
CHAPTER IX

PROJECTION-VALUED MEASURES

DEFINITION Let S be a set and let B be a σ-algebra of subsets of S.
We refer to the elements of B as Borel subsets of S and we call the pair
(S,B) a Borel space.

If H is a separable (complex) Hilbert space, we say that a mapping
E → pE , of B into the set P of projections on H, is a projection-valued
measure (or an H-projection-valued measure) on (S,B) if:

(1) pS = I, and p∅ = 0.
(2) If {Ei} is a countable collection of pairwise disjoint elements of

B, then {pEi} is a pairwise orthogonal collection of projections,
and p∪Ei =

∑
pEi .

If p (E → pE) is an H-projection-valued measure and M is a closed
subspace of H, for which pE(M) ⊆ M for all E ∈ B, then M is called
an invariant subspace for p or simply a p-invariant subspace. The as-
signment E → (pE)|M is called the restriction of p to M. See Exercise
9.1.

Two functions f and g on S are said to agree a.e.p if the set E of all
x for which f(x) 6= g(x) satisfies pE = 0.

A function f : S → C is called a Borel function or B-measurable
if f−1(U) ∈ B whenever U is an open subset of C. A complex-valued
B-measurable function f is said to belong to L∞(p) if there exists a
positive real number M such that

p|f |−1(M,∞) = p{x:|f(x)|>M} = 0,
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and the L∞ norm (really only a seminorm) of such a function f is defined
to be the infimum of all such numbers M. By L∞(p), we mean the vector
space (or algebra) of all L∞ functions f equipped with the ∞-norm. See
Exercise 9.1.

If H and H ′ are two separable Hilbert spaces, and if E → pE is an
H-projection-valued measure and E → p′E is an H ′-projection-valued
measure, both defined on the same Borel space (S,B), we say that p
and p′ are unitarily equivalent if there exists a unitary transformation
U : H → H ′ such that

U ◦ pE ◦ U−1 = p′E

for every E ∈ B.

If we are thinking of the set P as a model for the set Q of all questions
(see Chapter VII), and the Borel space S is the real line R, then the
set of projection-valued measures will correspond to the set O of all
observables.

EXERCISE 9.1. Let E → pE be a projection-valued measure on
(S,B).

(a) If E ∈ B, show that pẼ = I − pE .
(b) If E,F ∈ B, show that pE∩F = pEpF . HINT: Show first that if

E ∩F = ∅, then pE and pF are orthogonal, i.e., that pEpF = pF pE = 0.
(c) If S is the increasing union ∪En of elements of B, show that the

union of the ranges of the projections pEn
is dense in H. HINT: Write

F1 = E1, and for n > 1 define Fn = En − En−1. Note that S = ∪Fn,
whence x =

∑
pFn

(x) for each x ∈ H.
(d) Suppose {En} is a sequence of elements of B for which pEn

= 0
for all n. Prove that p∪En

= 0.
(e) Show that ‖f‖∞ is a seminorm on L∞(p). Show further that

‖fg‖∞ ≤ ‖f‖∞‖g‖∞ for all f, g ∈ L∞(p). If M denotes the subset
of L∞(p) consisting of the functions f for which ‖f‖∞ = 0, i.e., the
functions that are 0 a.e.p, prove that L∞(p)/M is a Banach space (even
a Banach algebra). See part c of Exercise 4.3. Sometimes the notation
L∞(p) stands for this Banach space L∞(p)/M.

(f) Suppose M is a closed invariant subspace for p. Show that the
assignment E → (pE)|M is an M -projection-valued measure.

(g) Let {Hi} be a sequence of separable Hilbert spaces, and for each
i let E → pi

E be an Hi-projection-valued measure on the Borel space
(S,B). Let H =

⊕
Hi be the Hilbert space direct sum of the Hi’s, and
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define a map E → pE of B into the set of projections on H by

pE =
∑

i

pi
E .

Prove that E → pE is a projection-valued measure. This projection-
valued measure is called the direct sum of the projection-valued measures
{pi}.

THEOREM 9.1. Let (S,B) be a Borel space, let H be a separable
Hilbert space, and let E → pE be an H-projection-valued measure on
(S,B). If x ∈ H, define µx on B by

µx(E) = (pE(x), x).

Then µx is a finite positive measure on the σ-algebra B and µx(S) =
‖x‖2.

EXERCISE 9.2. (a) Prove Theorem 9.1.
(b) Show that each measure µx, as defined in the preceding theorem,

is absolutely continuous with respect to p. That is, show that if pE = 0
then µx(E) = 0.

