CHAPTER IX

PROJECTION-VALUED MEASURES

DEFINITION Let S be a set and let \mathcal{B} be a σ-algebra of subsets of S. We refer to the elements of \mathcal{B} as Borel subsets of S and we call the pair (S, \mathcal{B}) a Borel space.

If H is a separable (complex) Hilbert space, we say that a mapping $E \rightarrow p_{E}$, of \mathcal{B} into the set \mathcal{P} of projections on H, is a projection-valued measure (or an H-projection-valued measure) on (S, \mathcal{B}) if:
(1) $p_{S}=I$, and $p_{\emptyset}=0$.
(2) If $\left\{E_{i}\right\}$ is a countable collection of pairwise disjoint elements of \mathcal{B}, then $\left\{p_{E_{i}}\right\}$ is a pairwise orthogonal collection of projections, and $p_{\cup E_{i}}=\sum p_{E_{i}}$.
If $p\left(E \rightarrow p_{E}\right)$ is an H-projection-valued measure and M is a closed subspace of H, for which $p_{E}(M) \subseteq M$ for all $E \in \mathcal{B}$, then M is called an invariant subspace for p or simply a p-invariant subspace. The assignment $\left.E \rightarrow\left(p_{E}\right)\right|_{M}$ is called the restriction of p to M. See Exercise 9.1.

Two functions f and g on S are said to agree a.e.p if the set E of all x for which $f(x) \neq g(x)$ satisfies $p_{E}=0$.

A function $f: S \rightarrow \mathbb{C}$ is called a Borel function or \mathcal{B}-measurable if $f^{-1}(U) \in \mathcal{B}$ whenever U is an open subset of \mathbb{C}. A complex-valued \mathcal{B}-measurable function f is said to belong to $L^{\infty}(p)$ if there exists a positive real number M such that

$$
p_{|f|^{-1}(M, \infty)}=p_{\{x:|f(x)|>M\}}=0
$$

and the L^{∞} norm (really only a seminorm) of such a function f is defined to be the infimum of all such numbers M. By $L^{\infty}(p)$, we mean the vector space (or algebra) of all L^{∞} functions f equipped with the ∞-norm. See Exercise 9.1.

If H and H^{\prime} are two separable Hilbert spaces, and if $E \rightarrow p_{E}$ is an H-projection-valued measure and $E \rightarrow p_{E}^{\prime}$ is an H^{\prime}-projection-valued measure, both defined on the same Borel space (S, \mathcal{B}), we say that p and p^{\prime} are unitarily equivalent if there exists a unitary transformation $U: H \rightarrow H^{\prime}$ such that

$$
U \circ p_{E} \circ U^{-1}=p_{E}^{\prime}
$$

for every $E \in \mathcal{B}$.
If we are thinking of the set \mathcal{P} as a model for the set Q of all questions (see Chapter VII), and the Borel space S is the real line \mathbb{R}, then the set of projection-valued measures will correspond to the set O of all observables.

EXERCISE 9.1. Let $E \rightarrow p_{E}$ be a projection-valued measure on (S, \mathcal{B}).
(a) If $E \in \mathcal{B}$, show that $p_{\tilde{E}}=I-p_{E}$.
(b) If $E, F \in \mathcal{B}$, show that $p_{E \cap F}=p_{E} p_{F}$. HINT: Show first that if $E \cap F=\emptyset$, then p_{E} and p_{F} are orthogonal, i.e., that $p_{E} p_{F}=p_{F} p_{E}=0$.
(c) If S is the increasing union $\cup E_{n}$ of elements of \mathcal{B}, show that the union of the ranges of the projections $p_{E_{n}}$ is dense in H. HINT: Write $F_{1}=E_{1}$, and for $n>1$ define $F_{n}=E_{n}-E_{n-1}$. Note that $S=\cup F_{n}$, whence $x=\sum p_{F_{n}}(x)$ for each $x \in H$.
(d) Suppose $\left\{E_{n}\right\}$ is a sequence of elements of \mathcal{B} for which $p_{E_{n}}=0$ for all n. Prove that $p_{\cup E_{n}}=0$.
(e) Show that $\|f\|_{\infty}$ is a seminorm on $L^{\infty}(p)$. Show further that $\|f g\|_{\infty} \leq\|f\|_{\infty}\|g\|_{\infty}$ for all $f, g \in L^{\infty}(p)$. If M denotes the subset of $L^{\infty}(p)$ consisting of the functions f for which $\|f\|_{\infty}=0$, i.e., the functions that are 0 a.e. p, prove that $L^{\infty}(p) / M$ is a Banach space (even a Banach algebra). See part c of Exercise 4.3. Sometimes the notation $L^{\infty}(p)$ stands for this Banach space $L^{\infty}(p) / M$.
(f) Suppose M is a closed invariant subspace for p. Show that the assignment $\left.E \rightarrow\left(p_{E}\right)\right|_{M}$ is an M-projection-valued measure.
(g) Let $\left\{H_{i}\right\}$ be a sequence of separable Hilbert spaces, and for each i let $E \rightarrow p_{E}^{i}$ be an H_{i}-projection-valued measure on the Borel space (S, \mathcal{B}). Let $H=\bigoplus H_{i}$ be the Hilbert space direct sum of the H_{i} 's, and
define a map $E \rightarrow p_{E}$ of \mathcal{B} into the set of projections on H by

$$
p_{E}=\sum_{i} p_{E}^{i}
$$

Prove that $E \rightarrow p_{E}$ is a projection-valued measure. This projectionvalued measure is called the direct sum of the projection-valued measures $\left\{p^{i}\right\}$.

THEOREM 9.1. Let (S, \mathcal{B}) be a Borel space, let H be a separable Hilbert space, and let $E \rightarrow p_{E}$ be an H-projection-valued measure on (S, \mathcal{B}). If $x \in H$, define μ_{x} on \mathcal{B} by

$$
\mu_{x}(E)=\left(p_{E}(x), x\right)
$$

Then μ_{x} is a finite positive measure on the σ-algebra \mathcal{B} and $\mu_{x}(S)=$ $\|x\|^{2}$.

