y. Show that there exists an inner product ( , ) on Y such
that ‖y‖ =

√
(y, y) for every y ∈ Y ; i.e., Y is an inner product space and

the given norm on Y is determined by that inner product. HINT: Use the
polarization identity to define (x, y). Show directly that (y, x) = (x, y)
and that (x, x) > 0 if x 6= 0. For a fixed y, define f(x) = (x, y). To see
that f is linear, first use the parallelogram law to show that

f(x+ x′) + f(x− x′) = 2f(x),

from which it follows that f(λx) = λf(x) for all x ∈ Y and λ ∈ C. Then,
for arbitrary elements u, v ∈ Y, write u = x+ x′ and v = x− x′.

(g) Show that the inner product is a continuous function ofX×X into
C. In particular, the map x→ (x, y) is a continuous linear functional on
X for every fixed y ∈ X.

DEFINITION. A (complex) Hilbert space is an inner product space
that is complete in the metric defined by the norm that is determined
by the inner product. An inner product space X is called separable if
there exists a countable dense subset of the normed linear space X.

REMARK. Evidently, a Hilbert space is a special kind of complex
Banach space. The inner product spaces and Hilbert spaces we consider
will always be assumed to be separable.

EXERCISE 8.3. Let X be an inner product space. Show that any
subspace M ⊆ X is an inner product space, with respect to the restric-
tion of the inner product on X, and show that a closed subspace of a
Hilbert space is itself a Hilbert space. If M is a closed subspace of a
Hilbert space H, is the quotient space H/M necessarily a Hilbert space?

DEFINITION. Let X be an inner product space. Two vectors x
and y in X are called orthogonal or perpendicular if (x, y) = 0. Two
subsets S and T are orthogonal if (x, y) = 0 for all x ∈ S and y ∈ T.
If S is a subset of X, then S⊥ will denote what we call the orthogonal
complement to S and consists of the elements x ∈ X for which (x, y) = 0
for all y ∈ S. A collection of pairwise orthogonal unit vectors is called
an orthonormal set.

EXERCISE 8.4. Let X be an inner product space.
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(a) Show that a collection x1, . . . , xn of nonzero pairwise orthogonal
vectors in X is a linearly independent set. Verify also that

‖
n∑

i=1

cixi‖2 =
n∑

i=1

|ci|2‖xi‖2.

(b) (Gram-Schmidt Process) Let x1, . . . be a (finite or infinite) se-
quence of linearly independent vectors in X. Show that there exists a
sequence w1, . . . of orthonormal vectors such that the linear span of
x1, . . . , xi coincides with the linear span of w1, . . . , wi for all i ≥ 1.
HINT: Define the wi’s recursively by setting

wi =
xi −

∑i−1
k=1(xi, wk)wk

‖xi −
∑i−1

k=1(xi, wk)wk‖
.

(c) Show that if X is a separable inner product space, then there
exists an orthonormal sequence {xi} whose linear span is dense in X.

(d) If M is a subspace of X, show that the set M⊥ is a closed subspace
of X. Show further that M ∩M⊥ = {0}.

(e) Let X = C([0, 1]) be the inner product space from part a of
Exercise 8.1. For each 0 < t < 1, let Mt be the set of all f ∈ X for
which

∫ t

0
f(x) dx = 0. Show that the collection {Mt} forms a pairwise

distinct family of closed subspaces of X. Show further that M⊥
t = {0}

for all 0 < t < 1. Conclude that, in general, the map M → M⊥ is not
1-1.

(f) Suppose X is a Hilbert Space. If M and N are orthogonal closed
subspaces ofX, show that the subspaceM+N, consisting of the elements
x+ y for x ∈M and y ∈ N, is a closed subspace.

THEOREM 8.2. Let H be a separable infinite-dimensional (com-
plex) Hilbert space. Then

(1) Every orthonormal set must be countable.
(2) Every orthonormal set in H is contained in a (countable) max-

imal orthonormal set. In particular, there exists a (countable)
maximal orthonormal set.

(3) If {φ1, φ2, . . . } is an orthonormal sequence in H, and {c1, c2, . . . }
is a square summable sequence of complex numbers, then the
infinite series

∑
cnφn converges to an element in H.

(4) (Bessel’s Inequality) If φ1, φ2, . . . is an orthonormal sequence in
H, and if x ∈ H, then∑

n

|(x, φn)|2 ≤ ‖x‖2,
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implying that the sequence {(x, φn)} is square-summable.
(5) If {φn} denotes a maximal orthonormal sequence (set) inH, then

every element x ∈ H is uniquely expressible as a (infinite) sum

x =
∑

n

cnφn,

where the sequence {cn} is a square summable sequence of com-
plex numbers. Indeed, we have that cn = (x, φn).

(6) If {φn} is any maximal orthonormal sequence in H, and if x, y ∈
H, then

(x, y) =
∑

n

(x, φn)(y, φn).

(7) (Parseval’s Equality) For any x ∈ H and any maximal orthonor-
mal sequence {φn}, we have

‖x‖2 =
∑

n

|(x, φn)|2.