(c) Let S,B,H and p be as in the preceding theorem. If x and y are
vectors in H, and if µx,y is defined on B by

µx,y(E) = (pE(x), y),

show that µx,y is a finite complex measure on B. Show also that

‖µx,y‖ ≤ ‖x‖‖y‖.

See Exercise 5.12.
(d) Let S,B,H, p, and µx be as in the preceding theorem. Suppose p′

is any H-projection-valued measure on B for which µx(E) = (p′E(x), x)
for all x ∈ H. Show that p′ = p. That is, the measures {µx} uniquely
determine the projection-valued measure p.

(e) Let φ be a B-measurable simple function on S, and suppose

φ =
n∑

i=1

aiχEi

and

φ =
m∑

j=1

bjχFj
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are two different representations of φ as finite linear combinations of
characteristic functions of elements of B. Prove that for each x ∈ H, we
have

n∑
i=1

aipEi(x) =
m∑

j=1

bjpFj (x).

HINT: Show this by taking inner products.

THEOREM 9.2. Let (S, µ) be a σ-finite measure space, let B be the
σ-algebra of µ-measurable subsets of S, and let H = L2(µ). For each
measurable set E ⊆ S, define pE to be the projection in B(H) given by
pE = mχE

. That is,
pE(f) = χEf.

Then E → pE is a projection-valued measure on H.

DEFINITION. The projection-valued measure of the preceding the-
orem is called the canonical projection-valued measure on L2(µ).

EXERCISE 9.3. (a) Prove Theorem 9.2.
(b) Let U denote the L2 Fourier transform on L2(R), and, for each

Borel subset E ⊆ R, define an operator pE on L2(R) by

pE(f) = U−1(χEU(f)).

Show that each operator pE is a projection on L2(R) and that E → pE is
a projection-valued measure. Note that this projection-valued measure
is unitarily equivalent to the canonical one on L2(R). Show that p[−1,1]

can be expressed as a convolution operator:

p[−1,1]f(t) =
∫ ∞

−∞
k(t− s)f(s) ds,

where k is a certain L2 function.
(c) Let (S,B) and (S′,B′) be two Borel spaces, and let h be a map of S

into S′ for which h−1(E′) ∈ B whenever E′ ∈ B′. Such a map h is called
a Borel map of S into S′. Suppose E → pE is an H-projection-valued
measure on (S,B), and define a map E′ → qE′ on B′ by

qE′ = ph−1(E′).

Prove that E′ → qE′ is an H-projection-valued measure on (S′,B′). This
projection-valued measure q is frequently denoted by h∗(p).
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EXERCISE 9.4. Let (S, µ) be a σ-finite measure space, and let
E → pE be the canonical projection-valued measure on L2(µ). Prove
that there exists a vector f in L2(µ) such that the linear span of the
vectors pE(f), for E running over the µ-measurable subsets of S, is dense
in L2(µ). HINT: Do this first for a finite measure µ.

DEFINITION. Let (S,B) be a Borel space, let H be a separable
Hilbert space, and let E → pE be an H-projection-valued measure on
(S,B). A vector x ∈ H is called a cyclic vector for p if the linear span
of the vectors pE(x), for E ∈ B, is dense in H.

A vector x is a separating vector for p if: pE = 0 if and only if
pE(x) = 0.

A vector x is a supporting vector for p if the measure µx of Theorem
9.1 satisfies: µx(E) = 0 if and only if pE = 0.

EXERCISE 9.5. (a) Show that a canonical projection-valued mea-
sure has a cyclic vector. (See Exercise 9.4.)

(b) Show that every cyclic vector for a projection-valued measure is
a separating vector.

(c) Show that a vector x is a separating vector for a projection-valued
measure if and only if it is a supporting vector.

(d) Give an example to show that not every separating vector need be
cyclic. HINT: Use a one-point set S and a 2 dimensional Hilbert space.

THEOREM 9.3. An H-projection-valued measure E → pE on a
Borel space (S,B) has a cyclic vector if and only if there exists a finite
measure µ on (S,B) such that p is unitarily equivalent to the canonical
projection-valued measure on L2(µ).

PROOF. The “if” part follows from part a of Exercise 9.5. Con-
versely, let x be a cyclic vector for p and write µ for the (finite) mea-
sure µx of Theorem 9.1 on B. For each B-measurable simple function
φ =

∑
aiχEi

on S, define U(φ) ∈ H by

U(φ) =
∑

aipEi(x).

