Kinematic Wave Modeling in the Streams of the Lake Fryxell Basin in the McMurdo Dry Valleys, Antarctica

Katy Gerecht Environmental Fluids REU Program University of Colorado – Boulder 7 August 2008

Dry Valley Context

Largest Ice-Free Region
 Approx 4800 km²
 Extreme Polar Desert
 Minimal Precipitation

Taylor Valley Environment

Mean Annual Air Temp:	-16 to -21 °C
Mean Wind Speed:	2 to 4 m/s
Mean Summer Air Temp:	-5 °C

Continuous Daylight Through Summer

- Streams: Flow for 4 to 12 Weeks - Unconsolidated Alluvium
 - Carry Sediments and Solutes
 - Carry Scuments and Solut

Moss: only riparian vegetation

- Permanently ice-covered lakes
- Dependence on streams for recharge
- Streams link glaciers and lakes
- Streams are ecosystem hotspots

Objectives

- Compare temp regime to hydrograph
- How is water routed?

The second second

- "Pure" kinematic wave model
- Understand shape of the wave
- Add-in losses: evaporation and seepage

IL STREET

ALBORIDA

Area of Study

- Taylor Valley
 <u>– 35 km long</u>
 - 3 major lakes
 - 5 major lakes
- Lake Fryxell Basin
 - Easternmost Basin
 - 13 streams discharge to lake
 - 5 streams studied

Streams of Interest

Length (km)	$\frac{Width}{(m)}$	$\frac{Gradient}{(m/m)}$	<u>Aspect</u>
1.5	21.4	0.03	South
2.2	4	0.02	South
4.9	3-4	0.08	North
1.2	1-4	0.02	East
11.2	10	0.03	North
	Length (km) 1.5 2.2 4.9 1.2 11.2	Length (km) Width (m) 1.5 21.4 2.2 4 4.9 3-4 1.2 1-4 11.2 10	Length (km) Width (m) Gradient (m/m) 1.5 21.4 0.03 2.2 4 0.02 4.9 3-4 0.08 1.2 1-4 0.02 11.2 10 0.03

Variance in Flow

- Daily & Seasonal Variance
- Solar position and glacier face melt
- Incoming shortwave radiation absorption
- Stream Temps:
 - Range: 0 to 25 °C
 - 10°C warmer than
 - air temperature
 - 20 °C variance in one day

Stream Temperature Regime

Definition: Range and Timing

- Driven by solar radiation
- Thermal conductivity is constant
- Compare peaks of temp regime to flow regime

Kinematic Wave Model

- Routes pulse of variable flow
- Function of time & space
- Stream characteristics
- Physical processes
- Boundary Condition: Q(0,t)
- Initial condition: Q(x,0)

2

Kinematic Wave Model

Assumptions Made:

- Neglect acceleration and pressure
- Omit lateral inflow, eddy loss, & wind shear
- Steady and uniform within dx
- One-dimensional flow
- Incompressible fluid
- Width less variable than depth
- Uniform width and gradient
- Prismatic channel

St. Venant Equations Continuity Equation: $\frac{d}{dt} \iiint_{c.v.} \rho d \forall + \iint_{c.s.} \rho \mathbf{V} \cdot \mathbf{dA} = 0 \rightarrow \frac{\partial Q}{\partial x} + \frac{\partial A_c}{\partial t} = 0$ Momentum Equation: $\frac{d}{dt} \iiint_{c.v.} \mathbf{V} \rho d \forall + \iint_{c.s.} \mathbf{V} \rho \mathbf{V} \cdot \mathbf{dA} = \sum \mathbf{F}$ $\rightarrow \frac{1}{A_c} \frac{\partial Q}{\partial x} + \frac{1}{A_c} \frac{\partial}{\partial x} \left(\frac{Q^2}{A_c}\right) + g \frac{\partial y}{\partial x} - g \left(S_o - S_f\right) = 0$ $\bigvee_{\text{Local}} \underbrace{\text{Convective}}_{\text{Acceleration}} \underbrace{\text{Pressure}}_{\text{Force}} \underbrace{\text{Gravity Friction}}_{\text{Force}} \text{Fiction}$

For Kinematic Wave

$$\frac{\partial Q}{\partial x} + \frac{\partial A_c}{\partial t} = 0 \quad and \quad S_o = S_f$$
Manning's Equation with $Q = UA_c$ and $R = A_c/P$:

$$Q = \frac{1}{n} \frac{A_c^{5/3}}{p^{2/3}} S_o^{1/2}$$
Solve for $A_c = \alpha Q^{\beta}$ with $\beta = 3/5$ and $\alpha = \left(\frac{nB^{2/3}}{\sqrt{S_o}}\right)^{3/5}$

