
PREFACE

I have written this book primarily for serious and talented mathematics scholars
, seniors or first-year graduate students, who by the time they finish their schooling
should have had the opportunity to study in some detail the great discoveries of our
subject. What did we know and how and when did we know it? I hope this book
is useful toward that goal, especially when it comes to the great achievements of
that part of mathematics known as analysis. I have tried to write a complete and
thorough account of the elementary theories of functions of a single real variable
and functions of a single complex variable. Separating these two subjects does not
at all jive with their development historically, and to me it seems unnecessary and
potentially confusing to do so. On the other hand, functions of several variables
seems to me to be a very different kettle of fish, so I have decided to limit this book
by concentrating on one variable at a time.

Everyone is taught (told) in school that the area of a circle is given by the
formula A = πr2. We are also told that the product of two negatives is a positive,
that you cant trisect an angle, and that the square root of 2 is irrational. Students of
natural sciences learn that eiπ = −1 and that sin2 + cos2 = 1. More sophisticated
students are taught the Fundamental Theorem of calculus and the Fundamental
Theorem of Algebra. Some are also told that it is impossible to solve a general
fifth degree polynomial equation by radicals. On the other hand, very few people
indeed have the opportunity to find out precisely why these things are really true,
and at the same time to realize just how intellectually deep and profound these
“facts” are. Indeed, we mathematicians believe that these facts are among the
most marvelous accomplishments of the human mind. Engineers and scientists
can and do commit such mathematical facts to memory, and quite often combine
them to useful purposes. However, it is left to us mathematicians to share the
basic knowledge of why and how, and happily to us this is more a privilege than
a chore. A large part of what makes the verification of such simple sounding and
elementary truths so difficult is that we of necessity must spend quite a lot of energy
determining what the relevant words themselves really mean. That is, to be quite
careful about studying mathematics, we need to ask very basic questions: What
is a circle? What are numbers? What is the definition of the area of a set in the
Euclidean plane? What is the precise definition of numbers like π, i, and e? We
surely cannot prove that eiπ = −1 without a clear definition of these particular
numbers. The mathematical analysis story is a long one, beginning with the early
civilizations, and in some sense only coming to a satisfactory completion in the late
nineteenth century. It is a story of ideas, well worth learning.

There are many many fantastic mathematical truths (facts), and it seems to
me that some of them are so beautiful and fundamental to human intellectual
development, that a student who wants to be called a mathematician, ought to
know how to explain them, or at the very least should have known how to explain
them at some point. Each professor might make up a slightly different list of such
truths. Here is mine:

(1) The square root of 2 is a real number but is not a rational number.
(2) The formula for the area of a circle of radius r is A = πr2.
(3) The formula for the circumference of a circle of radius r is C = 2πr.
(4) eiπ = −1.
(5) The Fundamental Theorem of Calculus,

∫ b
a
f(t) dt = F (b)− F (a).
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(6) The Fundamental Theorem of Algebra, every nonconstant polynomial has
at least one root in the complex numbers.

(7) It is impossible to trisect an arbitrary angle using only a compass and
straight edge.

Other mathematical marvels, such as the fact that there are more real numbers
than there are rationals, the set of all sets is not a set, an arbitrary fifth degree
polynomial equation can not be solved in terms of radicals, a simple closed curve
divides the plain into exactly two components, there are an infinite number of
primes, etc., are clearly wonderful results, but the seven in the list above are really
of a more primary nature to me, an analyst, for they stem from the work of ancient
mathematicians and except for number 7, which continues to this day to evoke
so-called disproofs, have been accepted as true by most people even in the absence
of precise “arguments” for hundreds if not thousands of years. Perhaps one should
ruminate on why it took so long for us to formulate precise definitions of things like
numbers and areas?

Only with the advent of calculus in the seventeenth century, together with the
contributions of people like Euler, Cauchy, and Weierstrass during the next two
hundred years, were the first six items above really proved, and only with the
contributions of Galois in the early nineteenth century was the last one truly un-
derstood.