Then U(φ) is well-defined by part e of Exercise 9.2, and the range of
U is dense in H because x is a cyclic vector. It follows directly that U
is a well-defined linear transformation of the complex vector space X
of all simple B-measurable functions on S into H. Furthermore, writing
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φ =
∑
aiχEi , where Ei ∩ Ej = ∅ for i 6= j, then

‖U(φ)‖2 = (
∑

i

aipEi(x) ,
∑

j

ajpEj (x))

=
∑ ∑

aiaj(pEi
(x), pEj

(x))

=
∑ ∑

aiaj(pEj∩Ei(x), x)

=
∑

|ai|2(pEi(x), x)

=
∑

|ai|2µ(Ei)

=
∫
|φ|2 dµ

= ‖φ‖22,

showing that U is an isometry of X onto a dense subspace of H.
Therefore, U has a unique extension from the dense subspace X to a

unitary operator from all of L2(µ) onto all of H.
Finally, if p′ denotes the canonical projection-valued measure on L2(µ),

φ =
∑
aiχEi

is an element of X, and y = U(φ) is the corresponding
element in the range of U on X, we have

(U ◦ p′E ◦ U−1)(y) = (U ◦ p′E)(φ)

= U(χEφ)

= U(χE

∑
aiχEi)

= U(
∑

aiχE∩Ei)

=
∑

aipE∩Ei
(x)

=
∑

aipE(pEi
(x))

= pE(
∑

aipEi
(x))

= pE(U(φ))

= pE(y),

which shows that U ◦ p′E ◦U−1 and pE agree on a dense subspace of H,
whence are equal everywhere. This completes the proof.

EXERCISE 9.6. Let E → pE be an H-projection-valued measure.
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(a) Let x be an element of H, and let M be the closed linear span
of the vectors pE(x) for E ∈ B. Prove that M is invariant under p, and
that the restriction of p to M has a cyclic vector.

(b) Use the Hausdorff Maximality Principle to prove that there exists
a sequence {Mi} of pairwise orthogonal closed p-invariant subspaces of
H, such that E → (pE)|Mi has a cyclic vector for each i, and such that
H is the Hilbert space direct sum

⊕
Mi.

We next take up the notion of integrals with respect to a projection-
valued measure.

THEOREM 9.4. Let p be an H-projection-valued measure on a Borel
space (S,B). Let φ be a B-measurable simple function, and suppose that

φ =
∑

aiχEi
=

∑
bjχFj

,

where each Ei and Fj are elements of B and each ai and bj are complex
numbers. Then ∑

aipEi
=

∑
bjpFj

.

EXERCISE 9.7. Prove Theorem 9.4.

DEFINITION. If p is an H-projection-valued measure on a Borel
space (S,B), and φ is a B-measurable simple function on S, we define
an operator, which we denote by

∫
φdp, on H by∫

φdp =
∑

aipEi
,

where φ =
∑
aiχEi

. This operator is well-defined in view of the preced-
ing theorem.

THEOREM 9.5. Let p be an H-projection-valued measure on a Borel
space (S,B), and let X denote the space of all B-measurable simple func-
tions on S. Then the map L that sends φ to

∫
φdp has the following

properties:
(1) L(φ) =

∫
φdp is a bounded operator on H, and

‖L(φ)‖ = ‖
∫
φdp‖ = ‖φ‖∞.

(2) L is linear; i.e.,∫
(φ+ ψ) dp =

∫
φdp+

∫
ψ dp
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and ∫
λφ dp = λ

∫
φdp

for all complex numbers λ and all φ, ψ ∈ X.
(3) L is multiplicative; i.e.,∫

(φψ) dp =
∫
φdp ◦

∫
ψ dp

for all φ, ψ ∈ X.
(4) L is essentially 1-1, i.e.;

∫
φdp =

∫
ψ dp if and only if φ = ψ

a.e.p.
(5) For each φ ∈ X, we have

(
∫
φdp)∗ =

∫
φdp,

whence
∫
φdp is selfadjoint if and only if φ is real-valued a.e.p.

(6)
∫
φdp is a positive operator if and only if φ is nonnegative a.e.p.

(7)
∫
φdp is unitary if and only if |φ| = 1 a.e.p.

(8)
∫
φdp is a projection if and only if φ2 = φ a.e.p; i.e., if and only

if φ agrees with a characteristic function a.e.p.

PROOF. Let x and y be unit vectors in H, and let µx,y be the
complex measure on S defined in part c of Exercise 9.2. Then

|([
∫
φdp](x), y)| = |(

∑
aipEi(x), y)|

= |
∑

aiµx,y(Ei)|

= |
∫
φdµx,y|

≤ ‖φ‖∞‖µx,y‖
≤ ‖φ‖∞,

showing that
∫
φdp is a bounded operator and that ‖

∫
φdp‖ ≤ ‖φ‖∞.

