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Introduction 

 

• Mining often results in the oxidation of sulfidic minerals 
such as pyrite (FeS2) after exposure to water and oxygen; 
sequences that leads to acid mine drainage (AMD) (Akcil 
& Koldas, 2006) 

 

• AMD: low pH and high dissolved metal concentrations 
(Akcil & Koldas, 2006). 

 

• Detrimental  

 

• Several reactions result in the generation of AMD through the 
oxidation of sulfide minerals (Akcil & Koldas, 2006): 

FeS2 + 7/2 O2 + H20 → Fe 2+ + 2SO4 2- + 2H+  (1) 

Fe 2+ + 1/4 O2 + H+ → Fe 3+ + ½ H2O                (2) 

Fe S2 + 14 Fe3+ + 8H2O → 15 Fe 2+ + 2SO4
2- + 16H+  (3)  

 

• Reaction 1: dissolved oxygen = electron acceptor in the 
oxidation of pyrite producing ferrous iron and sulfuric acid. 

 

• Circumneutral pH= pyrite dissolved directly by oxygen. 

 

• pH below 4.5 
▫ ferric iron generated by iron oxidizing bacteria  (reaction 2) becomes the 

primary oxidant of pyrite  (reaction 3; Singer & Stumm, 1970).  

 

• Heterotrophic bacteria exist in small populations (Marchand 
& Silverstein, 2002).  

 

• Water flow (Akcil & Koldas, 2006). 

▫  controls the transport of nutrients, wastes, and microorganisms 
throughout media (Schafer et al., 1998).  

 

• Challenging to model subsurface flow (Stockwell et al., 2006).  

 

Purpose 
• Remediation Strategy: Add organic carbon to experimental 

rock tanks to stimulate biogeochemical processes that reduce 
AMD.  

 

• My research purpose: measure factors that determine 
reaction and transport rates  
 
▫ residence times of drainage water in experimental AMD 

tanks  

▫ physical characteristics of waste rock  (porosity and pore 
water chemistry).  

▫ Dispersion coefficient for the columns: reactive transport 
computational model before trying carbon addition for 
bioremediation 
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Methods 

• 150 kg rock/column from Leadville, Colorado 

• Dimensions: 91 cm long and 45 cm in diameter 

• Re-circulating reservoir: tap water added every 24 hours (reservoir 
turnover is approximately 5 days) 

• Measured current conditions of rock tanks (iron, pH, DO, flow rates, 
humidity)  
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Methods (Rock Porosity & Saturation) 
• 30 rocks from each column at various depths and radial positions 

 

  

 

 

 

         

 

 

 

 

(sat weight - final dry weight) x 100 = Porosity 

(sat weight - buoyant weight) 

 

  (initial weight - initial dry weight)  x 100= Saturation  

(saturated weight - final dry weight) 

 

Initial weight Dry weight 

Dry weight 

Pore iron concentration  
• Six rocks:  

▫ depth 15 cm and weight between 146.0041 and 164.749 (g)  

 

▫ 2 rocks in 400 ml of 20 mg/L benzoic acid acidified to a pH 
of 1.8. 

 

▫  Samples taken periodically for 140 hours and measured for 
pH and iron.  

▫ Calculated porosity  

 

   (Vp x Co)    = C∞  

       [(Vp x S)+Vtank] 
 

 

Tracer test 

• 2 Molar NaBr 

• Prepared standard curves 

• 5 min injection 

• Recorded readings in Column 2 
effluent  

Results (Porosity and Saturation)  
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Results (Pore Iron Exp.) 
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NaBr Concentration vs Time Elapsed  

Dispersion Coefficient (4838.1 
cm2/hr) 
velocity (110.12 cm/hr) 
 area flow path (129.89 cm2) 

Residence time in bulk liquid: 2.53 hours 
(duration from start of peak to C max) 
 
Bulk flow velocity: 144.6 cm/hr 

Conclusions 

• Saturations not dependent on depth and pretty 
similar in each column.  

 
• Pore iron analysis: total iron concentrations 6-13 

times higher in pores than the bulk column 
liquid waste; suggests that the AMD tanks are a 
dual porosity system.  

 
• The long tail in tracer test indicates dual 

porosity 
 
 

Conclusions and future work 

• Problems with CDE simulation.  

▫ Simulation vs experimental  

▫ CDE test only models the bulk solution: Neglects 
the dual porosity of the system 

 

• New simulation equation 
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Questions? 