This text, while including a traditional treatment of introductory analysis, specif-
ically addresses, as kinds of milestones, the first six of these truths and gives careful
derivations of them. The seventh, which looks like an assertion from geometry, turns
out to be an algebraic result that is not appropriate for this course in analysis, but
in my opinion it should definitely be presented in an undergraduate algebra course.
As for the first six, I insist here on developing precise mathematical definitions of
all the relevant notions, and moving step by step through their derivations. Specif-
ically, what are the definitions of

√
2, A, π, r, r2, C, 2, e, i, , and −1? My feeling

is that mathematicians should understand exactly where these concepts come from
in precise mathematical terms, why it took so long to discover these definitions,
and why the various relations among them hold.

The numbers −1, 2, and i can be disposed of fairly quickly by a discussion of
what exactly is meant by the real and complex number systems. Of course, this
is in fact no trivial matter, having had to wait until the end of the nineteenth
century for a clear explanation, and in fact I leave the actual proof of the existence
of the real numbers to an appendix. However, a complete mathematics education
ought to include a study of this proof, and if one finds the time in this analysis
course, it really should be included here. Having a definition of the real numbers
to work with, i.e., having introduced the notion of least upper bound, one can
relatively easily prove that there is a real number whose square is 2, and that this
number can not be a rational number, thereby disposing of the first of our goals. All
this is done in Chapter I. Maintaining the attitude that we should not distinguish
between functions of a real variable and functions of a complex variable, at least at
the beginning of the development, Chapter I concludes with a careful introduction
of the basic properties of the field of complex numbers.

unlike the elementary numbers −1, 2, and i, the definitions of the real numbers
e and π are quite a different story. In fact, one cannot make sense of either e
or π until a substantial amount of analysis has been developed, for they both are
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necessarily defined somehow in terms of a limit process. I have chosen to define e
here as the limit of the rather intriguing sequence {(1+ 1

n )n}, in some ways the first
nontrivial example of a convergent sequence, and this is presented in Chapter II. Its
relation to logarithms and exponentials, whatever they are, has to be postponed
to Chapter IV. Chapter II also contains a section on the elementary topological
properties (compactness, limit points, etc.) of the real and complex numbers as
well as a thorough development of infinite series.

To define π as the ratio of the circumference of a circle to its diameter is attrac-
tive, indeed was quite acceptable to Euclid, but is dangerously imprecise unless we
have at the outset a clear definition of what is meant by the length of a curve, e.g.,
the circumference of a circle. That notion is by no means trivial, and in fact it
only can be carefully treated in a development of analysis well after other concepts.
Rather, I have chosen to define π here as the smallest positive zero of the sine
function. Of course, I have to define the sine function first, and this is itself quite
deep. I do it using power series functions, choosing to avoid the common definition
of the trigonometric functions in terms of “ wrapping” the real line around a circle,
for that notion again requires a precise definition of arc length before it would make
sense. I get to arc length eventually, but not until Chapter VI.

In Chapter III I introduce power series functions as generalizations of polyno-
mials, specifically the three power series functions that turn out to be the expo-
nential, sine, and cosine functions. From these definitions it follows directly that
exp iz = cos z + i sin z for every complex number z. Here is a place where allowing
the variable to be complex is critical, and it has cost us nothing. However, even
after establishing that there is in fact a smallest positive zero of the sine function
(which we decide to call π, since we know how we want things to work out), one
cannot at this point deduce that cosπ = −1, so that the equality eiπ = −1 also
has to wait for its derivation until Chapter IV. In fact, more serious, we have no
knowledge at all at this point of the function ez for a complex exponent z. What
does it mean to raise a real number, or even an integer, to a complex exponent?
The very definition of such a function has to wait.

Chapter III also contains all the standard theorems about continuous functions,
culminating with a lengthy section on uniform convergence, and finally Abel’s fan-
tastic theorem on the continuity of a power series function on the boundary of its
disk of convergence.