See part c of Exercise 9.2 and part c of Exercise 5.12. On the other hand,
we may assume that the sets {Ei} are pairwise disjoint, that pE1 6= 0,
and that |a1| = ‖φ‖∞. Choosing x to be any unit vector in the range of
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pE1 , we see that

[
∫
φdp](x) =

∑
aipEi(pE1(x))

=
∑

aipEi∩E1(x)

= a1pE1(x)

= a1x,

showing that ‖[
∫
φdp](x)‖ = ‖φ‖∞, and this finishes the proof of part

1.
Part 2 is left to the exercises.
To see part 3, write φ =

∑n
i=1 aiχEi

, and ψ =
∑m

j=1 bjχFj
. Then

∫
φψ dp =

∫
(

n∑
i=1

m∑
j=1

aibjχEi
χFj

) dp

=
∫

(
n∑

i=1

m∑
j=1

aibjχEi∩Fj ) dp

=
n∑

i=1

m∑
j=1

aibjpEi∩Fj

=
n∑

i=1

m∑
j=1

aibjpEi
pFj

=
n∑

i=1

aipEi
◦

m∑
j=1

bjpFj

=
∫
φdp ◦

∫
ψ dp,

proving part 3.
We have next that

∫
φdp =

∫
ψ dp if and only if

([
∫
φdp](x), x) = ([

∫
ψ dp](x), x)

for every x ∈ H. Therefore
∫
φdp =

∫
ψ dp if and only if

∫
φdµx =∫

ψ dµx for every x ∈ H. If φ = ψ a.e.p, then φ = ψ a.e.µx for every x ∈
H, whence

∫
φdµx =

∫
ψ dµx for all x, and

∫
φdp =

∫
ψ dp. Conversely,
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if φ and ψ are not equal a.e.p, then, without loss of generality, we may
assume that there exists a set E ⊆ S and a δ > 0 such that φ(s)−ψ(s) >
δ for all s ∈ E and pE 6= 0. Letting x be a unit vector in the range of
the projection pE , we have that

([
∫
φdp](x), x)− ([

∫
ψ dp](x), x) = ([

∫
(φ− ψ) dp](x), x)

= ([
∫

(φ− ψ) dp](pE(x)), x)

= ([
∫

(φ− ψ) dp][
∫
χE dp](x), x)

= ([
∫

(φ− ψ)χE dp](x), x)

=
∫

(φ− ψ)χE dµx

≥
∫
δχE dµx

= δ

∫
χE dµx

= δ(pE(x), x)

= δ(x, x)

> 0,

proving that
∫
φdp 6=

∫
ψ dp, which gives part 4.

To see part 5, let x and y be arbitrary vectors in H. Then

([
∫
φdp]∗(x), y) = (x, [

∫
φdp](y))

= (x, (
∑

aipEi
(y)))

=
∑

ai(x, pEi
(y))

=
∑

ai(pEi(x), y)

= ((
∑

aipEi)(x), y)

= ([
∫
φdp](x), y).

Parts 6, 7, and 8 now follow from parts 4 and 5, and we leave the
details to the exercises.

EXERCISE 9.8. Prove parts 2,6,7, and 8 of Theorem 9.5.
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THEOREM 9.6. Let p be an H-projection-valued measure on a Borel
space (S,B). Then the map φ → L(φ) =

∫
φdp, of the space X of all

B-measurable simple functions on S into B(H), extends uniquely to a
map (also called L) of L∞(p) into B(H) that satisfies:

(1) L is linear.
(2) L is multiplicative; i.e., L(fg) = L(f)L(g) for all f, g ∈ L∞(p).
(3) ‖L(f)‖ = ‖f‖∞ for all f ∈ L∞(p).

EXERCISE 9.9. (a) Prove Theorem 9.6.
(b) If M denotes the subspace of L∞(p) consisting of the functions

f for which f = 0 a.e.p, show that the map L of Theorem 9.6 induces
an isometric isomorphism of the Banach algebra L∞(p)/M. See part e
of Exercise 9.1.

DEFINITION. If f ∈ L∞(p), for p an H-projection-valued measure
on (S,B), we denote the bounded operator that is the image of f under
the isometry L of the preceding theorem by

∫
f dp or

∫
f(s) dp(s), and

we call it the integral of f with respect to the projection-valued measure
p.

EXERCISE 9.10. Verify the following properties of the integral with
respect to a projection-valued measure p.

(a) Suppose f ∈ L∞(p) and x, y ∈ H. Then the matrix coefficient
([

∫
f dp](x), y) is given by

([
∫
f dp](x), y) =

∫
f dµx,y,

where µx,y is the complex measure defined in part c of Exercise 9.2.
(b) [

∫
f dp]∗ =

∫
f dp, whence

∫
f dp is selfadjoint if and only if f is

real-valued a.e.p.
(c)

∫
f dp is a unitary operator if and only if |f | = 1 a.e.p.