EXERCISE 9.2. (a) Prove Theorem 9.1.
(b) Show that each measure μ_{x}, as defined in the preceding theorem, is absolutely continuous with respect to p. That is, show that if $p_{E}=0$ then $\mu_{x}(E)=0$.
(c) Let S, \mathcal{B}, H and p be as in the preceding theorem. If x and y are vectors in H, and if $\mu_{x, y}$ is defined on \mathcal{B} by

$$
\mu_{x, y}(E)=\left(p_{E}(x), y\right)
$$

show that $\mu_{x, y}$ is a finite complex measure on \mathcal{B}. Show also that

$$
\left\|\mu_{x, y}\right\| \leq\|x\|\|y\|
$$

See Exercise 5.12.
(d) Let S, \mathcal{B}, H, p, and μ_{x} be as in the preceding theorem. Suppose p^{\prime} is any H-projection-valued measure on \mathcal{B} for which $\mu_{x}(E)=\left(p_{E}^{\prime}(x), x\right)$ for all $x \in H$. Show that $p^{\prime}=p$. That is, the measures $\left\{\mu_{x}\right\}$ uniquely determine the projection-valued measure p.
(e) Let ϕ be a \mathcal{B}-measurable simple function on S, and suppose

$$
\phi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}
$$

and

$$
\phi=\sum_{j=1}^{m} b_{j} \chi_{F_{j}}
$$

are two different representations of ϕ as finite linear combinations of characteristic functions of elements of \mathcal{B}. Prove that for each $x \in H$, we have

$$
\sum_{i=1}^{n} a_{i} p_{E_{i}}(x)=\sum_{j=1}^{m} b_{j} p_{F_{j}}(x) .
$$

HINT: Show this by taking inner products.
THEOREM 9.2. Let (S, μ) be a σ-finite measure space, let \mathcal{B} be the σ-algebra of μ-measurable subsets of S, and let $H=L^{2}(\mu)$. For each measurable set $E \subseteq S$, define p_{E} to be the projection in $B(H)$ given by $p_{E}=m_{\chi_{E}}$. That is,

$$
p_{E}(f)=\chi_{E} f
$$

Then $E \rightarrow p_{E}$ is a projection-valued measure on H.
DEFINITION. The projection-valued measure of the preceding theorem is called the canonical projection-valued measure on $L^{2}(\mu)$.

EXERCISE 9.3. (a) Prove Theorem 9.2.
(b) Let U denote the L^{2} Fourier transform on $L^{2}(\mathbb{R})$, and, for each Borel subset $E \subseteq \mathbb{R}$, define an operator p_{E} on $L^{2}(\mathbb{R})$ by

$$
p_{E}(f)=U^{-1}\left(\chi_{E} U(f)\right)
$$

Show that each operator p_{E} is a projection on $L^{2}(\mathbb{R})$ and that $E \rightarrow p_{E}$ is a projection-valued measure. Note that this projection-valued measure is unitarily equivalent to the canonical one on $L^{2}(\mathbb{R})$. Show that $p_{[-1,1]}$ can be expressed as a convolution operator:

$$
p_{[-1,1]} f(t)=\int_{-\infty}^{\infty} k(t-s) f(s) d s
$$

where k is a certain L^{2} function.
(c) Let (S, \mathcal{B}) and $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ be two Borel spaces, and let h be a map of S into S^{\prime} for which $h^{-1}\left(E^{\prime}\right) \in \mathcal{B}$ whenever $E^{\prime} \in \mathcal{B}^{\prime}$. Such a map h is called a Borel map of S into S^{\prime}. Suppose $E \rightarrow p_{E}$ is an H-projection-valued measure on (S, \mathcal{B}), and define a map $E^{\prime} \rightarrow q_{E^{\prime}}$ on \mathcal{B}^{\prime} by

$$
q_{E^{\prime}}=p_{h^{-1}\left(E^{\prime}\right)}
$$

Prove that $E^{\prime} \rightarrow q_{E^{\prime}}$ is an H-projection-valued measure on $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$. This projection-valued measure q is frequently denoted by $h_{*}(p)$.

EXERCISE 9.4. Let (S, μ) be a σ-finite measure space, and let $E \rightarrow p_{E}$ be the canonical projection-valued measure on $L^{2}(\mu)$. Prove that there exists a vector f in $L^{2}(\mu)$ such that the linear span of the vectors $p_{E}(f)$, for E running over the μ-measurable subsets of S, is dense in $L^{2}(\mu)$. HINT: Do this first for a finite measure μ.

DEFINITION. Let (S, \mathcal{B}) be a Borel space, let H be a separable Hilbert space, and let $E \rightarrow p_{E}$ be an H-projection-valued measure on (S, \mathcal{B}). A vector $x \in H$ is called a cyclic vector for p if the linear span of the vectors $p_{E}(x)$, for $E \in \mathcal{B}$, is dense in H.

A vector x is a separating vector for p if: $p_{E}=0$ if and only if $p_{E}(x)=0$.

A vector x is a supporting vector for p if the measure μ_{x} of Theorem 9.1 satisfies: $\mu_{x}(E)=0$ if and only if $p_{E}=0$.

EXERCISE 9.5. (a) Show that a canonical projection-valued measure has a cyclic vector. (See Exercise 9.4.)
(b) Show that every cyclic vector for a projection-valued measure is a separating vector.
(c) Show that a vector x is a separating vector for a projection-valued measure if and only if it is a supporting vector.
(d) Give an example to show that not every separating vector need be cyclic. HINT: Use a one-point set S and a 2 dimensional Hilbert space.

THEOREM 9.3. An H-projection-valued measure $E \rightarrow p_{E}$ on a Borel space (S, \mathcal{B}) has a cyclic vector if and only if there exists a finite measure μ on (S, \mathcal{B}) such that p is unitarily equivalent to the canonical projection-valued measure on $L^{2}(\mu)$.