The fourth chapter begins with all the usual theorems from calculus, Mean Value
Theorem, Chain Rule, First Derivative Test, and so on. Power series functions are
shown to be differentiable, from which the law of exponents emerges for the power
series function exp. Immediately then, all of the trigonometric and exponential
identities are also derived. We observe that er = exp(r) for every rational number
r, and we at last can define consistently ez to be the value of the power series
function exp(z) for any complex number z. From that, we establish the equation
eiπ = −1. Careful proofs of Taylor’s Remainder Theorem and L’Hopital’s Rule are
given, as well as an initial approach to the general Binomial Theorem for non-integer
exponents.

It is in Chapter IV that the first glimpse of a difference between functions of
a real variable and functions of a complex variable emerges. For example, one
of the results in this chapter is that every differentiable, real-valued function of a
complex variable must be a constant function, something that is certainly not true
for functions of a real variable. At the end of this chapter, I briefly slip into the
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realm of real-valued functions of two real variables. I introduce the definition of
differentiability of such a function of two real variables, and then derive the initial
relationships among the partial derivatives of such a function and the derivative of
that function thought of as a function of a complex variable. This is obviously done
in preparation for Chapter VII where holomorphic functions are central.

Perhaps most well-understood by math majors is that computing the area under
a curve requires Newton’s calculus, i.e., integration theory. What is often overlooked
by students is that the very definition of the concept of area is intimately tied up
with this integration theory. My treatment here of integration differs from most
others in that the class of functions defined as integrable are those that are uniform
limits of step functions. This is a smaller collection of functions than those that are
Riemann-integrable, but they suffice for my purposes, and this approach serves to
emphasize the importance of uniform convergence. In particular, I include careful
proofs of the Fundamental Theorem of Calculus, the integration by substitution
theorem, the integral form of Taylor’s Remainder Theorem, and the complete proof
of the general Binomial Theorem.

Not wishing to delve into the set-theoretic complications of measure theory, I
have chosen only to define the area for certain “geometric” subsets of the plane.
These are those subsets bounded above and below by graphs of continuous func-
tions. Of course these suffice for most purposes, and in particular circles are exam-
ples of such geometric sets, so that the formula A = πr2 can be established for the
area of a circle of radius r. Chapter V concludes with a development of integration
over geometric subsets of the plane. Once again, anticipating later needs, we have
again strayed into some investigations of functions of two real variables.

Having developed the notions of arc length in the early part of Chapter VI,
including the derivation of the formula for the circumference of a circle, I introduce
the idea of a contour integral, i.e., integrating a function around a curve in the
complex plane. The Fundamental Theorem of Calculus has generalizations to higher
dimensions, and it becomes Green’s Theorem in 2 dimensions. I give a careful proof
in Chapter VI, just over geometric sets, of this rather complicated theorem.

Perhaps the main application of Green’s Theorem is the Cauchy Integral Theo-
rem, a result about complex-valued functions of a complex variable, that is often
called the Fundamental Theorem of Analysis. I prove this theorem in Chapter VII.
From this Cauchy theorem one can deduce the usual marvelous theorems of a first
course in complex variables, e.g., the Identity Theorem, Liouville’s Theorem, the
Maximum Modulus Principle, the Open Mapping Theorem, the Residue Theorem,
and last but not least our mathematical truth number 6, the Fundamental Theorem
of Algebra. That so much mathematical analysis is used to prove the fundamental
theorem of algebra does make me smile. I will leave it to my algebraist colleagues
to point out how some of the fundamental results in analysis require substantial
algebraic arguments.

The overriding philosophical point of this book is that many analytic assertions
in mathematics are intellectually very deep; they require years of study for most
people to understand; they demonstrate how intricate mathematical thought is and
how far it has come over the years. Graduates in mathematics should be proud
of the degree they have earned, and they should be proud of the depth of their
understanding and the extremes to which they have pushed their own intellect. I
love teaching these students, that is to say, I love sharing this marvelous material
with them.