Implicit Finite-Difference Numerical Solution

Differentiate $A_C = \alpha Q^{\beta}$ with respect to time:

$$\frac{\partial A_C}{\partial t} = \alpha \beta Q^{\beta - 1} \frac{\partial Q}{\partial t}$$

Substitute into: $\frac{\partial Q}{\partial x} + \frac{\partial A_c}{\partial t} = 0$

$$\frac{\partial Q}{\partial x} + \alpha \beta Q^{\beta - 1} \frac{\partial Q}{\partial t} = 0$$

Implicit Finite-Difference Numerical Solution

Value of Q used in $\alpha\beta Q^{\beta\cdot 1}$ is found by averaging values:

$$Q \approx \frac{Q_{i+1}^j + Q_i^{j+1}}{2}$$

The finite difference form of the linear kinematic wave is:

$$\frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x} + \alpha \beta \left(\frac{Q_{i+1}^{j} + Q_i^{j+1}}{2}\right)^{\beta - 1} \left(\frac{Q_{i+1}^{j+1} - Q_{i+1}^{j}}{\Delta t}\right) = 0$$

Solved for the unknown, this equation becomes:

$$Q_{i+1}^{j+1} = \frac{\left[\frac{\Delta t}{\Delta x} Q_i^{j+1} + \alpha \beta Q_{i+1}^{j} \left(\frac{Q_{i+1}^{j} + Q_i^{j+1}}{2}\right)^{\beta-1}\right]}{\left[\frac{\Delta t}{\Delta x} + \alpha \beta \left(\frac{Q_{i+1}^{j} + Q_i^{j+1}}{2}\right)^{\beta-1}\right]}$$

Modeling

- Use of MATLAB
- · Lack of observational boundary/initial conditions
- Route water with no losses
- · Sine curve provides initial input function
- Timing of direct sun on source
- Position of stream gauge
- Compare model to observed data

Modeling Results

- Captures most wave properties
- · Loss of water reflects input function assumption

Modeling Results

- Evaporation and other losses affect rising limb
- Drainage affects declining limb

Model Accuracy • Plot model output versus observed data • Desire slope = 1 and small norm of residuals

Von Superard Stream((B6)): Deverttssloppe, high residuals

Future Work

- Observed data for boundary/initial condition
- Test other input function shapes
- Use glacial melt model input
- Add in evaporative and seepage losses
- · Add in drainage gains during low flow
- Route flow backwards from gauge
- See what input function *should* be

Conclusions

Kinematic wave <u>does</u> capture the essential features of diel variation inflow from Lake Fryxell streams

e.g. Kinematic wave correctly models steep rising *limb in longer streams at high flow (Von Guerard)*

Acknowledgements

- NSF and CU Boulder Environmental Engineering
- Professor Diane McKnight
- Professor Roseanna Neupauer
- Josh Koch and Karen Cozzetto
- Audrey Norvell
- Corey Wilson
- Melissa Merrill
- Chris Gardner and Matt Hoffman

Questions?

Derivation of Momentum Eq. Substitute into RTT for Momentum: $\sum_{a} \mathbf{F} = \frac{d}{dt} \iiint_{cx} \mathbf{V} \rho dv + \iint_{cx} \mathbf{V} \rho \mathbf{V} \cdot \mathbf{d} \mathbf{A}$ $p_{gAS_{c}dx - \rho_{gAS_{f}}dx - \rho_{gAS_{f}}dx - \rho_{gAS_{f}}dx - \rho_{gA} \frac{\partial y}{\partial x} dx = -\rho \left[\beta v_{,q} + \frac{\partial (\beta VQ)}{\partial x}\right] dx + \rho \frac{\partial Q}{\partial t} dx$ Assume constant density & divide through by ρdx , and replace V with Q/A_{c} : $\frac{\partial Q}{\partial t} + \frac{\partial (\beta Q^{2}/A)}{\partial x} + gA \left(\frac{\partial y}{\partial x} - S_{o} + S_{f} + S_{e}\right) - \beta q v_{x} + W_{f} B = 0$ Neglect lateral inflow, wind shear, and eddy loss. Assume β =1. Use kinematic wave: neglect acceleration and pressure terms: $g \left(S_{o} - S_{f}\right) = 0 \quad \rightarrow \quad S_{o} = S_{f}$

Celerity and Courant Condition

Wave: A variation in flow

Celerity: Velocity with which variation travels downstream Celerity is different than water velocity

Kinematic wave celerity can be described as:

$$c_{k} = \frac{dx}{dt} = \frac{dQ}{dA} = \frac{1}{B} \frac{dQ}{dY} \qquad \text{where y is depth and } dA = Bdy$$