(8) Let {φ1, φ2, . . . } be a maximal orthonormal sequence in H, and
define T : l2 → H by

T ({cn}) =
∞∑

n=1

cnφn.

Then T is an isometric isomorphism of l2 onto H. Consequently,
any two separable infinite-dimensional Hilbert spaces are isomet-
rically isomorphic.

PROOF. Suppose an orthonormal set in H is uncountable. Then,
since the distance between any two distinct elements of this set is

√
2,

it follows that there exists an uncountable collection of pairwise disjoint
open subsets of H, whence H is not separable. Hence, any orthonormal
set must be countable, i.e., a sequence.

Let S be an orthonormal set in H. The existence of a maximal or-
thonormal set containing S now follows from the Hausdorff maximality
principle, applied to the collection of all orthonormal sets in H that
contain S.

Next, let {φ1, φ2, . . . } be an orthonormal sequence, and let x ∈ H
be given. For each positive integer i, set ci = (x, φi). Then, for each
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positive integer n We have

0 ≤ ‖x−
n∑

i=1

ciφi‖2

= ((x−
n∑

i=1

ciφi), (x−
n∑

j=1

cjφj))

= (x, x)−
n∑

j=1

cj(x, φj)−
n∑

i=1

ci(φi, x) +
n∑

i=1

n∑
j=1

cicj(φi, φj)

= (x, x)−
n∑

j=1

cjcj −
n∑

i=1

cici +
n∑

i=1

n∑
j=1

cicjδij

= ‖x‖2 −
n∑

i=1

|ci|2.

Since this is true for an arbitrary n, Bessel’s inequality follows.
If {φ1, φ2, . . . } is an orthonormal sequence and {c1, c2, . . . } is a square

summable sequence of complex numbers, then the sequence of partial
sums of the infinite series

∞∑
n=1

cnφn

is a Cauchy sequence. Indeed,

‖
j∑

n=1

cnφn −
k∑

n=1

cnφn‖2 =
j∑

n=k+1

|cn|2.

See part a of Exercise 8.4. This proves part 4.
Now, if {φ1, φ2, . . . } is a maximal orthonormal sequence in H, and x

is an element of H, we have from Bessel’s inequality that
∑

n |(x, φn)|2 is
finite, and therefore

∑
(x, φn)φn converges in H by part 4. If we define

y =
∑

n

(x, φn)φn.

Clearly ((x − y), φn) = 0 for all n, implying that, if x − y 6= 0, then
(x− y)/‖x− y‖ is a unit vector that is orthogonal to the set {φn}. But
since this set is maximal, no such vector can exist, and we must have
x = y as desired. To see that this representation of x as an infinite
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series is unique, suppose x =
∑
c′nφn, where {c′n} is a square-summable

sequence of complex numbers. Then, for each k, we have

(x, φk) =
∑

n

c′n(φn, φk) = c′k,

showing the uniqueness of the coefficients.
Because the inner product is continuous in both variables, we have

that

(x, y) =
∑

n

∑
k

((x, φn)φn, (y, φk)φk) =
∑

n

(x, φn)(y, φn),

proving part 6.
Parseval’s equality follows from part 6 by setting y = x.
Part 7 is now immediate, and this completes the proof.

DEFINITION. We call a maximal orthonormal sequence in a sepa-
rable Hilbert space H an orthonormal basis of H.

EXERCISE 8.5. (a) Prove that L2[0, 1] is a Hilbert space with re-
spect to the inner product defined by

(f, g) =
∫ 1

0

f(x)g(x) dx.

(b) For each integer n, define an element φn ∈ L2[0, 1] by φn(x) =
e2πinx. Show that the φn’s form an orthonormal sequence in L2[0, 1].

(c) For each 0 < r < 1, define a function kr on [0, 1] by

kr(x) =
1− r2

1 + r2 − 2r cos(2πx)
.

(See part d of Exercise 6.7.) Show that

kr(x) =
∞∑

n=−∞
r|n|φn(x),

whence
∫ 1

0
kr(x) dx = 1 for every 0 < r < 1. Show further that if

f ∈ L2[0, 1], then
f = lim

r→1
kr ∗ f,
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where the limit is taken in L2, and where ∗ denotes convolution; i.e.,

(kr ∗ f)(x) =
∫ 1

0

kr(x− y)f(y) dy.

(d) Suppose f ∈ L2[0, 1] satisfies (f, φn) = 0 for all n. Show that f is
the 0 element of L2[0, 1]. HINT: (kr ∗ f)(x) = 0 for every r < 1.

(e) Conclude that the set {φn} forms an orthonormal basis for L2[0, 1].
(f) Using f(x) = x, show that

∞∑
n=1

1/n2 = π2/6.

Then, using f(x) = x2 − x, show that

∞∑
n=1

1/n4 = π4/90.

HINT: Parseval’s equality.
(g) Let M be the set of all functions f =

∑
cnφn in L2[0, 1] for which

c2n+1 = 0 for all n, and let N be the set of all functions g =
∑
cnφn in

L2[0, 1] for which c2n = (1 + |n|)c2n+1 for all n. Prove that both M and
N are closed subspaces of L2[0, 1].

