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Abstract

We prove that subdirectly irreducible modes come in three very different types.
From the description of the three types we derive the results that a variety of modes
has a semilattice term if and only if it contains no nontrivial abelian algebras, and that
a variety of modes has a Mal’cev term if and only if it contains no algebra which term
equivalent to a 2-element set or 2-element semilattice.
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1 Introduction

A mode is an algebra which satisfies the idempotent and entropic laws. The idempotent
laws for M assert that if f is any term of M, then M |= f(x, . . . , x) = x. The entropic laws
assert that if f is an m-ary term operation of M and g is an n-ary term operation of M, then f
and g commute on any m×n array of elements of M. Together the idempotent and entropic
laws are equivalent to the property that any polynomial operation p = p(x1, . . . , xn) ∈
Pol(M) is a multivariable endomorphism; i.e., p : Mn →M is a homomorphism.

Let S be a subdirectly irreducible mode with monolith µ. If M is a nontrivial µ-class,
then we will see that the subalgebra M supported by M is term equivalent to a set, a
2-element semilattice, or a quasi-affine algebra which is not strongly abelian. Our main
result concerning the three types is that if M is a 2-element semilattice, then S itself has
a semilattice term. A secondary result is that if M is a quasi-affine algebra which is not
strongly abelian, then S has a nontrivial center.

We apply the results on subdirectly irreducible algebras to derive results on varieties of
modes. We prove that a variety of modes has a semilattice term if and only if it contains no
abelian algebras, and that it has a Mal’cev term if and only if it contains no algebra term
equivalent to a 2-element set or a 2-element semilattice.
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†This work was completed during the 1997 working meeting on modes at the Stefan Banach International

Mathematical Center. Financial support from the Banach Center is gratefully acknowledged.
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2 Three Types

Throughout this paper S will denote a subdirectly irreducible mode with monolith µ, M
denotes an arbitrarily chosen nontrivial µ-class, and M denotes the subalgebra supported by
M . We will classify subdirectly irreducible modes according to the properties of the clone
of M. (Throughout, when we refer to “the clone” of an algebra or variety, we always mean
the clone of term operations.)

LEMMA 2.1 ([10], Proposition 1.12) Let A be any algebra. The clone of A has at least
one of the following properties.

(0) Every operation is a projection.

(1) There is a unary operation which is not a projection.

(2) There is an idempotent essentially binary operation.

(3) There is an operation M(x, y, z) satisfying the majority laws:

M(x, x, y) = M(x, y, x) = M(y, x, x) = x.

(4) There is an operation m(x, y, z) satisfying the minority laws:

m(x, x, y) = m(x, y, x) = m(y, x, x) = y.

(5) There is an operation s(x1, . . . , xn) of arity n ≥ 3, which depends on all variables, and
which satisfies the semiprojection laws: for any 1 ≤ i < j ≤ n

s(x1, . . . , xi−1, xi, xi+1, . . . , xj−1, xi, xj+1, . . . , xn) = x1.

COROLLARY 2.2 The clone of M has exactly one of the following properties.

(0) It is a clone of projections.

(2) It has an idempotent essentially binary operation.

(4)’ It is the clone of an affine Boolean group. (I.e., it is generated by x + y + z (mod 2).)

Proof: It is trivial to check that no clone has more than one of these properties, so we
show only that one of these cases must occur.

Since M is idempotent, it has no unary operation different from a projection. Therefore
case (1) of Lemma 2.1 cannot occur.

A majority operation does not commute with itself on any array of the following form:



x x x
x y y
y y x


 , x 6= y.

Therefore case (3) of Lemma 2.1 cannot occur.
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Assume that the clone of M contains a semiprojection, s(x1, . . . , xn). Since this operation
depends on all of its variables, we can choose ai ∈ M such that s(a1, a2, . . . , an) 6= a1. The
unary polynomial ε(x) = s(a1, x, a3, . . . , an) is an endomorphism of of S. The semiprojection
equations imply that the ai are distinct from one another, and also that (a1, a2) 6∈ ker(ε)
while (a1, a3) ∈ ker(ε). Since

(a1, a2), (a1, a3) ∈M2 ⊆ µ,

this implies that ker(ε) is incomparable with µ, contradicting the subdirect irreducibility of
S. This shows that case (5) of Lemma 2.1 cannot occur.