PROOF. The "if" part follows from part a of Exercise 9.5. Conversely, let x be a cyclic vector for p and write μ for the (finite) measure μ_{x} of Theorem 9.1 on \mathcal{B}. For each \mathcal{B}-measurable simple function $\phi=\sum a_{i} \chi_{E_{i}}$ on S, define $U(\phi) \in H$ by

$$
U(\phi)=\sum a_{i} p_{E_{i}}(x)
$$

Then $U(\phi)$ is well-defined by part e of Exercise 9.2, and the range of U is dense in H because x is a cyclic vector. It follows directly that U is a well-defined linear transformation of the complex vector space X of all simple \mathcal{B}-measurable functions on S into H. Furthermore, writing
$\phi=\sum a_{i} \chi_{E_{i}}$, where $E_{i} \cap E_{j}=\emptyset$ for $i \neq j$, then

$$
\begin{aligned}
\|U(\phi)\|^{2} & =\left(\sum_{i} a_{i} p_{E_{i}}(x), \sum_{j} a_{j} p_{E_{j}}(x)\right) \\
& =\sum \sum a_{i} \overline{a_{j}}\left(p_{E_{i}}(x), p_{E_{j}}(x)\right) \\
& =\sum \sum a_{i} \overline{a_{j}}\left(p_{E_{j} \cap E_{i}}(x), x\right) \\
& =\sum\left|a_{i}\right|^{2}\left(p_{E_{i}}(x), x\right) \\
& =\sum\left|a_{i}\right|^{2} \mu\left(E_{i}\right) \\
& =\int|\phi|^{2} d \mu \\
& =\|\phi\|_{2}^{2}
\end{aligned}
$$

showing that U is an isometry of X onto a dense subspace of H.
Therefore, U has a unique extension from the dense subspace X to a unitary operator from all of $L^{2}(\mu)$ onto all of H.

Finally, if p^{\prime} denotes the canonical projection-valued measure on $L^{2}(\mu)$, $\phi=\sum a_{i} \chi_{E_{i}}$ is an element of X, and $y=U(\phi)$ is the corresponding element in the range of U on X, we have

$$
\begin{aligned}
\left(U \circ p_{E}^{\prime} \circ U^{-1}\right)(y) & =\left(U \circ p_{E}^{\prime}\right)(\phi) \\
& =U\left(\chi_{E} \phi\right) \\
& =U\left(\chi_{E} \sum a_{i} \chi_{E_{i}}\right) \\
& =U\left(\sum a_{i} \chi_{E \cap E_{i}}\right) \\
& =\sum a_{i} p_{E \cap E_{i}}(x) \\
& =\sum a_{i} p_{E}\left(p_{E_{i}}(x)\right) \\
& =p_{E}\left(\sum a_{i} p_{E_{i}}(x)\right) \\
& =p_{E}(U(\phi)) \\
& =p_{E}(y),
\end{aligned}
$$

which shows that $U \circ p_{E}^{\prime} \circ U^{-1}$ and p_{E} agree on a dense subspace of H, whence are equal everywhere. This completes the proof.

EXERCISE 9.6. Let $E \rightarrow p_{E}$ be an H-projection-valued measure.
(a) Let x be an element of H, and let M be the closed linear span of the vectors $p_{E}(x)$ for $E \in \mathcal{B}$. Prove that M is invariant under p, and that the restriction of p to M has a cyclic vector.
(b) Use the Hausdorff Maximality Principle to prove that there exists a sequence $\left\{M_{i}\right\}$ of pairwise orthogonal closed p-invariant subspaces of H, such that $\left.E \rightarrow\left(p_{E}\right)\right|_{M_{i}}$ has a cyclic vector for each i, and such that H is the Hilbert space direct sum $\bigoplus M_{i}$.

We next take up the notion of integrals with respect to a projectionvalued measure.

THEOREM 9.4. Let p be an H-projection-valued measure on a Borel space (S, \mathcal{B}). Let ϕ be a \mathcal{B}-measurable simple function, and suppose that

$$
\phi=\sum a_{i} \chi_{E_{i}}=\sum b_{j} \chi_{F_{j}},
$$

where each E_{i} and F_{j} are elements of \mathcal{B} and each a_{i} and b_{j} are complex numbers. Then

$$
\sum a_{i} p_{E_{i}}=\sum b_{j} p_{F_{j}}
$$

EXERCISE 9.7. Prove Theorem 9.4.
DEFINITION. If p is an H-projection-valued measure on a Borel space (S, \mathcal{B}), and ϕ is a \mathcal{B}-measurable simple function on S, we define an operator, which we denote by $\int \phi d p$, on H by

$$
\int \phi d p=\sum a_{i} p_{E_{i}}
$$

where $\phi=\sum a_{i} \chi_{E_{i}}$. This operator is well-defined in view of the preceding theorem.

THEOREM 9.5. Let p be an H-projection-valued measure on a Borel space (S, \mathcal{B}), and let X denote the space of all \mathcal{B}-measurable simple functions on S. Then the map L that sends ϕ to $\int \phi d p$ has the following properties:
(1) $L(\phi)=\int \phi d p$ is a bounded operator on H, and

$$
\|L(\phi)\|=\left\|\int \phi d p\right\|=\|\phi\|_{\infty}
$$

(2) L is linear; i.e.,

$$
\int(\phi+\psi) d p=\int \phi d p+\int \psi d p
$$

and

$$
\int \lambda \phi d p=\lambda \int \phi d p
$$

for all complex numbers λ and all $\phi, \psi \in X$.
(3) L is multiplicative; i.e.,

$$
\int(\phi \psi) d p=\int \phi d p \circ \int \psi d p
$$

for all $\phi, \psi \in X$.
(4) L is essentially 1-1, i.e.; $\int \phi d p=\int \psi d p$ if and only if $\phi=\psi$ a.e.p.
(5) For each $\phi \in X$, we have

$$
\left(\int \phi d p\right)^{*}=\int \bar{\phi} d p
$$

whence $\int \phi d p$ is selfadjoint if and only if ϕ is real-valued a.e.p.
(6) $\int \phi d p$ is a positive operator if and only if ϕ is nonnegative a.e.p.
(7) $\int \phi d p$ is unitary if and only if $|\phi|=1$ a.e.p.
(8) $\int \phi d p$ is a projection if and only if $\phi^{2}=\phi$ a.e.p; i.e., if and only if ϕ agrees with a characteristic function a.e.p.