(h) For M and N as in part g, show that M+N contains each φn and
so is a dense subspace of L2[0, 1]. Show further that if h =

∑
n cnφn ∈

M +N, then ∑
n

n2|c2n+1|2 <∞.

(i) Conclude that the sum of two arbitrary closed subspaces of a
Hilbert space need not be closed. Compare this with part f of Exercise
8.4.

THEOREM 8.3. (Projection Theorem) Let M be a closed subspace
of a separable Hilbert space H. Then:

(1) H is the direct sum H = M
⊕
M⊥ of the closed subspaces M

and M⊥; i.e., every element x ∈ H can be written uniquely as
x = y + z for y ∈M and z ∈M⊥.

(2) For each x ∈ H there exists a unique element y ∈ M for which
x− y ∈M⊥. We denote this unique element y by pM (x).

(3) The assignment x→ pM (x) of part 2 defines a continuous linear
transformation pM of H onto M that satisfies p2

M = pM .
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PROOF. We prove part 1 and leave the rest of the proof to an
exercise. Let {φn} be a maximal orthonormal sequence in the Hilbert
spaceM, and extend this set, by Theorem 8.2, to a maximal orthonormal
sequence {φn}∪ {ψk} in H. If x ∈ H, then, again according to Theorem
8.2, we have

x =
∑

n

(x, φn)φn +
∑

k

(x, ψk)ψk = y + z,

where y =
∑

n(x, φn)φn and z =
∑

k(x, ψk)ψk. Clearly, y ∈ M and
z ∈ M⊥. If x = y′ + z′, for y′ ∈ M and z′ ∈ M⊥, then the element
y − y′ = z′ − z belongs to M ∩ M⊥, whence is 0. This shows the
uniqueness of y and z and completes the proof of part 1.

EXERCISE 8.6. (a) Complete the proof of the preceding theorem.
(b) For pM as in part 3 of the preceding theorem, show that

‖pM (x)‖ ≤ ‖x‖

for all x ∈ H; i.e., pM is norm-decreasing.
(c) Again, for pM as in part 3 of the preceding theorem, show that

(pM (x), y) = (x, pM (y))

for all x, y ∈ H.
(d) Let S be a subset of a Hilbert space H. Show that (S⊥)⊥ is the

smallest closed subspace of H that contains S. Conclude that if M is a
closed subspace of a Hilbert space H, then M = (M⊥)⊥.

(e) Let M be a subspace of a Hilbert space H. Show that M is dense
in H if and only if M⊥ = {0}. Give an example of a proper closed
subspace M of an inner product space X (necessarily not a Hilbert
space) for which M⊥ = {0}.

(f) Let M be a closed subspace of a Hilbert space H. Define a map
T : M⊥ → H/M by T (x) = x + M. Prove that T is an isometric
isomorphism of M⊥ onto H/M. Conclude then that the quotient space
H/M, known to be a Banach space, is in fact a Hilbert space.

DEFINITION. If M is a closed subspace of a separable Hilbert
space H, then the transformation pM of the preceding theorem is called
the projection of Honto M.

REMARK. The set M of all closed subspaces of a Hilbert space
H is a candidate for the set Q of questions in our mathematical model
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of experimental science. (See Chapter VII.) Indeed, M is obviously a
partially-ordered set by inclusion; it contains a maximum element H and
a minimum element {0}; the sum of two orthogonal closed subspaces is a
closed subspace, so that there is a notion of summability for certain pairs
of elements ofM; each elementM ∈M has a complementM⊥ satisfying
M +M⊥ = H. Also, we may define M and N to be compatible if there
exist four pairwise orthogonal closed subspaces M1, . . . ,M4 satisfying

(1) M = M1 +M2.
(2) N = M2 +M3.
(3) M1 +M2 +M3 +M4 = H.

We study this candidate for Q in more detail later by putting it in 1-1
correspondence with the corresponding set of projections.

DEFINITION. Let {Hn} be a sequence of Hilbert spaces. By the
Hilbert space direct sum

⊕
Hn of the Hn’s, we mean the subspace of

the direct product
∏

nHn consisting of the sequences {xn}, for which
xn ∈ Hn for each n, and for which

∑
n ‖xn‖2 <∞.

EXERCISE 8.7. (a) Prove that the Hilbert space direct sum
⊕
Hn

of Hilbert spaces {Hn} is a Hilbert space, where the vector space oper-
ations are componentwise and the inner product is defined by

({xn}, {yn}) =
∑

n

(xn, yn).

Show that the ordinary (algebraic) direct sum of the vector spaces {Hn}
can be naturally identified with a dense subspace of the Hilbert space
direct sum of the Hn’s. Verify that if each Hn is separable then so is⊕

nHn.

(b) Suppose {Mn} is a pairwise orthogonal sequence of closed sub-
spaces of a Hilbert space H and that M is the smallest closed subspace
of H that contains each Mn. Construct an isometric isomorphism be-
tween M and the Hilbert space direct sum

⊕
Mn, where we regard each

closed subspace Mn as a Hilbert space in its own right.