We have shown so far that the clone of M is described by one of the cases (0), (2) or (4)
of Lemma 2.1. Now we need to refine (4) to (4)’. Assume that M has a minority operation
m(x, y, z). Then m(x, y, z) is a Mal’cev operation which commutes with all other operations
in the clone of M. It follows that M is an affine algebra. If M is affine over the ring R, then
every operation of the form rx+ (1− r)y is in the clone of M. Thus, either the clone of M
has an idempotent essentially binary operation (which is case (2)) or else R is the 2-element
ring. In the latter case, M is an idempotent algebra which is affine over the 2-element ring,
so its clone is generated by x + y + z (mod 2). 2

We are going to classify subdirectly irreducible modes into three types, called the “set
type”, the “semilattice type” and the “quasi-affine type”. We say that S is of set type if
the clone of M is a clone of projections. S is of semilattice type if the clone of M has a
noncancellative, essentially binary operation. S is of quasi-affine type if the clone of M
has a cancellative binary operation, or else the clone is generated by x+ y+ z (mod 2). The
reasons behind the terminology will become clear as we go along.

The definitions just given do not depend on the choice of M for the following reasons.
Choose any other nontrivial µ-class M ′. If a 6= b are in M and a′ 6= b′ are in M ′, then the con-
gruences Cg(a, b) and Cg(a′, b′) are equal to µ, so there are unary polynomials p, p′ ∈ Pol(S)
such that p(a) 6= p(b) ∈M ′ and p′(a′) 6= p′(b′) ∈ M . These polynomials are endomorphisms
of S which are nonconstant on µ. Since µ 6≤ ker(p), ker(p′), it follows that p and p′ are
injective on S. Hence p : M → M′ and p′ : M′ → M are embeddings, so the algebras M
and M′ embed into one another. This is enough to show that the “set type” is well defined.
If b(x, y) is a noncancellative, essentially binary operation of M, then it is noncancellative
and essentially binary on M′ because M is embeddable in M′. This is enough to show that
the “semilattice type” is well defined. If b(x, y) is a cancellative binary operation of M, then
it is cancellative on M′ because M′ is embeddable in M. If the clone of M is generated by
x + y + z (mod 2) if and only if the same is true for M′. This shows that the “quasi-affine
type” is well defined.

If S is a finite subdirectly irreducible mode, then it is easy to show that S is a “〈0, µ〉-
minimal algebra”, in the sense defined in [1]. (In the finite case, our three “types” of
subdirectly irreducibles correspond to typ(0, µ) = 1 , 2 or 5 .) Tame congruence theory
applied to finite modes leads quickly to nice structural results, which appear in [6]. We do
not repeat those results here. Instead it is our goal to determine how much of what is true
for the finite case extends to the infinite case.

Our main goal in this section is to prove that S has the semilattice type if and only if S
has a semilattice term. Subdirectly irreducible modes with a semilattice term are understood
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fairly well. (See [4] and [5].) As a secondary goal we prove some results about S when it
has quasi-affine type. Here our main results are that S has quasi-affine type if and only
if M is a quasi-affine algebra which is not term equivalent to a set. Moreover, when this
happens, then the center of S is a nonzero congruence which coincides with the centralizer
of the monolith. Unlike the case when S has semilattice type, the results we prove here for
arbitrary subdirectly irreducible modes of quasi-affine type fall far short of what is known
for finite subdirectly irreducible modes of quasi-affine type. Furthermore, we prove nothing
about subdirectly irreducible modes of set type, but little is known even for finite subdirectly
irreducible modes of set type. (Some information can be found in [6] and [9].) Nevertheless,
the results we obtain are strong enough for some interesting applications, which one can find
in Section 3 and in [8].

