#### Permanganate for In Situ Chemical Oxidation of NDMA

Adam G. Caldwell Gannon University

Mentors: Prof. Bielefeldt and Rajat Srivastav

2008 Environmental Fluids REU University of Colorado - Boulder

#### Outline

- Background
- Objectives
- Methods
- Summary of Experiments
- Results
- Recommendations
- Acknowledgments & Questions

## Background on Problem

- RCRA site N. of Boulder
- · Raytheon Company, former Beechcraft site
- Manufacturing aerospace products
- Contaminated with:
  - Chromium - Trichloroethene (TCE)
  - Perchloroethence (PCE)
  - N-nitrosodimethylamine (NDMA)
- Cleanup options:
  - Bioremediation
  - Chemical Oxidation Sodium Permanganate



#### Background on NDMA Emerging contaminant - State of CO clean-up target 0.69 ng/L (ppt) <sup>чзс</sup>>м—м=0 · Yellow liquid, no distinct odor Found in: In Rocket Fuel - Canned Food Products Water & Wastewater disinfection Low partition coefficient Photo degrades in direct sunlight •

- Inhalation by farm workers
- Medical Conditions:
  - Cancer, Cirrhosis, Jaundice, Vomiting, etc.



## NDMA oxidation

- Chemical Oxidation
- Permanganate contains Manganate (VII) ion (MnO<sub>4</sub>-)
- Deep purple color
- Permanganate oxidation rate second order ove - chlorinated ethenes, MTBE, PAH's, PCE, TCE, TNT
- · Theoretical NDMA breakdown stoichiometry:

 $3 C_2 H_8 N_2 O + 22 MnO_4^{-} + 22 H^+$ ?  $6 CO_2 + 6 HNO_3 + 22 MnO_2 (s) + 17$ H2O NDMA Permangante Carbon Nitric Manganese dioxide Acid <sup>22</sup>DIOXide f MnO4 - fully oxidize 3 moles NDMA (14 mg:1 mg = SR)?



## **Preliminary Experiments** (by Rajat Srivastav)

- Oxidation of 100 µg/L NDMA by 0 10,000 mg/L commercial permanganate (RemOx)
  - Measured NDMA by GC/MS (\$\$\$)
- Nanopure water (unbuffered)
- Methanol was present in NDMA spike





## **Methods**

- · Batch tests in amber glass vials
- Created stock solutions of Artificial Ground Water, MnO4, and NDMA
- Triplicates for varying concentrations, with multiple sets of vials to sacrifice over time
- · Removed aqueous samples to quantify permanganate, NDMA, and pH



## **Methods**

- · Used spectrophotometer
- Created a calibration curve for permanganate - 525 nm measures permanganate
- 418 nm to confirm negligible MnO2(s) interference (centrifuged samples before measurement)



# **Pretest Summary**

- Permanganate was quickly removed (<24 hrs) when methanol was present
  - Due to permanganate oxidizing the methanol
  - Initially 10 mg/L permanganate, ~50 g/L MeOH, and 0, 60, 150 mg/L NDMA
- Permanganate concentrations changed very slowly in systems with nanopure water (<2 mg/L loss in 21 days)
  - Initially 10 mg/L permanganate, and NDMA at 0, 60, and 150 mg/L

## Test 1

- · Data points represent average of triplicates
- 38 days: much less permanganate reduction than expected













|                     | ç                                                                           | Stoichiom                                                                                  | etry                                                                                                                 |
|---------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| • Sti<br>- s<br>- R | toichiometry for put<br>ajat's experiments<br>ng NDMA (may be<br>courring?) | IG ON<br>ermanganate consumption<br>s with GC-MS measureme<br>e some oxidation of artifici | n vs NDMA removal<br>ent of NDMA are at ~134 mg MnO-<br>ial groundwater inorganics                                   |
|                     | /                                                                           | Final Test Stoichiometry                                                                   |                                                                                                                      |
|                     |                                                                             | Final Test Stoic                                                                           | hiometry                                                                                                             |
|                     | NDMA,<br>mg/L                                                               | Final Test Stoic                                                                           | hiometry<br>Stoichiometry                                                                                            |
|                     | NDMA,<br>mg/L<br>10                                                         | Final Test Stoic<br>100 mg/L MnO4<br>RemOx                                                 | hiometry<br>Stoichiometry<br>113 mg MnO4/mg NDMA                                                                     |
|                     | NDMA,<br>mg/L<br>10<br>30                                                   | Final Test Stoic<br>100 mg/L MnO4<br>RemOx<br>RemOx                                        | hiometry<br>Stoichiometry<br>113 mg MnO4/mg NDMA<br>23 mg MnO4/mg NDMA                                               |
|                     | NDMA,<br>mg/L<br>10<br>30<br>50                                             | Final Test Stoic<br>100 mg/L MnO4<br>RemOx<br>RemOx<br>RemOx                               | hiometry<br>Stoichiometry<br>113 mg MnO4/mg NDMA<br>23 mg MnO4/mg NDMA<br>13 mg MnO4/mg NDMA                         |
|                     | NDMA,<br>mg/L<br>10<br>30<br>50<br>50                                       | Final Test Stoic<br>100 mg/L MnO4<br>RemOx<br>RemOx<br>RemOx<br>RemOx<br>(dilutedby5)      | hiometry<br>Stoichiometry<br>113 mg MnO4/mg NDMA<br>23 mg MnO4/mg NDMA<br>13 mg MnO4/mg NDMA<br>11.7 mg MnO4/mg NDMA |

# Summary of Results

- Permanganate oxidizes methanol very fast
- Higher concentrations of MnO4 oxidize NDMA faster than lower concentrations

   First order rate with respect to MnO4
- Higher concentrations of NDMA reduce permanganate concentrations faster
  - First order rate with respect to NDMA
- RemOx oxidizes NDMA faster than reagent grade MnO4.

# Further Work

- Why does RemOx work better than MnO4?
- Compare mg/L concentrations of NDMA to ug/L

   Use to predict removal at ng/L (ppt) NDMA concentrations
   Can clean-up limit of 0.69 ng/L can be achieved?
   Or analysis of NDMA by a very high sensitivity method (\$\$\$)
- · Quantify the effects of varying natural conditions
- Determine stoichiometric reaction
   Any toxic byproducts results?
  - Any toxic byproducts results?
     GC/MS indicated some DMA formation (not yet quantified)

## Acknowledgements and Questions

- Thanks to CU REU Program and Professors
  - Dr. Bielefeldt
  - Rajat Srivastav
  - Amanda Kohler
  - Grad students
  - REU students

Questions ?