THEOREM 8.4. (Riesz Representation Theorem for Hilbert Space)
Let H be a separable Hilbert space, and let f be a continuous linear
functional on H. Then there exists a unique element yf of H for which
f(x) = (x, yf ) for all x ∈ H. That is, the linear functional f can be rep-
resented as an inner product. Moreover, the map f → yf is a conjugate-
linear isometric isomorphism of the conjugate space H∗ onto H.
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PROOF. Let {φ1, φ2, . . . } be a maximal orthonormal sequence in
H, and for each n, define cn = f(φn). Note that |cn| ≤ ‖f‖ for all n;
i.e., the sequence {cn} is bounded. For any positive integer n, write
wn =

∑n
j=1 cjφj , and note that

‖wn‖2 =
n∑

j=1

|cj |2 = |f(wn)| ≤ ‖f‖‖wn‖,

whence
n∑

j=1

|cj |2 ≤ ‖f‖2,

showing that the sequence {cn} belongs to l2. Therefore, the series∑∞
n=1 cnφn converges in H to an element yf . We see immediately that

(yf , φn) = cn for every n, and that ‖yf‖ ≤ ‖f‖. Further, for each x ∈ H,
we have by Theorem 8.2 that

f(x) = f(
∑

(x, φn)φn)

=
∑

(x, φn)cn

=
∑

(x, φn)(yf , φn)

= (x, yf ),

showing that f(x) = (x, yf ) as desired.
From the Cauchy-Schwarz inequality, we then see that ‖f‖ ≤ ‖yf‖,

and we have already seen the reverse inequality above. Hence, ‖f‖ =
‖yf‖. We leave the rest of the proof to the exercise that follows.

EXERCISE 8.8. (a) Prove that the map f → yf of the preceding
theorem is conjugate linear, isometric, and onto H. Conclude that the
map f → yf is a conjugate-linear, isometric isomorphism of the conju-
gate space H∗ of H onto H. Accordingly, we say that a Hilbert space is
self dual.

(b) Let H be a Hilbert space. Show that a net {xα} of vectors in H
converges to an element x in the weak topology of H if and only if

(x, y) = lim
α

(xα, y)

for every y ∈ H.
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(c) Show that the map f → yf of the preceding theorem is a homeo-
morphism of the topological vector space (H∗,W∗) onto the topological
vector space (H,W).

(d) Let H be a separable Hilbert space. Prove that the closed unit
ball in H is compact and metrizable in the weak topology.

(e) Let H be a separable Hilbert space and let {xn} be a sequence
of vectors in H. If {xn} converges weakly to an element x ∈ H, show
that the sequence {xn} is uniformly bounded in norm. Conversely, if the
sequence {xn} is uniformly bounded in norm, prove that there exists a
subsequence {xnk

} of {xn} that is weakly convergent. HINT: Uniform
Boundedness Principle and Alaoglu’s Theorem.

DEFINITION. Let H be a Hilbert space, and let B(H) denote the
set L(H,H) of all bounded linear transformations of H into itself. If
T ∈ B(H) and x, y ∈ H, we call the number (T (x), y) a matrix coefficient
for T.

Let T be an element of B(H). Define, as in Chapter IV, ‖T‖ by

‖T‖ = sup
x∈H
‖x‖≤1

‖T (x)‖.

EXERCISE 8.9. (a) For T ∈ B(H), show that

‖T‖ = sup
x,y∈H

‖x‖≤1,‖y‖≤1

|(T (x), y)|.

(b) For T ∈ B(H) and x, y ∈ H, prove the following polarization
identity:

(T (x), y) = (1/4)
3∑

j=0

ij(T (x+ ijy), (x+ ijy)).

(c) If S, T ∈ B(H), show that ‖TS‖ ≤ ‖T‖‖S‖. Conclude that B(H)
is a Banach algebra; i.e., B(H) is a Banach space on which there is
also defined an associative multiplication ×, which is distributive over
addition, commutes with scalar multiplication, and which satisfies ‖T ×
S‖ ≤ ‖T‖‖S‖.

(d) If S, T ∈ B(H) satisfy (T (x), y) = (S(x), y) for all x, y ∈ H (i.e.,
they have the same set of matrix coefficients), show that S = T. Show
further that T = S if and only if (T (x), x) = (S(x), x) for all x ∈ H.
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(This is a result that is valid in complex Hilbert spaces but is not valid
in Hilbert spaces over the real field. Consider the linear transformation
on R2 determined by the matrix

[
0 1

−1 0

]
.)

(e) If F,G are continuous linear transformations of H into any topo-
logical vector space X, and if F (φn) = G(φn) for all φn in a maximal
orthonormal sequence, show that F = G.

THEOREM 8.5. Let H be a complex Hilbert space, and let L be a
mapping of H ×H into C satisfying:

(1) For each fixed y, the map x → L(x, y) is a linear functional on
H.