THEOREM 2.3 S has semilattice type if and only if it has a semilattice term

Proof: If S has a semilattice term, then so does M, and this term is an example of
a noncancellative, idempotent, essentially binary operation in the clone of M. Conversely,
assume that x ∧ y is a term of S which is noncancellative and essentially binary on M . We
will prove that the term x ∧ y interprets as a semilattice operation on S.

Claim 2.4 |M | = 2 and x ∧ y is a semilattice operation on M .

For u ∈ M , define Lu(x) = u ∧ x and Ru(x) = x ∧ u. Since x ∧ y is noncancellative
on M , there is a 0 ∈ M such that either L0(x) is not injective or R0(x) is not injective.
Assuming the former, we get that µ ≤ ker(L0), because L0 is a noninjective endomorphism.
Thus L0(x) is constant on M , yielding that 0 ∧ x = 0 ∧ 0 = 0 if x ∈ M . This shows
that 0 is a left zero element in M with respect to ∧. Now select any u 6= v ∈ M . Since
M2 ⊆ µ = Cg(u, v), it follows that there is a unary polynomial p ∈ Pol(S) such that
0 = p(u) 6= p(v) or 0 = p(v) 6= p(u). In either case, (u, v) 6∈ ker(p), so µ 6≤ ker(p), and this
implies that p is injective. Assuming that we are in the case 0 = p(u) 6= p(v), we get that

p(u ∧ v) = p(u) ∧ p(v)
= 0 ∧ p(v)
= 0 ∧ p(u)
= p(u) ∧ p(u)
= p(u ∧ u) = p(u).

Since p is injective, we must have u ∧ v = u = u ∧ u, so (u, v) ∈ ker(Lu). Thus Lu is not
injective on M , and as in our earlier arguments for the element 0 this means that u is a left
zero element with respect to ∧. If, on the other hand, we are in the case 0 = p(v) 6= p(u),
then we obtain that v is a left zero element for ∧. This shows that whenever u 6= v ∈ M ,
then one of these two elements is a left zero element for ∧.

If all elements of M were left zero elements with respect to ∧, then x ∧ y = x would be
an equation holding in M. This would contradict the fact that ∧ is essentially binary on M .
Therefore, there is a unique element 1 ∈M which is not a left zero element. Equivalently, 1
is the unique element u ∈M for which Lu is injective.
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Assume that there is an element u ∈ M − {0, 1}. Since (0, 1) ∈ µ = Cg(0, u), there is a
unary polynomial p such that 1 = p(0) 6= p(u) =: r or 1 = p(u) 6= p(0) =: r. The argument
is the same in both cases, since both 0 and u are left zeros, so assuming that we are in the
case 1 = p(0) 6= p(u) =: r we have

L1(1) = 1 ∧ 1
= 1
= p(0)
= p(0 ∧ u)
= p(0) ∧ p(u)
= L1(r).

This forces L1 to be noninjective, contrary to the choice of 1. Thus M = {0, 1} and ∧ is an
idempotent operation on M for which 0 is a left zero and 1 is not a left zero. Necessarily
0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 and 1 ∧ 1 = 1. Thus, ∧ is a meet semilattice operation on M with
respect to the ordering 0 < 1. (This implies, in particular, that R1 is injective on M , and
hence on S.) This ends the proof of Claim 2.4.

Claim 2.5 M is the only nontrivial µ-class.

Choose a nontrivial µ-class M ′ independently of the choice of M . Then, since M and
M′ mutually embed into one another, therefore |M ′| = 2 and ∧ is a semilattice operation
on M ′. Denote the elements of M ′ by 0′ and 1′ so that ∧ is a meet operation for the order
0′ < 1′. We now argue that 0 = 0′. Since M ′ was chosen independently of M , this will show
that M is the only nontrivial µ-class.

Subclaim 2.6 For any unary polynomial p ∈ Pol(S), if u = p(0) and v = p(0′), then Lu(x)
is injective if and only if Lv(x) is injective.