PROOF. Let x and y be unit vectors in H, and let $\mu_{x, y}$ be the complex measure on S defined in part c of Exercise 9.2. Then

$$
\begin{aligned}
\left|\left(\left[\int \phi d p\right](x), y\right)\right| & =\left|\left(\sum a_{i} p_{E_{i}}(x), y\right)\right| \\
& =\left|\sum a_{i} \mu_{x, y}\left(E_{i}\right)\right| \\
& =\left|\int \phi d \mu_{x, y}\right| \\
& \leq\|\phi\|_{\infty}\left\|\mu_{x, y}\right\| \\
& \leq\|\phi\|_{\infty}
\end{aligned}
$$

showing that $\int \phi d p$ is a bounded operator and that $\left\|\int \phi d p\right\| \leq\|\phi\|_{\infty}$. See part c of Exercise 9.2 and part c of Exercise 5.12. On the other hand, we may assume that the sets $\left\{E_{i}\right\}$ are pairwise disjoint, that $p_{E_{1}} \neq 0$, and that $\left|a_{1}\right|=\|\phi\|_{\infty}$. Choosing x to be any unit vector in the range of
$p_{E_{1}}$, we see that

$$
\begin{aligned}
{\left[\int \phi d p\right](x) } & =\sum a_{i} p_{E_{i}}\left(p_{E_{1}}(x)\right) \\
& =\sum a_{i} p_{E_{i} \cap E_{1}}(x) \\
& =a_{1} p_{E_{1}}(x) \\
& =a_{1} x
\end{aligned}
$$

showing that $\left\|\left[\int \phi d p\right](x)\right\|=\|\phi\|_{\infty}$, and this finishes the proof of part 1.

Part 2 is left to the exercises.
To see part 3 , write $\phi=\sum_{i=1}^{n} a_{i} \chi_{E_{i}}$, and $\psi=\sum_{j=1}^{m} b_{j} \chi_{F_{j}}$. Then

$$
\begin{aligned}
\int \phi \psi d p & =\int\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \chi_{E_{i}} \chi_{F_{j}}\right) d p \\
& =\int\left(\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \chi_{E_{i} \cap F_{j}}\right) d p \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} p_{E_{i} \cap F_{j}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} p_{E_{i}} p_{F_{j}} \\
& =\sum_{i=1}^{n} a_{i} p_{E_{i}} \circ \sum_{j=1}^{m} b_{j} p_{F_{j}} \\
& =\int \phi d p \circ \int \psi d p
\end{aligned}
$$

proving part 3.
We have next that $\int \phi d p=\int \psi d p$ if and only if

$$
\left(\left[\int \phi d p\right](x), x\right)=\left(\left[\int \psi d p\right](x), x\right)
$$

for every $x \in H$. Therefore $\int \phi d p=\int \psi d p$ if and only if $\int \phi d \mu_{x}=$ $\int \psi d \mu_{x}$ for every $x \in H$. If $\phi=\psi$ a.e. p, then $\phi=\psi$ a.e. μ_{x} for every $x \in$ H, whence $\int \phi d \mu_{x}=\int \psi d \mu_{x}$ for all x, and $\int \phi d p=\int \psi d p$. Conversely,
if ϕ and ψ are not equal a.e.p, then, without loss of generality, we may assume that there exists a set $E \subseteq S$ and a $\delta>0$ such that $\phi(s)-\psi(s)>$ δ for all $s \in E$ and $p_{E} \neq 0$. Letting x be a unit vector in the range of the projection p_{E}, we have that

$$
\begin{aligned}
\left(\left[\int \phi d p\right](x), x\right)-\left(\left[\int \psi d p\right](x), x\right) & =\left(\left[\int(\phi-\psi) d p\right](x), x\right) \\
& =\left(\left[\int(\phi-\psi) d p\right]\left(p_{E}(x)\right), x\right) \\
& =\left(\left[\int(\phi-\psi) d p\right]\left[\int \chi_{E} d p\right](x), x\right) \\
& =\left(\left[\int(\phi-\psi) \chi_{E} d p\right](x), x\right) \\
& =\int(\phi-\psi) \chi_{E} d \mu_{x} \\
& \geq \int \delta \chi_{E} d \mu_{x} \\
& =\delta \int \chi_{E} d \mu_{x} \\
& =\delta\left(p_{E}(x), x\right) \\
& =\delta(x, x) \\
& >0
\end{aligned}
$$

proving that $\int \phi d p \neq \int \psi d p$, which gives part 4.
To see part 5 , let x and y be arbitrary vectors in H. Then

$$
\begin{aligned}
\left(\left[\int \phi d p\right]^{*}(x), y\right) & =\left(x,\left[\int \phi d p\right](y)\right) \\
& =\left(x,\left(\sum a_{i} p_{E_{i}}(y)\right)\right) \\
& =\sum \overline{a_{i}}\left(x, p_{E_{i}}(y)\right) \\
& =\sum \overline{a_{i}}\left(p_{E_{i}}(x), y\right) \\
& =\left(\left(\sum \overline{a_{i}} p_{E_{i}}\right)(x), y\right) \\
& =\left(\left[\int \bar{\phi} d p\right](x), y\right) .
\end{aligned}
$$

Parts 6, 7, and 8 now follow from parts 4 and 5 , and we leave the details to the exercises.

EXERCISE 9.8. Prove parts 2,6,7, and 8 of Theorem 9.5.

THEOREM 9.6. Let p be an H-projection-valued measure on a Borel space (S, \mathcal{B}). Then the map $\phi \rightarrow L(\phi)=\int \phi d p$, of the space X of all \mathcal{B}-measurable simple functions on S into $B(H)$, extends uniquely to a map (also called L) of $L^{\infty}(p)$ into $B(H)$ that satisfies:
(1) L is linear.
(2) L is multiplicative; i.e., $L(f g)=L(f) L(g)$ for all $f, g \in L^{\infty}(p)$.
(3) $\|L(f)\|=\|f\|_{\infty}$ for all $f \in L^{\infty}(p)$.

EXERCISE 9.9. (a) Prove Theorem 9.6.
(b) If M denotes the subspace of $L^{\infty}(p)$ consisting of the functions f for which $f=0$ a.e. p, show that the map L of Theorem 9.6 induces an isometric isomorphism of the Banach algebra $L^{\infty}(p) / M$. See part e of Exercise 9.1.

DEFINITION. If $f \in L^{\infty}(p)$, for p an H-projection-valued measure on (S, \mathcal{B}), we denote the bounded operator that is the image of f under the isometry L of the preceding theorem by $\int f d p$ or $\int f(s) d p(s)$, and we call it the integral of f with respect to the projection-valued measure p.