(2) For each fixed x, the map y → L(x, y) is a conjugate linear trans-
formation of H into C.

(3) There exists a positive constant M such that

|L(x, y)| ≤M‖x‖‖y‖
for all x, y ∈ H.

(Such an L is called a bounded Hermitian form on H.) Then there exists
a unique element S ∈ B(H) such that

L(x, y) = (x, S(y))

for all x, y ∈ H.
PROOF. For each fixed y ∈ H, we have from assumptions (1) and

(3) that the map x → L(x, y) is a continuous linear functional on H.
Then, by the Riesz representation theorem (Theorem 8.4), there exists
a unique element z ∈ H for which L(x, y) = (x, z) for all x ∈ H. We
denote z by S(y), and we need to show that S is a continuous linear
transformation of H into itself.

Clearly,
(x, S(y1 + y2)) = L(x, y1 + y2)

= L(x, y1) + L(x, y2)

= (x, S(y1)) + (x, S(y2))

= (x, S(y1) + S(y2))

for all x, showing that S(y1 + y2) = S(y1) + S(y2). Also,

(x, S(λy)) = L(x, λy)

= λL(x, y)

= λ(x, S(y))

= (x, λS(y))
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for all x, showing that S(λy) = λS(y), whence S is linear.
Now, since |(x, S(y))| = |L(x, y)| ≤ M‖x‖‖y‖, it follows by setting

x = S(y) that S is a bounded operator of norm ≤M on H, as desired.
Finally, the uniqueness of S is evident since any two such operators S1

and S2 would have identical matrix coefficients and so would be equal.

DEFINITION. Let T be a bounded operator on a (complex) Hilbert
space H. Define a map LT on H ×H by

LT (x, y) = (T (x), y).

By the adjoint of T, we mean the unique bounded operator S = T ∗,
whose existence is guaranteed by the previous theorem, that satisfies

(x, T ∗(y)) = LT (x, y) = (T (x), y)

for all x, y ∈ H.

THEOREM 8.6. The adjoint mapping T → T ∗ on B(H) satisfies
the following for all T, S ∈ B(H) and λ ∈ C.

(1) (T + S)∗ = T ∗ + S∗.
(2) (λT )∗ = λT ∗.
(3) (TS)∗ = S∗T ∗.
(4) If T is invertible, then so is T ∗, and (T ∗)−1 = (T−1)∗.
(5) The kernel of T ∗ is the orthogonal complement of the range of

T ; i.e., y ∈M⊥ if and only if T ∗(y) = 0.
(6) (T ∗)∗ = T.
(7) ‖T ∗‖ = ‖T‖.
(8) ‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2.

PROOF. We prove parts 3 and 8 and leave the remaining parts to
an exercise.

We have
(x, (TS)∗(y)) = (T (S(x)), y)

= (S(x), T ∗(y))

= (x, S∗(T ∗(y))),

showing part 3.
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Next, we have that ‖T ∗T‖ ≤ ‖T ∗‖‖T‖ = ‖T‖2 by part 7, so to obtain
part 8 we need only show the reverse inequality. Thus,

‖T‖2 = sup
x∈H
‖x‖≤1

‖T (x)‖2

= sup
x∈H
‖x‖≤1

(T (x), T (x))

= sup
x∈H
‖x‖≤1

(x, T ∗(T (x)))

≤ ‖T ∗T‖,

as desired.

EXERCISE 8.10. Prove the remaining parts of Theorem 8.6.

DEFINITION. Let H be a (complex) Hilbert space. An element
T ∈ B(H) is called unitary if it is an isometry of H onto H. A linear
transformation U from one Hilbert space H1 into another Hilbert space
H2 is called a unitary map if it is an isometry of H1 onto H2.

An element T ∈ B(H) is called selfadjoint or Hermitian if T ∗ = T.
An element T ∈ B(H) is called normal if T and T ∗ commute, i.e., if

TT ∗ = T ∗T.
An element T in B(H) is called positive if (T (x), x) ≥ 0 for all x ∈ H.
An element T ∈ B(H) is called idempotent if T 2 = T.
If p ∈ B(H) is selfadjoint and idempotent, we say that p is an orthog-

onal projection or (simply) a projection.
An eigenvector for an operator T ∈ B(H) is a nonzero vector x ∈ H

for which there exists a scalar λ satisfying T (x) = λx. The scalar λ is
called an eigenvalue for T, and the eigenvector x is said to belong to the
eigenvalue λ.

EXERCISE 8.11. (a) Prove that the L2 Fourier transform U is a
unitary operator on L2(R).

(b) Suppose µ and ν are σ-finite measures on a σ-algebra B of subsets
of a set S, and assume that ν is absolutely continuous with respect to
µ. Let f denote the Radon-Nikodym derivative of ν with respect to µ,
and define U : L2(ν) → L2(µ) by

U(g) =
√
fg.