Assume that Lu(x) is injective. Then Lu(0) 6= Lu(1), and since Lu is a polynomial of S
we get that M ′′ := {Lu(0), Lu(1)} is a nontrivial µ-class. Since Lu is an endomorphism we
get that 0′′ := Lu(0) < Lu(1) =: 1′′ in the ∧-order, considering ∧ to be a meet operation on
M ′′. Thus p(0)∧0 = 0′′ < 1′′ = p(0)∧1. We also have that p(1)∧1 ∈M ′′, since p(1)∧1 ≡µ
p(0) ∧ 1 = 1′′ ∈M ′′. The endomorphism p(x) ∧ 1 preserves ∧, so 1′′ = p(0) ∧ 1 ≤ p(1) ∧ 1 in
M ′′. This shows that

p(0) ∧ 0 < p(0) ∧ 1 = p(1) ∧ 1.

In particular, R1(p(0)) = R1(p(1)). We must have p(0) = p(1), since R1(x) is injective, so
µ ≤ ker(p). Moreover, by the last displayed line the endomorphism h(x) := p(x)∧x satisfies
h(0) < h(1). Since µ 6≤ ker(h) and µ ≤ ker(p) we must have

p(0′) ∧ 0′ = h(0′) < h(1′) = p(1′) ∧ 1′ = p(0′) ∧ 1′.

Thus, (0′, 1′) 6∈ ker(Lv), which implies that Lv is injective. This finishes the proof of the
subclaim.

Now we continue the proof of Claim 2.5. Choose (r, s) ∈ µ ≤ Cg(0, 0′). There is a
sequence r = a0, a1, . . . , an = s of distinct elements of S and a sequence p1, . . . , pn of unary
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polynomials of S such that {pi(0), pi(0
′)} = {ai−1, ai}. By the subclaim we know that, for

each i, Lai−1
is injective if and only if Lai is injective. Therefore Lr is injective if and only if

Ls is injective. Since L1 is injective while L0 is not, we conclude that (0, 1) 6∈ Cg(0, 0′). But
since Cg(0, 1) = µ, this forces 0 = 0′. Claim 2.5 is proved.

Claim 2.7 If u ∈ S − {1}, then Ru(0) = Ru(1).

If Ru(0) 6= Ru(1), then {Ru(0), Ru(1)} is a nontrivial µ-class, which must be M according
to Claim 2.5. Also, since Ru is an endomorphism, Ru(0) < Ru(1) in the ∧-order. Hence
Ru(1) = 1 ∧ u = 1. But now L1(u) = 1 ∧ u = 1 = L1(1). Since L1 is injective we conclude
that u = 1.

Claim 2.8 If u, v ∈ S and u ∧ v = 1, then u = v = 1.

We know that L1(x) is injective and L1(1) = 1∧1 = 1, therefore L1(v) = 1∧v = 1 = L1(1)
implies v = 1. Similarly, R1(u) = u ∧ 1 = 1 = R1(1) implies u = 1. Therefore we only need
to prove that u ∧ v = 1 is impossible if u 6= 1 6= v. Assume otherwise. By Claim 2.7, the
assumption that u 6= 1 6= v implies that 1 ∧ u = Ru(1) = Ru(0) = 0 ∧ u, and similarly
1 ∧ v = Rv(1) = Rv(0) = 0 ∧ v. Thus if u ∧ v = 1 and u 6= 1 6= v we get

1 = 1 ∧ 1
= (1 ∧ 1) ∧ (u ∧ v)
= (1 ∧ u) ∧ (1 ∧ v)
= (0 ∧ u) ∧ (0 ∧ v)
= (0 ∧ 0) ∧ (u ∧ v)
= 0 ∧ 1 = 0,

which is false. This proves Claim 2.8.

Claim 2.9 The term x ∧ y interprets as a semilattice operation on S.