(d)
∫
f dp is a positive operator if and only if f is nonnegative a.e.p.

(e) We say that an element f in L∞(p) is essentially bounded away
from 0 if and only if there exists a δ > 0 such that

pf−1(Bδ(0)) = 0.

Show that
∫
f dp is invertible in B(H) if and only if f is essentially

bounded away from zero. HINT: If f is not essentially bounded away
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from 0, let {xn} be a sequence of unit vectors for which xn belongs to
the range of the projection pf−1(B1/n(0)). Show that

‖[
∫
f dp](xn)‖ ≤ 1/n,

so that no inverse of
∫
f dp could be bounded.

EXERCISE 9.11. Let p be a projection-valued measure on the Borel
space (S,B).

(a) Suppose there exists a point s ∈ S for which p{s} 6= 0. Show that,
for each f ∈ L∞(p), the operator

∫
f dp has an eigenvector belonging to

the eigenvalue λ = f(s). Indeed, any nonzero vector in the range of p{s}
will suffice.

(b) Let f be an element of L∞(p), let λ0 be a complex number, let
ε > 0 be given, and write Bε(λ0) for the open ball of radius ε around
λ0. Define E = f−1(Bε(λ0)), and let x be a vector in H. Prove that x
belongs to the range of pE if and only if

lim
n→∞

1
εn
‖(

∫
f dp− λ0I)n(x)‖ = 0.

If x is in the range of pE , show that

(|λ0| − ε)‖x‖ ≤ ‖[
∫
f dp](x)‖ ≤ (|λ0|+ ε)‖x‖.

More particularly, suppose f is real-valued, that 0 < a < b ≤ ∞, and
let E = f−1(a, b). If x is in the range of pE , show that

a‖x‖ ≤ ‖[
∫
f dp](x)‖ ≤ b‖x‖.

(c) Suppose f ∈ L∞(p) is such that the operator T =
∫
f dp has an

eigenvector with eigenvalue λ. Define E = f−1({λ}). Prove that pE 6= 0,
and show further that x ∈ H is an eigenvector for T belonging to the
eigenvalue λ if and only if x belongs to the range of pE .

EXERCISE 9.12. Let E → pE be the canonical projection-valued
measure on L2(µ). Verify that

∫
f dp is the multiplication operator mf

for every f ∈ L∞(p). HINT: Do this first for characteristic functions χE .

EXERCISE 9.13. (Change of Variables) Let (S,B) and (S′,B′) be
two Borel spaces, and let h be a Borel map from S into S′; i.e., h
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maps S into S′ and h−1(E′) ∈ B whenever E′ ∈ B′. Suppose p is a
projection-valued measure on (S,B), and as in part c of Exercise 9.3
define a projection-valued measure q = h∗(p) on (S′,B′) by

qE = ph−1(E).

If f is any bounded B′-measurable function on S′, show that∫
f dq =

∫
(f ◦ h) dp.

HINT: Check this equality for characteristic functions, then simple func-
tions, and finally bounded functions.

THEOREM 9.7. (A “Riesz” Representation Theorem) Let ∆ be a
second countable compact Hausdorff space, let H be a separable Hilbert
space, and let T be a linear transformation from the complex normed
linear space C(∆) of all continuous complex-valued functions on ∆ into
B(H). Assume that T satisfies

(1) T (fg) = T (f) ◦ T (g) for all f, g ∈ C(∆).
(2) T (f) = [T (f)]∗ for all f ∈ C(∆).
(3) T (1) = I, where 1 denotes the identically 1 function and I de-

notes the identity operator on H.

Then there exists a unique projection-valued measure E → pE from the
σ-algebra B of Borel subsets of ∆ such that

T (f) =
∫
f dp

for every f ∈ C(∆).

PROOF. Note first that assumptions 1 and 2 imply that T (f) is a
positive operator if f ≥ 0. Consequently, since |f(s)|2 ≤ ‖f‖2∞, we have
that ‖f‖2∞I − T (f̄) ◦ T (f) is a positive operator. Hence,

‖f‖2∞‖x‖2 ≥ ([T (f̄) ◦ T (f)](x), x) = ‖[T (f)](x)‖2,

showing that ‖T (f)‖ ≤ ‖f‖∞ for all f ∈ C(∆). That is, T is a bounded
linear transformation of norm ≤ 1.