Prove that U is a norm-preserving linear transformation of L2(ν) into
L2(µ), and that it is a unitary transformation between these two Hilbert
spaces if and only if µ and ν are mutually absolutely continuous.
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(c) (Characterization of unitary transformations) Let U be a linear
transformation of a Hilbert space H1 into a Hilbert space H2. Prove that
U is a unitary operator if and only if it is onto H2 and is inner-product
preserving; i.e.,

(U(x), U(y)) = (x, y)

for all x, y ∈ H1.
(d) (Another characterization of unitary operators) Let U be an ele-

ment of B(H). Prove that U is a unitary operator if and only if

UU∗ = U∗U = I.

(e) (The bilateral shift) Let Z denote the set of all integers, let µ be
counting measure on Z, and let H be L2(µ). Define a transformation U
on H by

[U(x)]n = xn+1.

Prove that U is a unitary operator on H. Compute its adjoint (inverse)
U∗.

(f) (The unilateral shift) Let S be the set of all nonnegative integers,
let µ be counting measure on S, and let H = L2(µ). Define a transfor-
mation T on H by

[T (x)]n = xn+1.

Show that T is not a unitary operator. Compute its adjoint T ∗.

THEOREM 8.7. Let H be a (complex) Hilbert space.
(1) If T ∈ B(H), then there exist unique selfadjoint operators T1 and

T2 such that T = T1 + iT2. T1 and T2 are called respectively the
real and imaginary parts of the operator T.

(2) The set of all selfadjoint operators forms a real Banach space
with respect to the operator norm, and the set of all unitary op-
erators forms a group under multiplication.

(3) An element T ∈ B(H) is selfadjoint if and only if (T (x), x) =
(x, T (x)) for all x in a dense subset of H.

(4) An element T ∈ B(H) is selfadjoint if and only if (T (x), x) is real
for every x ∈ H. If λ is an eigenvalue for a selfadjoint operator
T, then λ is real.

(5) Every positive operator is selfadjoint.
(6) Every orthogonal projection is positive.
(7) If T is selfadjoint, then I ± iT is 1-1, onto, and ‖(I ± iT )(x)‖ ≥

‖x‖ for all x ∈ H, whence (I ± iT )−1 is a bounded operator on
H.
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(8) If T is selfadjoint, then U = (I − iT )(I + iT )−1 is a unitary
operator, for which -1 is not an eigenvalue; i.e., I + U is 1-1.
Moreover,

T = −i(I − U)(I + U)−1.

This unitary operator U is called the Cayley transform of T.
(9) A continuous linear transformation U : H1 → H2 is unitary if

and only if its range is a dense subspace of H2, and

(U(x), U(x)) = (x, x)

for all x in a dense subset of H1.

PROOF. Defining T1 = (1/2)(T + T ∗) and T2 = (1/2i)(T − T ∗), we
have that T = T1 + iT2, and both T1 and T2 are selfadjoint. Further, if
T = S1 + iS2, where both S1 and S2 are selfadjoint, then T ∗ = S1− iS2,
whence 2S1 = T + T ∗ and 2iS2 = T − T ∗, from which part 1 follows.

Parts 2 through 6 are left to the exercises.
To see part 7, notice first that

‖(I + iT )(x)‖2 = ((I + iT )(x), (I + iT )(x))

= (x, x) + i(T (x), x)− i(x, T (x)) + (T (x), T (x))

= ‖x‖2 + ‖T (x)‖2

≥ ‖x‖2,

which implies that I + iT is 1-1 and norm-increasing. Moreover, it
follows that the range of I + iT is closed in H. For, if y ∈ H and y =
lim yn = lim(I + iT )(xn), then the sequence {yn} is Cauchy, and hence
the sequence {xn} must be Cauchy by the above inequality. Therefore
{xn} converges to an x ∈ H. Then y = (I + iT )(x), showing that the
range of I + iT is closed.

If z ∈ H is orthogonal to the range of I+iT, then ((I+iT )(z), z) = 0,
which implies that (z, z) = −i(T (z), z), which can only happen if z = 0,
since (T (z), z) is real if T is selfadjoint. Hence, the range of I + iT only
has 0 in its orthogonal complement; i.e., this range is dense. Since it is
also closed, we have that the range of I + iT = H, and I + iT is onto.
Since I + iT is norm-increasing, we see that (I + iT )−1 exists and is
norm-decreasing, hence is continuous.

Of course, an analogous argument proves that (I − iT )−1 is continu-
ous.
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Starting with
(I + iT )(I + iT )−1 = I,

we see by taking the adjoint of both sides that

((I + iT )−1)∗ = (I − iT )−1.

