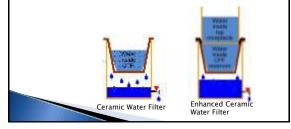
Effects of Colloidal Silver and Flow Rate on Bacterial Disinfection in Ceramic Water Filters

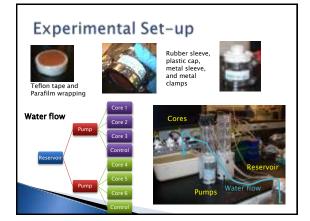
Sydney Stewart, Montana State University Mentors: Prof. Angela Bielefeldt Tamara Relph

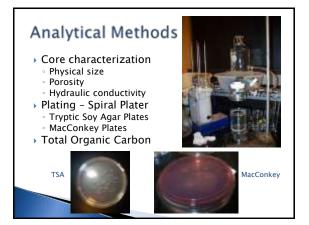
Environmental Engineering REU Dept. Civil, Environmental, & Arch. Engineering University of Colorado – Boulder

Background

- 1 billion people globally lack access to adequate water and sanitation
- Diarrheal diseases cause 3.7% of total deaths worldwide, and 88% of these deaths can be attributed to "unsafe water, inadequate sanitation, and poor hygiene" (UNICEF 2009)
- 2.2 million deaths are caused by diarrheal diseases, 1.8 million of those in low-income countries
- Diarrheal diseases are the fifth leading cause of death in the world, and the third-leading cause of death in low-income countries

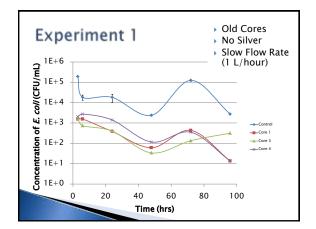

Ceramic Pot Filter

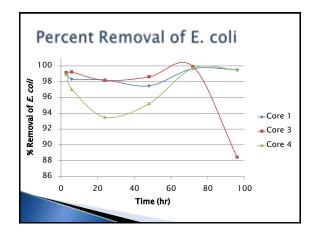

- Point-of-Use Water Treatment System
- Made locally clay and combustible materials
- Low-cost
- Effective
 - Hunter 2009 most effective treatment for reducing diarrheal diseases when compared to households not treating their water

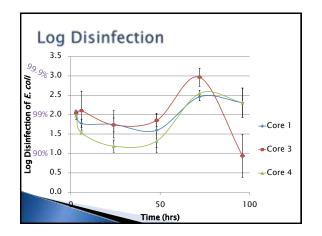


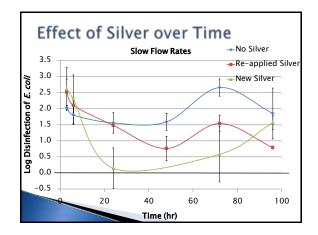
Objectives

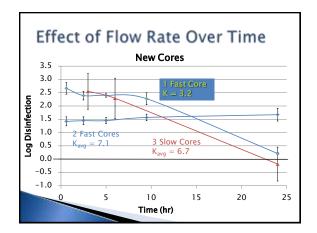
- How does the presence of silver affect the removal of *E. coli*?
- How does flow rate affect the E. coli removal?

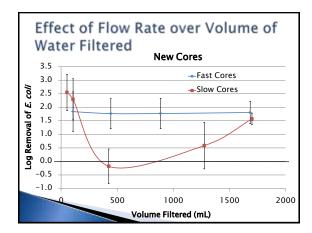


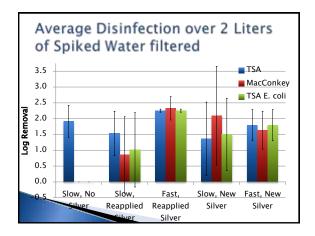


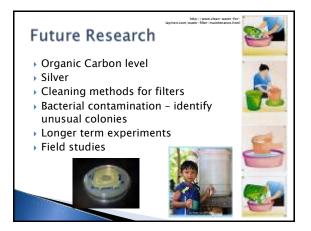

Core	Age	Flow Rate	Silver	Porosity	Conductivity
		Slow	None		
1	Old	Fast	Reapplied	0.371	6.4
		Slow	None		
3	Old	Fast	Reapplied	0.407	6.2
		Slow	None		
4	Old	Fast	Reapplied	0.419	6.5
2	Old	Fast	Reapplied	0.372	5.2
6	Old	Fast	Reapplied	0.391	5.3
7	Old	Fast	Reapplied	0.407	6.3
2B4	New	Fast	New	0.405	7.8
3B4	New	Fast	New	0.387	3.2
4B4	New	Fast	New	0.406	6.4
2B3	New	Slow	New	0.396	5.4
2B2	New	Slow	New	0.398	7.9
4B2	New	Slow	New	0.405	6.7


Experimental Outline


Test	Age	Silver	Flow Rate
Experiment 1	Old	None	Slow
Experiment 2	Old	Reapplied	Slow Fast
Experiment 3	New	New	Slow Fast







Average Disinfection over 24 Hours 4.0 TSA 3.5 MacConkey 3.0 2.5 Remova 2.0 **ទុ** 1.5 1.0 0.5 0.0 Slow, No Slow. Fast. Slow, New Fast, New Reapplied Reapplied Silver Silver Silver

Results

- Silver
- 0 6 hours: No apparent effect t > 6 hours: Cores without silver removed more *E. coli* than those with any form of silver
- No statistical difference between cores with new silver and those with reapplied silver
- Flow Rate
- On a volume basis, the fast cores removed more E. coli than the slow cores after the first 200 mL. 0 - 6 hours: Slow cores removed more *E. coli* (93% statistically confident)
- t > 6: No statistical difference
- Overall
 - 1.89 log (98.7%) removal in 24 hours 1.77 log (98.3%) removal for the first 2 L of water filtered

Acknowledgments

• Professor Angela Bielefeldt

- Tami Relph
- Alex Archuleta