Next, for each pair (x, y) of vectors in H, define φx,y on C(∆) by

φx,y(f) = (T (f)(x), y).
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Then φx,y is a bounded linear functional on C(∆), and we write νx,y for
the unique finite complex Borel measure on ∆ for which

φx,y(f) =
∫
f dνx,y

for all f ∈ C(∆). See Theorem 1.5 and Exercise 1.12. We see immedi-
ately that

(1) The linear functional φx,x is a positive linear functional, whence
the measure νx,x is a positive measure.

(2) For each fixed y ∈ H, the map x→ νx,y is a linear transformation
of H into the vector space M(∆) of all finite complex Borel
measures on ∆.

(3) νx,y = νy,x for all x, y ∈ H.
(4) ‖νx,y‖ = ‖φx,y‖ ≤ ‖x‖‖y‖.
For each bounded, real-valued, Borel function h on ∆, consider the

map Lh : H ×H → C given by

Lh(x, y) =
∫
h dνx,y.

It follows from the results above that for each fixed y ∈ H the map
x→ Lh(x, y) is linear. Also,

Lh(y, x) =
∫
h dνy,x

=
∫
h dν̄y,x

=
∫
h̄ dν̄y,x

=
∫
h dνx,y

= Lh(x, y)

for all x, y ∈ H. Furthermore, using Exercise 5.12 we have that

|Lh(x, y)| = |
∫
h dνx,y|

≤ ‖h‖∞‖νx,y‖
≤ ‖h‖∞‖x‖‖y‖.
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Now, using Theorem 8.5, let T (h) be the unique bounded operator on
H for which

Lh(x, y) = (T (h)(x), y)

for all x, y ∈ H. Note that since the measures νx,x are positive measures,
it follows that the matrix coefficients

(T (h)(x), x) = Lh(x, x) =
∫
h dνx,x

are all real, implying that the operator T (h) is selfadjoint.
If E is a Borel subset of ∆, set pE = T (χE). We will eventually see

that the assignment E → pE is a projection-valued measure on (∆,B).
Fix g ∈ C(∆) and x, y ∈ H. Note that the two bounded linear func-

tionals
f →

∫
fg dνx,y = φx,y(fg) = (T (fg)(x), y)

and

f →
∫
f dνT (g)(x),y = φT (g)(x),y(f) = (T (f)(T (g)(x)), y)

agree on C(∆). Since they are both represented by integrals (Theorem
1.5), it follows that ∫

hg dνx,y =
∫
h dνT (g)(x),y

for every bounded Borel function h. Now, for each fixed bounded, real-
valued, Borel function h and each pair x, y ∈ H, the two bounded linear
functionals

g →
∫
gh dνx,y =

∫
hg dνx,y

and
g →

∫
h dνT (g)(x),y = (T (h)(T (g)(x)), y)

= (T (g)(x), T (h)(y))

=
∫
g dνx,T (h)(y)

agree on C(∆). Again, since both functionals can be represented as
integrals, it follows that∫

hk dνx,y =
∫
k dνx,T (h)(y)
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for all bounded, real-valued, Borel functions h and k. Therefore,

(T (hk)(x), y) = Lhk(x, y)

=
∫
hk dνx,y

=
∫
k dνx,T (h)(y)

= Lk(x, T (h)(y))

= (T (k)(x), T (h)(y))

= (T (h)(T (k)(x)), y),

showing that T (hk) = T (h)T (k) for all bounded, real-valued, Borel func-
tions h and k.

We see directly from the preceding calculation that each pE = T (χE)
is a projection. Clearly p∆ = T (1) = I and p∅ = T (0) = 0, so that
to see that E → pE is a projection-valued measure we must only check
the countable additivity condition. Thus, let {En} be a sequence of
pairwise disjoint Borel subsets of ∆, and write E = ∪En. For any vectors
x, y ∈ H, we have

(pE(x), y) = (T (χE)(x), y)

= LχE
(x, y)

=
∫
χE dνx,y

= νx,y(E)

=
∑

νx,y(En)

=
∑

(pEn(x), y)

= ([
∑

pEn
](x), y),

as desired.
Finally, let us show that T (f) =

∫
f dp for every f ∈ C(∆). Note

that, for vectors x, y ∈ H, we have that the measure νx,y agrees with the
measure µx,y, where µx,y is the measure defined in part c of Exercise 9.2
by

µx,y(E) = (pE(x), y).
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We then have
(T (f)(x), y) = φx,y(f)

=
∫
f dνx,y

=
∫
f dµx,y

= ([
∫
f dp](x), y),

by part a of Exercise 9.10. This shows the desired equality of T (f) and∫
f dp.
The uniqueness of the projection-valued measure p, satisfying T (f) =∫
f dp for all f ∈ C(∆), follows from part d of Exercise 9.2 and part a

of Exercise 9.10.