EXERCISE 9.10. Verify the following properties of the integral with respect to a projection-valued measure p.
(a) Suppose $f \in L^{\infty}(p)$ and $x, y \in H$. Then the matrix coefficient ([$\left.\left.\int f d p\right](x), y\right)$ is given by

$$
\left(\left[\int f d p\right](x), y\right)=\int f d \mu_{x, y}
$$

where $\mu_{x, y}$ is the complex measure defined in part c of Exercise 9.2.
(b) $\left[\int f d p\right]^{*}=\int \bar{f} d p$, whence $\int f d p$ is selfadjoint if and only if f is real-valued a.e.p.
(c) $\int f d p$ is a unitary operator if and only if $|f|=1$ a.e. p.
(d) $\int f d p$ is a positive operator if and only if f is nonnegative a.e.p.
(e) We say that an element f in $L^{\infty}(p)$ is essentially bounded away from 0 if and only if there exists a $\delta>0$ such that

$$
p_{f^{-1}\left(B_{\delta}(0)\right)}=0 .
$$

Show that $\int f d p$ is invertible in $B(H)$ if and only if f is essentially bounded away from zero. HINT: If f is not essentially bounded away
from 0 , let $\left\{x_{n}\right\}$ be a sequence of unit vectors for which x_{n} belongs to the range of the projection $p_{f^{-1}\left(B_{1 / n}(0)\right)}$. Show that

$$
\left\|\left[\int f d p\right]\left(x_{n}\right)\right\| \leq 1 / n
$$

so that no inverse of $\int f d p$ could be bounded.
EXERCISE 9.11. Let p be a projection-valued measure on the Borel space (S, \mathcal{B}).
(a) Suppose there exists a point $s \in S$ for which $p_{\{s\}} \neq 0$. Show that, for each $f \in L^{\infty}(p)$, the operator $\int f d p$ has an eigenvector belonging to the eigenvalue $\lambda=f(s)$. Indeed, any nonzero vector in the range of $p_{\{s\}}$ will suffice.
(b) Let f be an element of $L^{\infty}(p)$, let λ_{0} be a complex number, let $\epsilon>0$ be given, and write $B_{\epsilon}\left(\lambda_{0}\right)$ for the open ball of radius ϵ around λ_{0}. Define $E=f^{-1}\left(B_{\epsilon}\left(\lambda_{0}\right)\right)$, and let x be a vector in H. Prove that x belongs to the range of p_{E} if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{\epsilon^{n}}\left\|\left(\int f d p-\lambda_{0} I\right)^{n}(x)\right\|=0
$$

If x is in the range of p_{E}, show that

$$
\left(\left|\lambda_{0}\right|-\epsilon\right)\|x\| \leq\left\|\left[\int f d p\right](x)\right\| \leq\left(\left|\lambda_{0}\right|+\epsilon\right)\|x\|
$$

More particularly, suppose f is real-valued, that $0<a<b \leq \infty$, and let $E=f^{-1}(a, b)$. If x is in the range of p_{E}, show that

$$
a\|x\| \leq\left\|\left[\int f d p\right](x)\right\| \leq b\|x\|
$$

(c) Suppose $f \in L^{\infty}(p)$ is such that the operator $T=\int f d p$ has an eigenvector with eigenvalue λ. Define $E=f^{-1}(\{\lambda\})$. Prove that $p_{E} \neq 0$, and show further that $x \in H$ is an eigenvector for T belonging to the eigenvalue λ if and only if x belongs to the range of p_{E}.

EXERCISE 9.12. Let $E \rightarrow p_{E}$ be the canonical projection-valued measure on $L^{2}(\mu)$. Verify that $\int f d p$ is the multiplication operator m_{f} for every $f \in L^{\infty}(p)$. HINT: Do this first for characteristic functions χ_{E}.

EXERCISE 9.13. (Change of Variables) Let (S, \mathcal{B}) and $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ be two Borel spaces, and let h be a Borel map from S into S^{\prime}; i.e., h
maps S into S^{\prime} and $h^{-1}\left(E^{\prime}\right) \in \mathcal{B}$ whenever $E^{\prime} \in \mathcal{B}^{\prime}$. Suppose p is a projection-valued measure on (S, \mathcal{B}), and as in part c of Exercise 9.3 define a projection-valued measure $q=h_{*}(p)$ on $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ by

$$
q_{E}=p_{h^{-1}(E)}
$$

If f is any bounded \mathcal{B}^{\prime}-measurable function on S^{\prime}, show that

$$
\int f d q=\int(f \circ h) d p
$$

HINT: Check this equality for characteristic functions, then simple functions, and finally bounded functions.
THEOREM 9.7. (A "Riesz" Representation Theorem) Let Δ be a second countable compact Hausdorff space, let H be a separable Hilbert space, and let T be a linear transformation from the complex normed linear space $C(\Delta)$ of all continuous complex-valued functions on Δ into $B(H)$. Assume that T satisfies
(1) $T(f g)=T(f) \circ T(g)$ for all $f, g \in C(\Delta)$.
(2) $T(\bar{f})=[T(f)]^{*}$ for all $f \in C(\Delta)$.
(3) $T(1)=I$, where 1 denotes the identically 1 function and I denotes the identity operator on H.
Then there exists a unique projection-valued measure $E \rightarrow p_{E}$ from the σ-algebra \mathcal{B} of Borel subsets of Δ such that

$$
T(f)=\int f d p
$$

for every $f \in C(\Delta)$.
PROOF. Note first that assumptions 1 and 2 imply that $T(f)$ is a positive operator if $f \geq 0$. Consequently, since $|f(s)|^{2} \leq\|f\|_{\infty}^{2}$, we have that $\|f\|_{\infty}^{2} I-T(\bar{f}) \circ T(f)$ is a positive operator. Hence,

$$
\|f\|_{\infty}^{2}\|x\|^{2} \geq([T(\bar{f}) \circ T(f)](x), x)=\|[T(f)](x)\|^{2},
$$

showing that $\|T(f)\| \leq\|f\|_{\infty}$ for all $f \in C(\Delta)$. That is, T is a bounded linear transformation of norm ≤ 1.

Next, for each pair (x, y) of vectors in H, define $\phi_{x, y}$ on $C(\Delta)$ by

$$
\phi_{x, y}(f)=(T(f)(x), y) .
$$

Then $\phi_{x, y}$ is a bounded linear functional on $C(\Delta)$, and we write $\nu_{x, y}$ for the unique finite complex Borel measure on Δ for which

$$
\phi_{x, y}(f)=\int f d \nu_{x, y}
$$

for all $f \in C(\Delta)$. See Theorem 1.5 and Exercise 1.12. We see immediately that
(1) The linear functional $\phi_{x, x}$ is a positive linear functional, whence the measure $\nu_{x, x}$ is a positive measure.
(2) For each fixed $y \in H$, the map $x \rightarrow \nu_{x, y}$ is a linear transformation of H into the vector space $M(\Delta)$ of all finite complex Borel measures on Δ.
(3) $\nu_{x, y}=\overline{\nu_{y, x}}$ for all $x, y \in H$.
(4) $\left\|\nu_{x, y}\right\|=\left\|\phi_{x, y}\right\| \leq\|x\|\|y\|$.

