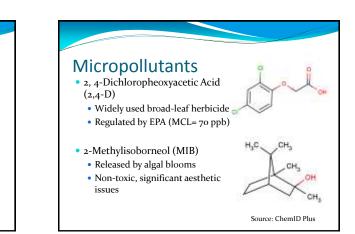
Attenuation of Micropollutants in Biological Drinking Water Filters

Kate Dowdell Mentors: R. Scott Summers and Tom Zearley

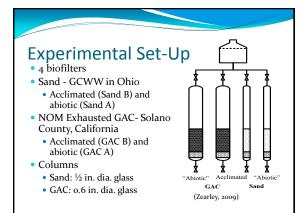

Outline

- Background
- Hypothesis
- Experimental Set-Up
- Analysis
- Research Plan
- Adsorption and Degradation Study

NSF REU August 4, 2011 University of Colorado at Boulder

Background Most drinking water plants operate abiotic filters Use GAC or ozone to remove trace organics not removed in conventional treatment process

• Many micropollutants have potential to be biologically degraded



Acclimation

- Acclimated media is required for this experiment
 - Previous studies suggest microorganisms in filters may require up to 6 months to acclimate to utilizing MIB (Meyer, 2005)
 - Little data available for the acclimation period required for 2, 4-D

Hypothesis

• When compared to sand, GAC achieves more consistent micropollutant removal in biofilters due to its capacity to utilize combined biodegradation and adsorption

Filter Media Preparation

- Sand and GAC media for abiotic filters were autoclaved in a TOC and micropollutant solution
- Phospholipid analysis was run on 4 media samples to determine initial biomass on filters
- Columns were packed to obtain 7.5 min EBCT

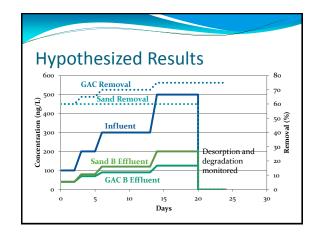
Feed Water

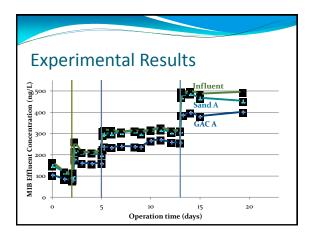
- Dechlorinated City of Boulder tap water
- Initial influent concentrations
 - 100 ng/L 2,4-D
 - 100 ng/L MIB
 - 3 mg/L TOC
- Flow
 - Loading Rate: 1 gal/min/ft²
 - 4 mL/min per sand column
 - 7 mL/min per GAC column

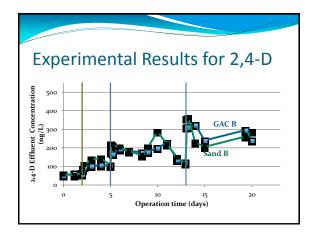
Analyses

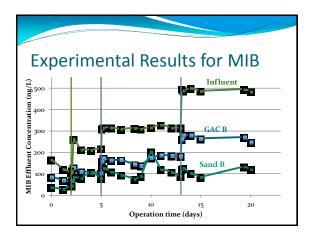
- Samples analyzed to determine TOC, UV, and micropollutant removals
- Micropollutant removal determined using Liquid Scintillation Counting (LSC) with radiolabeled compounds
- Solid Phase Extraction (SPE)
 - Used to remove parent compounds from influent and effluent samples

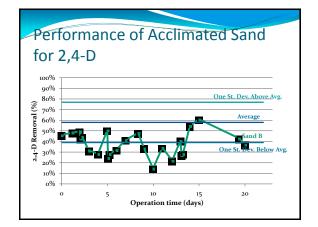
Concentration= Pre-SPE Conc. - Post-SPE Conc.

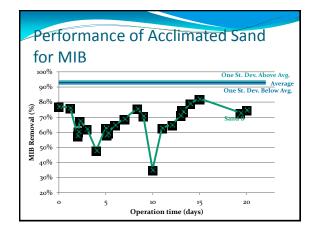


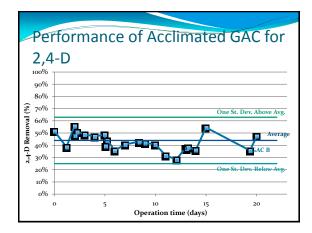

Attenuation Timeline	
Days	Concentration of Micropollutants
0-2	100 ng/L
2-5	200 ng/L
5-13	300 ng/L
13-27	500 ng/L
27-34	o ng/L Monitored attenuation and biodegradation

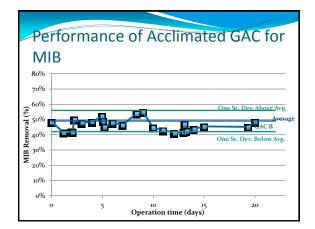

2

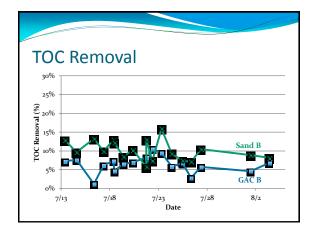


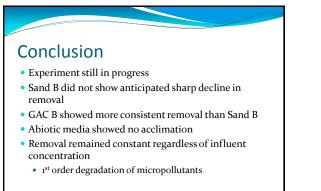

- Samples were taken:
 - Immediately before influent concentration increase
 - Two hours after increase
 - 6 hours after increase
 - 24 hours after increase
- Then daily until next increase

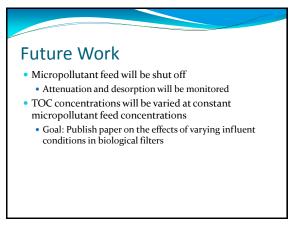


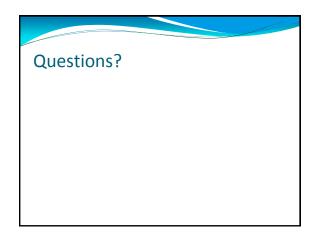












Potential Applications

- Biological filtration using GAC will provide high levels of removal during periods of pollutant fluctuations
- May be used in drinking water filters already in operation

Acknowledgements

- Professor R. Scott Summers, University of Colorado
- Tom Zearley, Doctoral Candidate, University of Colorado
- National Science Foundation
- University of Colorado REU Program
- Greater Cincinnati Water Works, Cincinnati, Ohio
- Solano County, CA