We close this chapter by attempting to extend the definition of in-
tegral with respect to a projection-valued measure to unbounded mea-
surable functions. For simplicity, we will restrict our attention to real-
valued functions.

DEFINITION. Let p be an H-projection-valued measure on the
Borel space (S,B), and let f be a real-valued, B-measurable function
on S. For each integer n, define En = f−1(−n, n), and write Tn for the
bounded selfadjoint operator on H given by Tn =

∫
fχEn

dp. We define
D(f) to be the set of all x ∈ H for which limn Tn(x) exists, and we
define Tf : D(f) → H by Tf (x) = limTn(x).

EXERCISE 9.14. Using the notation of the preceding definition,
show that

(a) If x is in the range of pEn
, then x ∈ D(f), and Tf (x) = Tn(x).

(b) x ∈ D(f) if and only if the sequence {Tn(x)} is bounded. HINT:
x = pEn(x) + pẼn

(x). Show further that the sequence {‖Tn(x)‖} is non-
decreasing.

(c) D(f) is a subspace of H and Tf is a linear transformation of D(f)
into H.

THEOREM 9.8. Let the notation be as in the preceding definition.
(1) D(f) is a dense subspace of H.
(2) Tf is symmetric on D(f); i.e.,

(Tf (x), y) = (x, Tf (y))

for all x, y ∈ D(f).
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(3) The graph of Tf is a closed subspace in H ×H.
(4) The following are equivalent: i) D(f) = H; ii) Tf is continuous

from D(f) into H; iii) f ∈ L∞(p).
(5) The linear transformations I ± iTf are both 1-1 and onto from

D(f) to H.
(6) The linear transformation Uf = (I − iTf )(I + iTf )−1 is 1-1 and

onto from H to H and is in fact a unitary operator for which
-1 is not an eigenvalue. (This operator Uf is called the Cayley
transform of Tf .)

(7) The range of I + Uf equals D(f), and

Tf = −i(I − Uf )(I + Uf )−1.

PROOF. That D(f) is dense in H follows from part a of Exercise
9.14 and part c of Exercise 9.1.

Each operator Tn is selfadjoint. So, if x, y ∈ D(f), then

(Tf (x), y) = lim(Tn(x), y) = lim(x, Tn(y)) = (x, Tf (y)),

showing that Tf is symmetric on its domain D(f).
The graph of Tf , like the graph of any linear transformation of H

into itself, is clearly a subspace of H ×H. To see that the graph of Tf

is closed, let (x, y) be in the closure of the graph, i.e., x = limxj and
y = limTf (xj), where each xj ∈ D(f). We must show that x ∈ D(f) and
then that y = Tf (x). Now the sequence {Tf (xj)} is bounded in norm,
and for each n we have from the preceding exercise that ‖Tn(xj)‖ ≤
‖Tf (xj)‖. Hence, there exists a constant M such that ‖Tn(xj)‖ ≤M for
all n and j. Writing Tn(x) = Tn(x− xj) + Tn(xj), we have that

‖Tn(x)‖ ≤ lim
j
‖Tn(x− xj)‖+M = M

for all n, whence x ∈ D(f) by Exercise 9.14. Now, for any z ∈ D(f) we
have

(y, z) = lim(Tf (xj), z)

= lim(xj , Tf (z))

= (x, Tf (z))

= (Tf (x), z),

proving that y = Tf (x) since D(f) is dense in H.
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We prove part 4 by showing that i) implies ii), ii) implies iii), and iii)
implies i). First, if D(f) = H, then by the Closed Graph Theorem we
have that Tf is continuous. Next, if f is not an element of L∞(p), then
there exists an increasing sequence {nk} of positive integers for which
either

pf−1(nk,nk+1) 6= 0

for all k, or
pf−1(−nk+1,−nk) 6= 0

for all k. Without loss of generality, suppose that

pf−1(nk,nk+1) 6= 0

for all k. Write Fk = f−1(nk, nk+1), and note that Fk ⊆ Enk+1 . Now, for
each k, let xk be a unit vector in the range of pFk

. Then each xk ∈ D(f),
and

(Tf (xk), xk) = (Tnk+1(xk), xk)

= ((Tnk+1 ◦ pFk
)(xk), xk)

=
∫
fχFk

dµxk

≥ nk‖xk‖2

= nk,

proving that ‖Tf (xk)‖ ≥ nk, whence Tf is not continuous. Finally, if
f ∈ L∞(p), then clearly Tf = Tn for any n ≥ ‖f‖∞, and D(f) = H.
This proves part 4.