For each bounded, real-valued, Borel function h on Δ, consider the map $L_{h}: H \times H \rightarrow \mathbb{C}$ given by

$$
L_{h}(x, y)=\int h d \nu_{x, y}
$$

It follows from the results above that for each fixed $y \in H$ the map $x \rightarrow L_{h}(x, y)$ is linear. Also,

$$
\begin{aligned}
L_{h}(y, x) & =\int h d \nu_{y, x} \\
& =\int h d \overline{\bar{\nu}}_{y, x} \\
& =\overline{\int \bar{h} d \bar{\nu}_{y, x}} \\
& =\overline{\int h d \nu_{x, y}} \\
& =\overline{L_{h}(x, y)}
\end{aligned}
$$

for all $x, y \in H$. Furthermore, using Exercise 5.12 we have that

$$
\begin{aligned}
\left|L_{h}(x, y)\right| & =\left|\int h d \nu_{x, y}\right| \\
& \leq\|h\|_{\infty}\left\|\nu_{x, y}\right\| \\
& \leq\|h\|_{\infty}\|x\|\|y\|
\end{aligned}
$$

Now, using Theorem 8.5, let $T(h)$ be the unique bounded operator on H for which

$$
L_{h}(x, y)=(T(h)(x), y)
$$

for all $x, y \in H$. Note that since the measures $\nu_{x, x}$ are positive measures, it follows that the matrix coefficients

$$
(T(h)(x), x)=L_{h}(x, x)=\int h d \nu_{x, x}
$$

are all real, implying that the operator $T(h)$ is selfadjoint.
If E is a Borel subset of Δ, set $p_{E}=T\left(\chi_{E}\right)$. We will eventually see that the assignment $E \rightarrow p_{E}$ is a projection-valued measure on (Δ, \mathcal{B}).

Fix $g \in C(\Delta)$ and $x, y \in H$. Note that the two bounded linear functionals

$$
f \rightarrow \int f g d \nu_{x, y}=\phi_{x, y}(f g)=(T(f g)(x), y)
$$

and

$$
f \rightarrow \int f d \nu_{T(g)(x), y}=\phi_{T(g)(x), y}(f)=(T(f)(T(g)(x)), y)
$$

agree on $C(\Delta)$. Since they are both represented by integrals (Theorem 1.5), it follows that

$$
\int h g d \nu_{x, y}=\int h d \nu_{T(g)(x), y}
$$

for every bounded Borel function h. Now, for each fixed bounded, realvalued, Borel function h and each pair $x, y \in H$, the two bounded linear functionals

$$
g \rightarrow \int g h d \nu_{x, y}=\int h g d \nu_{x, y}
$$

and

$$
\begin{aligned}
g \rightarrow \int h d \nu_{T(g)(x), y} & =(T(h)(T(g)(x)), y) \\
& =(T(g)(x), T(h)(y)) \\
& =\int g d \nu_{x, T(h)(y)}
\end{aligned}
$$

agree on $C(\Delta)$. Again, since both functionals can be represented as integrals, it follows that

$$
\int h k d \nu_{x, y}=\int k d \nu_{x, T(h)(y)}
$$

for all bounded, real-valued, Borel functions h and k. Therefore,

$$
\begin{aligned}
(T(h k)(x), y) & =L_{h k}(x, y) \\
& =\int h k d \nu_{x, y} \\
& =\int k d \nu_{x, T(h)(y)} \\
& =L_{k}(x, T(h)(y)) \\
& =(T(k)(x), T(h)(y)) \\
& =(T(h)(T(k)(x)), y),
\end{aligned}
$$

showing that $T(h k)=T(h) T(k)$ for all bounded, real-valued, Borel functions h and k.

We see directly from the preceding calculation that each $p_{E}=T\left(\chi_{E}\right)$ is a projection. Clearly $p_{\Delta}=T(1)=I$ and $p_{\emptyset}=T(0)=0$, so that to see that $E \rightarrow p_{E}$ is a projection-valued measure we must only check the countable additivity condition. Thus, let $\left\{E_{n}\right\}$ be a sequence of pairwise disjoint Borel subsets of Δ, and write $E=\cup E_{n}$. For any vectors $x, y \in H$, we have

$$
\begin{aligned}
\left(p_{E}(x), y\right) & =\left(T\left(\chi_{E}\right)(x), y\right) \\
& =L_{\chi_{E}}(x, y) \\
& =\int \chi_{E} d \nu_{x, y} \\
& =\nu_{x, y}(E) \\
& =\sum \nu_{x, y}\left(E_{n}\right) \\
& =\sum\left(p_{E_{n}}(x), y\right) \\
& =\left(\left[\sum p_{E_{n}}\right](x), y\right)
\end{aligned}
$$

as desired.
Finally, let us show that $T(f)=\int f d p$ for every $f \in C(\Delta)$. Note that, for vectors $x, y \in H$, we have that the measure $\nu_{x, y}$ agrees with the measure $\mu_{x, y}$, where $\mu_{x, y}$ is the measure defined in part c of Exercise 9.2 by

$$
\mu_{x, y}(E)=\left(p_{E}(x), y\right)
$$

We then have

$$
\begin{aligned}
(T(f)(x), y) & =\phi_{x, y}(f) \\
& =\int f d \nu_{x, y} \\
& =\int f d \mu_{x, y} \\
& =\left(\left[\int f d p\right](x), y\right)
\end{aligned}
$$

by part a of Exercise 9.10. This shows the desired equality of $T(f)$ and $\int f d p$.

The uniqueness of the projection-valued measure p, satisfying $T(f)=$ $\int f d p$ for all $f \in C(\Delta)$, follows from part d of Exercise 9.2 and part a of Exercise 9.10.

We close this chapter by attempting to extend the definition of integral with respect to a projection-valued measure to unbounded measurable functions. For simplicity, we will restrict our attention to realvalued functions.