Can be solved as: $c_{k} = \frac{Q^{1-\beta}}{2} \quad \text{where } \alpha = \left(\frac{nB^{\frac{2}{1-\beta}}}{2}\right)^{\frac{3}{2}} \text{ and } \beta = 3/5$

Can be solved as:
$$c_k = \frac{Q}{\alpha\beta}$$
 where $\alpha = \left(\frac{\partial B}{\sqrt{S_o}}\right)$ and $\beta =$

Courant Condition: Necessary but insufficient for stability

 $\Delta t \leq \frac{\Delta x_i}{c_k}$

For Kinematic Wave
$\frac{\partial Q}{\partial x} + \frac{\partial A_c}{\partial t} = 0 and S_o = S_f$
Manning's Equation: $U = \frac{C_o}{n} R^{\frac{2}{3}} S_e^{\frac{1}{2}}$
$S_e \approx S_{o'} C_o = 1$, and $R = A/P$: $U = \frac{1}{n} \left(\frac{A_c}{P}\right)^{\frac{3}{2}} S_o^{\frac{1}{2}}$
With Q = UA: $Q = A_c \frac{1}{n} \left(\frac{A_c}{P}\right)^{\frac{2}{3}} S_o^{\frac{1}{2}} \rightarrow Q = \frac{1}{n} \frac{A_c^{\frac{5}{3}}}{P^{\frac{2}{3}}} S_o^{\frac{1}{2}}$
Solve for $A_c = \alpha Q^{\beta}$ with $\beta = 3/5$ and $\alpha = \left(\frac{n P^{\lambda}}{\sqrt{S_o}}\right)^{\lambda} = \left(\frac{n B^{\lambda}}{\sqrt{S_o}}\right)^{\lambda}$

Implicit Finite-Difference Numerical Solution

Differentiate $A_C = \alpha Q^{\beta}$ with respect to time:

$$\frac{\partial A_{C}}{\partial t} = \alpha \beta Q^{\beta - 1} \frac{\partial Q}{\partial t}$$

Substitute into: $\frac{\partial Q}{\partial x} + \frac{\partial A_{c}}{\partial t} = 0$
 $\frac{\partial Q}{\partial x} + \alpha \beta Q^{\beta - 1} \frac{\partial Q}{\partial t} = 0$

Implicit Finite-Difference Numerical Solution

Value of Q used in $\alpha\beta Q^{\beta\text{-}1}$ is found by averaging values:

 $Q \approx \frac{Q_{i+1}^j + Q_i^{j+1}}{2}$

The finite difference form of the linear kinematic wave is:

$$\frac{Q_{i+1}^{j+1} - Q_i^{j+1}}{\Delta x} + \alpha \beta \left(\frac{Q_{i+1}^j + Q_i^{j+1}}{2}\right)^{\beta - 1} \left(\frac{Q_{i+1}^{j+1} - Q_{i+1}^j}{\Delta t}\right) = 0$$

Solved for the unknown, this equation becomes:

$$Q_{i+1}^{j+1} = \frac{\left\lfloor \frac{\Delta t}{\Delta x} Q_i^{j+1} + \alpha \beta Q_{i+1}^{j} \left(\frac{Q_{i+1}^{j} + Q_i^{j+1}}{2} \right)^{\beta-1} \right\rfloor}{\left\lfloor \frac{\Delta t}{\Delta x} + \alpha \beta \left(\frac{Q_{i+1}^{j} + Q_i^{j+1}}{2} \right)^{\beta-1} \right\rfloor}$$

Relevant References

Chapra, S. C. (1997). Surface water-quality modeling. Boston: McGraw-Hill.

Chow, Ven Te (1988). Applied Hydrology. Boston: McGraw-Hill.

- Conovitz, P. A., McKnight, D. M., MacDonald, L. H., Fountain, A. G., & House, H. R. (1998). Hydrologic processes influencing streamflow variation in Fryxell basin, Antarctica. In J. C. Priscu (Ed.), Ecosystem dynamics in a polar desert: The McMurdo Dry Valleys, Antarctica (pp. 93-108). Washington, DC: American Geophysical Union.
- Cozzetto, K., McKnight, D., Nylen, T., & Fountain, A. (2006). Experimental investigations into processes controlling stream and hyporheic temperatures, Fryxell basin, Antarctica. Advances in Water Resources, 29(2), 130-153.
- Runkel, R. L., McKnight, D. M., & Andrews, E. D. (1998). Analysis of transient storage subject to unsteady flow: Diel flow variation in an Antarctic stream. *Journal of the North American Benthological Society*, 17(2), 143-154.