We show part 5 for I+ iTf . An analogous argument works for I− iTf .
Observe that, for x ∈ D(f), we have

‖(I + iTf )(x)‖2 = ((I + iTf )(x), (I + iTf )(x)) = ‖x‖2 + ‖Tf (x)‖2.

Therefore, I + iTf is norm-increasing, whence is 1-1. Now, if {(I +
iTf )(xj)} is a sequence of elements in the range of I+iTf that converges
to a point y ∈ H, then the sequence {(I+iTf )(xj)} is a Cauchy sequence
and therefore, since I + iTf is norm-increasing, the sequence {xj} is a
Cauchy sequence as well. Let x = limj xj . It follows that y = x + iz,
where z = limj Tf (xj). Since the graph of Tf is closed, we must have
that x ∈ D(f) and z = Tf (x). Hence, y = (I + iTf )(x) belongs to the
range of I + iTf , showing that this range is closed. We complete the
proof then of part 5 by showing that the range of I + iTf is dense in H.



186 CHAPTER IX

Thus, if y ∈ H is orthogonal to every element of the range of I + iTf ,
then for each n we have

0 = ((I + iTf )(pEn(y)), y)

= ((I + iTf )(p2
En

(y)), y)

= ((I + iTn)(pEn(y)), y)

= (pEn
(I + iTn)pEn

(y), y)

= ((I + iTn)pEn
(y), pEn

(y))

= ‖pEn
(y)‖2 + i(Tn(pEn

(y)), pEn
(y))

= ‖pEn
(y)‖2 + i(Tn(y), y).

But then ‖pEn
(y)‖2 = −i(Tn(pEn

(y)), pEn
(y)), which, since Tn is self-

adjoint, can happen only if pEn(y) = 0. But then y = limn pEn(y) must
be 0. Therefore, the range of I + iTf is dense, whence is all of H.

Next, since I + iTf and I − iTf are both 1-1 from D(f) onto H, it
follows that Uf = (I−iTf )(I+iTf )−1 is 1-1 from H onto itself. Further,
writing y ∈ D(f) as (I + iTf )−1(x), we have

‖Uf (x)‖2 = ‖(I − iTf )((I + iTf )−1(x))‖2

= ‖(I − iTf )(y)‖2

= ‖y‖2 + ‖Tf (y)‖2

= ‖(I + iTf )(y)‖2

= ‖x‖2,
proving that Uf is unitary. Writing the identity operator I as (I +
iTf )(I + iTf )−1, we have that I + Uf = 2(I + iTf )−1, which is 1-1.
Consequently, -1 is not an eigenvalue for Uf .

We leave the verification of part 7 to the exercises. This completes
the proof.

DEFINITION. We call the operator Tf : D(f) → H of the preced-
ing theorem the integral of f with respect to p, and we denote it by∫
f dp or

∫
f(s) dp(s). It is not in general an element of B(H). Indeed,

as we have seen in the preceding theorem,
∫
f dp is in B(H) if and only

if f is in L∞(p).

EXERCISE 9.15. (a) Prove part 7 of Theorem 9.8.
(b) Suppose (S, µ) is a σ-finite measure space, that p is the canonical

projection-valued measure on L2(µ), and that f is a real-valued measur-
able function on S. Verify that D(f) is the set of all L2functions g for
which fg ∈ L2(µ), and that [

∫
f dp](g) = fg for all g ∈ D(f).
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(c) Suppose (S,B) and p are as in the preceding theorem. Suppose g
is an everywhere nonzero, bounded, real-valued, measurable function on
S, and write T for the bounded operator

∫
g dp. Prove that the operator∫

(1/g) dp is a left inverse for the operator T.
(d) Let (S,B) and (S′,B′) be two Borel spaces, and let h be a Borel

map from S into S′. Suppose p is a projection-valued measure on (S,B),
and as in part c of Exercise 9.3 define a projection-valued measure q =
h∗(p) on (S′,B′) by

qE = ph−1(E).

If f is any (possibly unbounded) real-valued B′-measurable function on
S′, show that ∫

f dq =
∫

(f ◦ h) dp.

EXERCISE 9.16. Let p be the projection-valued measure on the
Borel space (R,B) of part b of Exercise 9.3.

(a) Show that ∫
f dp = U−1 ◦mf ◦ U

for every f ∈ L∞(p).
(b) If f(x) = x, and Tf =

∫
f dp, show that D(f) consists of all the

L2 functions g for which x[U(g)](x) ∈ L2(R), and then show that every
such g is absolutely continuous and has an L2 derivative.

(c) Conclude that the operator
∫
f dp of part b has for its domain the

set of all L2 absolutely continuous functions having L2derivatives, and
that [

∫
f dp](g) = (1/2πi)g′.