It follows also then that I − iT and (I + iT )−1 commute. But now

I = (I − iT )(I − iT )−1(I + iT )−1(I + iT )

= (I − iT )(I + iT )−1(I − iT )−1(I + iT )

= (I − iT )(I + iT )−1[(I − iT )(I + iT )−1]∗,

showing that U = (I − iT )(I + iT )−1 is unitary. See part d of Exercise
8.11. Also,

I + U = (I + iT )(I + iT )−1 + (I − iT )(I + iT )−1

= 2(I + iT )−1,

showing that I + U is 1-1 and onto. Finally,

I − U = (I + iT )(I + iT )−1 − (I − iT )(I + iT )−1 = 2iT (I + iT )−1,

whence

−i(I − U)(I + U)−1 = −i× 2iT (I + iT )−1(1/2)(I + iT ) = T,

as desired.
Finally, if a continuous linear transformation U : H1 → H2 is onto

a dense subspace of H2, and (U(x), U(x)) = (x, x) for all x in a dense
subset of H1, we have that U is an isometry on this dense subset, whence
is an isometry of all of H1 into H2. Since H1 is a complete metric space,
it follows that the range of U is complete, whence is a closed subset of
H2. Since this range is assumed to be dense, it follows that the range of
U = H2, and U is unitary.

EXERCISE 8.12. Prove parts 2 through 6 of the preceding theorem.

EXERCISE 8.13. Let H be a Hilbert space.
(a) If φ(z) =

∑∞
n=0 anz

n is a power series function with radius of
convergence r, and if T is an element of B(H) for which ‖T‖ < r, show
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that the infinite series
∑∞

n=0 anT
n converges to an element of B(H).

(We may call this element φ(T ).)
(b) Use part a to show that I +T has an inverse in B(H) if ‖T‖ < 1.
(c) For each T ∈ B(H), define

eT =
∞∑

n=0

Tn/n!.

Prove that
eT+S = eT eS

if T and S commute. HINT: Show that the double series
∑
Tn/n! ×∑

Sj/j! converges independent of the arrangement of the terms. Then,
rearrange the terms into groups where n+ j = k.

(d) Suppose T is selfadjoint. Show that

eiT =
∞∑

n=0

(iT )n/n!

is unitary.

EXERCISE 8.14. (Multiplication Operators) Let (S, µ) be a σ-finite
measure space. For each f ∈ L∞(µ), define the operator mf on the
Hilbert space L2(µ) by

mf (g) = fg.

These operators mf are called multiplication operators.
(a) Show that each operator mf is bounded and that

‖mf‖ = ‖f‖∞.

(b) Show that (mf )∗ = mf . Conclude that each mf is normal, and
that mf is selfadjoint if and only if f is real-valued a.e.µ.

(c) Show that mf is unitary if and only if |f | = 1 a.e.µ.
(d) Show that mf is a positive operator if and only if f(x) ≥ 0 a.e.µ.
(e) Show that mf is a projection if and only if f2 = f a.e.µ, i.e., if

and only if f is the characteristic function of some set E.
(f) Show that λ is an eigenvalue formf if and only if µ(f−1({λ})) > 0.
(g) Suppose φ(z) =

∑∞
n=0 anz

n is a power series function with radius
of convergence r, and suppose f ∈ L∞(µ) satisfies ‖f‖∞ < r. Show that
φ(mf ) = mφ◦f . (See the previous exercise.)
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EXERCISE 8.15. Let H be the complex Hilbert space L2(R). For
f ∈ L1(R), write Tf for the operator on H determined by convolution
by f. That is, for g ∈ L2(R), we have Tf (g) = f ∗ g. See Theorem 6.2.

(a) Prove that Tf ∈ B(H) and that the map f → Tf is a norm-
decreasing linear transformation of L1(R) into B(H). See Theorem 6.2.

(b) For g, h ∈ L2(R) and f ∈ L1(R), show that

(Tf (g), h) = (f̂U(g), U(h)) = (mf̂ (U(g)), U(h)),

where f̂ denotes the Fourier transform of f and U(g) and U(h) denote
the L2 Fourier transforms of g and h. Conclude that the map f → Tf is
1-1.

(c) Show that T ∗f = Tf∗ , where f∗(x) = f(−x).
(d) Show that

Tf1∗f2 = Tf1 ◦ Tf2

for all f1, f2 ∈ L1(R). Conclude that Tf is always a normal operator,
and that it is selfadjoint if and only if f(−x) = f(x) for almost all x.
HINT: Fubini’s Theorem.

(e) Prove that Tf is a positive operator if and only if f̂(ξ) ≥ 0 for all
ξ ∈ R.

(f) Show that Tf is never a unitary operator and is never a nonzero
projection. Can Tf have any eigenvectors?

We return now to our study of the set M of all closed subspaces of a
Hilbert space H. The next theorem shows that M is in 1-1 correspon-
dence with a different, and perhaps more tractable, set P.

THEOREM 8.8. Let p be an orthogonal projection on a Hilbert space
H, let Mp denote the range of p and let Kp denote the kernel of p. Then:

(1) x ∈Mp if and only if x = p(x).
(2) Mp = K⊥

p , whence Mp is a closed subspace of H. Moreover, p is
the projection of H onto Mp.

(3) The assignment p→Mp is a 1-1 correspondence between the set
P of all orthogonal projections on H and the set M of all closed
subspaces of H.

(4) Mp and Mq are orthogonal subspaces if and only if pq = qp = 0
which implies that p+q is a projection. In fact, Mp+q = Mp+Mq.