DEFINITION. Let p be an H-projection-valued measure on the Borel space (S, \mathcal{B}), and let f be a real-valued, \mathcal{B}-measurable function on S. For each integer n, define $E_{n}=f^{-1}(-n, n)$, and write T_{n} for the bounded selfadjoint operator on H given by $T_{n}=\int f \chi_{E_{n}} d p$. We define $D(f)$ to be the set of all $x \in H$ for which $\lim _{n} T_{n}(x)$ exists, and we define $T_{f}: D(f) \rightarrow H$ by $T_{f}(x)=\lim T_{n}(x)$.

EXERCISE 9.14. Using the notation of the preceding definition, show that
(a) If x is in the range of $p_{E_{n}}$, then $x \in D(f)$, and $T_{f}(x)=T_{n}(x)$.
(b) $x \in D(f)$ if and only if the sequence $\left\{T_{n}(x)\right\}$ is bounded. HINT: $x=p_{E_{n}}(x)+p_{\tilde{E_{n}}}(x)$. Show further that the sequence $\left\{\left\|T_{n}(x)\right\|\right\}$ is nondecreasing.
(c) $D(f)$ is a subspace of H and T_{f} is a linear transformation of $D(f)$ into H.

THEOREM 9.8. Let the notation be as in the preceding definition.
(1) $D(f)$ is a dense subspace of H.
(2) T_{f} is symmetric on $D(f)$; i.e.,

$$
\left(T_{f}(x), y\right)=\left(x, T_{f}(y)\right)
$$

for all $x, y \in D(f)$.
(3) The graph of T_{f} is a closed subspace in $H \times H$.
(4) The following are equivalent: i) $D(f)=H$; ii) T_{f} is continuous from $D(f)$ into H; iii) $f \in L^{\infty}(p)$.
(5) The linear transformations $I \pm i T_{f}$ are both 1-1 and onto from $D(f)$ to H.
(6) The linear transformation $U_{f}=\left(I-i T_{f}\right)\left(I+i T_{f}\right)^{-1}$ is 1-1 and onto from H to H and is in fact a unitary operator for which -1 is not an eigenvalue. (This operator U_{f} is called the Cayley transform of T_{f}.)
(7) The range of $I+U_{f}$ equals $D(f)$, and

$$
T_{f}=-i\left(I-U_{f}\right)\left(I+U_{f}\right)^{-1}
$$

PROOF. That $D(f)$ is dense in H follows from part a of Exercise 9.14 and part c of Exercise 9.1.

Each operator T_{n} is selfadjoint. So, if $x, y \in D(f)$, then

$$
\left(T_{f}(x), y\right)=\lim \left(T_{n}(x), y\right)=\lim \left(x, T_{n}(y)\right)=\left(x, T_{f}(y)\right)
$$

showing that T_{f} is symmetric on its domain $D(f)$.
The graph of T_{f}, like the graph of any linear transformation of H into itself, is clearly a subspace of $H \times H$. To see that the graph of T_{f} is closed, let (x, y) be in the closure of the graph, i.e., $x=\lim x_{j}$ and $y=\lim T_{f}\left(x_{j}\right)$, where each $x_{j} \in D(f)$. We must show that $x \in D(f)$ and then that $y=T_{f}(x)$. Now the sequence $\left\{T_{f}\left(x_{j}\right)\right\}$ is bounded in norm, and for each n we have from the preceding exercise that $\left\|T_{n}\left(x_{j}\right)\right\| \leq$ $\left\|T_{f}\left(x_{j}\right)\right\|$. Hence, there exists a constant M such that $\left\|T_{n}\left(x_{j}\right)\right\| \leq M$ for all n and j. Writing $T_{n}(x)=T_{n}\left(x-x_{j}\right)+T_{n}\left(x_{j}\right)$, we have that

$$
\left\|T_{n}(x)\right\| \leq \lim _{j}\left\|T_{n}\left(x-x_{j}\right)\right\|+M=M
$$

for all n, whence $x \in D(f)$ by Exercise 9.14. Now, for any $z \in D(f)$ we have

$$
\begin{aligned}
(y, z) & =\lim \left(T_{f}\left(x_{j}\right), z\right) \\
& =\lim \left(x_{j}, T_{f}(z)\right) \\
& =\left(x, T_{f}(z)\right) \\
& =\left(T_{f}(x), z\right),
\end{aligned}
$$

proving that $y=T_{f}(x)$ since $D(f)$ is dense in H.

We prove part 4 by showing that i) implies ii), ii) implies iii), and iii) implies i). First, if $D(f)=H$, then by the Closed Graph Theorem we have that T_{f} is continuous. Next, if f is not an element of $L^{\infty}(p)$, then there exists an increasing sequence $\left\{n_{k}\right\}$ of positive integers for which either

$$
p_{f^{-1}\left(n_{k}, n_{k+1}\right)} \neq 0
$$

for all k, or

$$
p_{f^{-1}\left(-n_{k+1},-n_{k}\right)} \neq 0
$$

for all k. Without loss of generality, suppose that

$$
p_{f^{-1}\left(n_{k}, n_{k+1}\right)} \neq 0
$$

for all k. Write $F_{k}=f^{-1}\left(n_{k}, n_{k+1}\right)$, and note that $F_{k} \subseteq E_{n_{k+1}}$. Now, for each k, let x_{k} be a unit vector in the range of $p_{F_{k}}$. Then each $x_{k} \in D(f)$, and

$$
\begin{aligned}
\left(T_{f}\left(x_{k}\right), x_{k}\right) & =\left(T_{n_{k+1}}\left(x_{k}\right), x_{k}\right) \\
& =\left(\left(T_{n_{k+1}} \circ p_{F_{k}}\right)\left(x_{k}\right), x_{k}\right) \\
& =\int f \chi_{F_{k}} d \mu_{x_{k}} \\
& \geq n_{k}\left\|x_{k}\right\|^{2} \\
& =n_{k},
\end{aligned}
$$

proving that $\left\|T_{f}\left(x_{k}\right)\right\| \geq n_{k}$, whence T_{f} is not continuous. Finally, if $f \in L^{\infty}(p)$, then clearly $T_{f}=T_{n}$ for any $n \geq\|f\|_{\infty}$, and $D(f)=H$. This proves part 4.