(5) Mp ⊆Mq if and only if pq = qp = p, which implies that r = q−p
is a projection, and q = p+ r.
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PROOF. We leave the proof of part 1 to the exercise that follows.
If x ∈Mp, and y ∈ Kp, then, x = p(x) by part 1. Therefore,

(x, y) = (p(x), y) = (x, p(y)) = 0,

showing that Mp ⊆ K⊥
p . Conversely, if x ∈ K⊥

p , then x− p(x) is also in
K⊥

p . But
p(z − p(z)) = p(z)− p2(z) = 0

for any z ∈ H, whence x − p(x) ∈ Kp ∩ K⊥
p , and this implies that

x = p(x), and x ∈ Mp. This proves the first part of 2. We see also that
for any z ∈ H we have that

z = p(z) + (z − p(z)),

and that p(z) ∈Mp, and z−p(z) ∈ Kp. It follows then that p is the pro-
jection of H onto the closed subspace Mp. See the Projection Theorem
(8.3).

Part 3 follows directly from Theorem 8.3.
Let Mp and Mq be orthogonal subspaces. If x is any element of H,

then q(x) ∈ Mq and Mq ⊆ Kp. Therefore p(q(x)) = 0 for every x ∈ H;
i.e., pq = 0. A similar calculation shows that qp = 0. Then it follows
directly that p + q is selfadjoint and that (p + q)2 = p + q. Conversely,
if pq = qp = 0, then Mp ⊆ Kq, whence Mp is orthogonal to Mq.

We leave part 5 to the exercises.

EXERCISE 8.16. (a) Prove parts 1 and 5 of the preceding theorem.
(b) Let p be a projection with range Mp. Show that a vector x belongs

to Mp if and only if ‖p(x)‖ = ‖x‖.
REMARK. We now examine the set P of all projections on a separa-

ble complex Hilbert space H as a candidate for the set Q of all questions
in our development of axiomatic experimental science. The preceding
theorem shows that P is in 1-1 correspondence with the set M of all
closed subspaces, and we saw earlier that M could serve as a model for
Q. The following theorem spells out the properties of P that are relevant
if we wish to use P as a model for Q.

THEOREM 8.9. Consider the set P of all projections on a separable
complex Hilbert space H as being in 1-1 correspondence with the set M
of all closed subspaces of H, and equip P with the notions of partial
order, complement, orthogonality, sum, and compatibility coming from
this identification with M. Then:

(1) p ≤ q if and only if pq = qp = p.
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(2) p and q are orthogonal if and only if pq = qp = 0.
(3) p and q are summable if and only if they are orthogonal.
(4) p and q are compatible if and only if they commute, i.e., if and

only if pq = qp.
(5) If {pi} is a sequence of pairwise orthogonal projections, then

there exists a (unique) projection p such that p(x) =
∑

i pi(x)
for all x ∈ H.

PROOF. Parts 1 and 2 follow from the preceding theorem. It also
follows from that theorem that if p and q are orthogonal then p+ q is a
projection, implying that p and q are summable. Conversely, if p and q
are summable, then p+ q is a projection, and

p+ q = (p+ q)2 = p2 + pq + qp+ q2 = p+ q + pq + qp,

whence pq = −qp. But then

−pq = −p2q2

= −ppqq
= p(−pq)q
= pqpq

= (−qp)(−qp)
= qpqp

= q(−qp)p
= −qp,

implying that pq = qp. But then pq = qp = 0, whence p and q are
orthogonal. This completes the proof of part 3.

Suppose now that p and q commute, and write r2 = pq. Let r1 = p−r2,
r3 = q− r2, and r4 = I− r1− r2− r3. It follows directly that the ri’s are
pairwise orthogonal projections, that p = r1 + r2 and that q = r2 + r3.
Hence p and q are compatible. Conversely, if p and q are compatible,
and p = r1 + r2 and q = r2 + r3, where r1, r2, r3 are pairwise orthogonal
projections, then pq = qp = r2 and p and q commute.

Finally, to see part 5, let M be the Hilbert space direct sum
⊕
Mpi

of the closed subspaces {Mpi
}, and let p be the projection of H onto M.

Then, if x ∈M⊥, we have that p(x) = pi(x) = 0 for all i, whence

p(x) =
∑

pi(x).
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On the other hand, if x′ ∈M, then x′ =
∑
x′i, where for each i, x′i ∈Mpi .

Obviously then p(x′) =
∑
pi(x′i) =

∑
pi(x′). Finally, if z ∈ H, then

z = x+x′, where x ∈M⊥ and x′ ∈M. Clearly, we have p(z) =
∑
pi(z),

and the proof is complete.

DEFINITION. Let H be a separable Hilbert space. If {pi} is a
sequence of pairwise orthogonal projections in B(H), then the projection
p =

∑
i pi from part 5 of the preceding theorem is called the sum of the

pi’s.

EXERCISE 8.17. (a) Show that the set P satisfies all the require-
ments of the set Q of all questions. (See Chapter VII.)

(b) Show that in P a stronger property holds than is required for Q.
That is, show that a sequence {pi} is mutually summable if and only if
it is pairwise orthogonal.