We show part 5 for $I+i T_{f}$. An analogous argument works for $I-i T_{f}$. Observe that, for $x \in D(f)$, we have

$$
\left\|\left(I+i T_{f}\right)(x)\right\|^{2}=\left(\left(I+i T_{f}\right)(x),\left(I+i T_{f}\right)(x)\right)=\|x\|^{2}+\left\|T_{f}(x)\right\|^{2}
$$

Therefore, $I+i T_{f}$ is norm-increasing, whence is 1-1. Now, if $\{(I+$ $\left.\left.i T_{f}\right)\left(x_{j}\right)\right\}$ is a sequence of elements in the range of $I+i T_{f}$ that converges to a point $y \in H$, then the sequence $\left\{\left(I+i T_{f}\right)\left(x_{j}\right)\right\}$ is a Cauchy sequence and therefore, since $I+i T_{f}$ is norm-increasing, the sequence $\left\{x_{j}\right\}$ is a Cauchy sequence as well. Let $x=\lim _{j} x_{j}$. It follows that $y=x+i z$, where $z=\lim _{j} T_{f}\left(x_{j}\right)$. Since the graph of T_{f} is closed, we must have that $x \in D(f)$ and $z=T_{f}(x)$. Hence, $y=\left(I+i T_{f}\right)(x)$ belongs to the range of $I+i T_{f}$, showing that this range is closed. We complete the proof then of part 5 by showing that the range of $I+i T_{f}$ is dense in H.

Thus, if $y \in H$ is orthogonal to every element of the range of $I+i T_{f}$, then for each n we have

$$
\begin{aligned}
0 & =\left(\left(I+i T_{f}\right)\left(p_{E_{n}}(y)\right), y\right) \\
& =\left(\left(I+i T_{f}\right)\left(p_{E_{n}}^{2}(y)\right), y\right) \\
& =\left(\left(I+i T_{n}\right)\left(p_{E_{n}}(y)\right), y\right) \\
& =\left(p_{E_{n}}\left(I+i T_{n}\right) p_{E_{n}}(y), y\right) \\
& =\left(\left(I+i T_{n}\right) p_{E_{n}}(y), p_{E_{n}}(y)\right) \\
& =\left\|p_{E_{n}}(y)\right\|^{2}+i\left(T_{n}\left(p_{E_{n}}(y)\right), p_{E_{n}}(y)\right) \\
& =\left\|p_{E_{n}}(y)\right\|^{2}+i\left(T_{n}(y), y\right) .
\end{aligned}
$$

But then $\left\|p_{E_{n}}(y)\right\|^{2}=-i\left(T_{n}\left(p_{E_{n}}(y)\right), p_{E_{n}}(y)\right)$, which, since T_{n} is selfadjoint, can happen only if $p_{E_{n}}(y)=0$. But then $y=\lim _{n} p_{E_{n}}(y)$ must be 0 . Therefore, the range of $I+i T_{f}$ is dense, whence is all of H.

Next, since $I+i T_{f}$ and $I-i T_{f}$ are both 1-1 from $D(f)$ onto H, it follows that $U_{f}=\left(I-i T_{f}\right)\left(I+i T_{f}\right)^{-1}$ is 1-1 from H onto itself. Further, writing $y \in D(f)$ as $\left(I+i T_{f}\right)^{-1}(x)$, we have

$$
\begin{aligned}
\left\|U_{f}(x)\right\|^{2} & =\left\|\left(I-i T_{f}\right)\left(\left(I+i T_{f}\right)^{-1}(x)\right)\right\|^{2} \\
& =\left\|\left(I-i T_{f}\right)(y)\right\|^{2} \\
& =\|y\|^{2}+\left\|T_{f}(y)\right\|^{2} \\
& =\left\|\left(I+i T_{f}\right)(y)\right\|^{2} \\
& =\|x\|^{2}
\end{aligned}
$$

proving that U_{f} is unitary. Writing the identity operator I as $(I+$ $\left.i T_{f}\right)\left(I+i T_{f}\right)^{-1}$, we have that $I+U_{f}=2\left(I+i T_{f}\right)^{-1}$, which is 1-1. Consequently, -1 is not an eigenvalue for U_{f}.

We leave the verification of part 7 to the exercises. This completes the proof.

DEFINITION. We call the operator $T_{f}: D(f) \rightarrow H$ of the preceding theorem the integral of f with respect to p, and we denote it by $\int f d p$ or $\int f(s) d p(s)$. It is not in general an element of $B(H)$. Indeed, as we have seen in the preceding theorem, $\int f d p$ is in $B(H)$ if and only if f is in $L^{\infty}(p)$.

EXERCISE 9.15. (a) Prove part 7 of Theorem 9.8.
(b) Suppose (S, μ) is a σ-finite measure space, that p is the canonical projection-valued measure on $L^{2}(\mu)$, and that f is a real-valued measurable function on S. Verify that $D(f)$ is the set of all L^{2} functions g for which $f g \in L^{2}(\mu)$, and that $\left[\int f d p\right](g)=f g$ for all $g \in D(f)$.
(c) Suppose (S, \mathcal{B}) and p are as in the preceding theorem. Suppose g is an everywhere nonzero, bounded, real-valued, measurable function on S, and write T for the bounded operator $\int g d p$. Prove that the operator $\int(1 / g) d p$ is a left inverse for the operator T.
(d) Let (S, \mathcal{B}) and $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ be two Borel spaces, and let h be a Borel map from S into S^{\prime}. Suppose p is a projection-valued measure on (S, \mathcal{B}), and as in part c of Exercise 9.3 define a projection-valued measure $q=$ $h_{*}(p)$ on $\left(S^{\prime}, \mathcal{B}^{\prime}\right)$ by

$$
q_{E}=p_{h^{-1}(E)}
$$

If f is any (possibly unbounded) real-valued \mathcal{B}^{\prime}-measurable function on S^{\prime}, show that

$$
\int f d q=\int(f \circ h) d p
$$

EXERCISE 9.16. Let p be the projection-valued measure on the Borel space $(\mathbb{R}, \mathcal{B})$ of part b of Exercise 9.3.
(a) Show that

$$
\int f d p=U^{-1} \circ m_{f} \circ U
$$

for every $f \in L^{\infty}(p)$.
(b) If $f(x)=x$, and $T_{f}=\int f d p$, show that $D(f)$ consists of all the L^{2} functions g for which $x[U(g)](x) \in L^{2}(\mathbb{R})$, and then show that every such g is absolutely continuous and has an L^{2} derivative.
(c) Conclude that the operator $\int f d p$ of part b has for its domain the set of all L^{2} absolutely continuous functions having L^{2} derivatives, and that $\left[\int f d p\right](g)=(1 / 2 \pi i) g^{\prime}$.