We know S |= x∧x = x, so we only need to verify that ∧ is commutative and associative.
To prove that S |= x ∧ y = y ∧ x, assume that for some u, v ∈ S we have u ∧ v 6= v ∧ u.
Since (0, 1) ∈ Cg(u ∧ v, v ∧ u) there must be a unary polynomial p ∈ Pol(S) such that
1 = p(u∧v) 6= p(v∧u), or the same with u and v interchanged. The situations are identical,
so assume that 1 = p(u ∧ v) = p(u) ∧ p(v). By Claim 2.8 we conclude that p(u) = p(v) = 1.
But now 1 6= p(v ∧ u) = p(v) ∧ p(u) = 1 ∧ 1, which is false. Thus S |= x ∧ y = y ∧ x. The
associative law is proved with the same kind of argument. 2

Now we turn our attention to subdirectly irreducible modes of quasi-affine type. Recall
that in the definition of this type there are two cases: M has a cancellative binary term or
the clone of M is generated by x+y+z (mod 2). In order to treat these cases with the same
arguments, choose and fix 0 ∈M . If we are in the case that the clone of M is generated by
x+ y + z (mod 2), then define x ∗ y = x+ y + 0 (mod 2). In the other case, let x ∗ y be any
cancellative binary term of M. In either case, x ∗ y is a polynomial operation of S, and of
M, which has the following properties.

• x ∗ y commutes with itself and with all term operations of S.
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• x ∗ y is cancellative on M.

• either M |= x ∗ x = x or M |= x ∗ y = y ∗ x.

• 0 ∗ 0 = 0.

LEMMA 2.10 Assume that S is of quasi-affine type. Then the monolith µ of S is an
abelian congruence which is not strongly abelian.

Proof: We refer the reader to Chapter 3 of [1] for the definition and properties of abelian
and strongly abelian congruences.

Consider all matrices of the form
[
p q
r s

]
=

[
t(a,u) t(a,v)
t(b,u) t(b,v)

]

where t is a term and (a, b), (ui, vi) ∈ µ. If there is any such matrix with r 6= s, then there
is a unary polynomial f ∈ Pol(S) such that

[
p′ q′

r′ s′

]
=

[
fp fq
fr fs

]
,

r′ 6= s′ and p′ ≡µ q′ ≡µ r′ ≡µ s′ = 0 ∈M . Thus, if there is such a matrix with p = q and
r 6= s, then there is one with all entries in M .

Assume that there is such a matrix with p = q and r 6= s and all entries in M . Then
since x ∗ y commutes with t we have

(p ∗ q) ∗ (r ∗ s) = t((a ∗ a) ∗ (b ∗ b), (u ∗ v) ∗ (u ∗ v))
= t((a ∗ a) ∗ (b ∗ b), (u ∗ u) ∗ (v ∗ v))
= (p ∗ p) ∗ (s ∗ s).

But p = q, so (p ∗ p) ∗ (r ∗ s) = (p ∗ p) ∗ (s ∗ s). Since p ∗ p, r ∗ s, s ∗ s ∈ M and x ∗ y
is left cancellative on M we get r ∗ s = s ∗ s. Using right cancellativity we get r = s, a
contradiction. Thus there is no matrix with p = q and r 6= s. This is exactly what it means
to be abelian.

To see that µ is not strongly abelian, it suffices to show that M is not a strongly abelian
algebra. Any binary polynomial x∗y of a strongly abelian algebra which satisfies x∗y = y∗x
must be constant. Any binary polynomial of a strongly abelian algebra which satisfies
x∗x = x also satisfies (x∗y)∗ (u∗v) = x∗v. M has a cancellative polynomial satisfying one
of these conditions. Both possibilities lead to the conclusion that M has only one element,
which is false. Thus µ is not strongly abelian. 2

We retain all our previous notation: S, µ,M, 0, ∗, etc, and add the following notation and
terminology. If α is a congruence on an algebra, then the centralizer of α, denoted (0 : α),
is the largest congruence β such that [β, α] = 0. The centralizer of the total congruence is
called the center, and is denoted ζ. Let Q ⊆ S be the set of all elements u ∈ S for which
the mappings Lu : S → S : x 7→ u ∗ x and Ru : S → S : x 7→ x ∗ u are injective. Since x ∗ y
is cancellative on M , it follows that M ⊆ Q. We say that a congruence θ of S is contained
in a subset X ⊆ S provided that X is a union of θ-classes.
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LEMMA 2.11 Let S be a subdirectly irreducible mode of quasi-affine type. Then (0 : µ) =
ζ, and this congruence is the largest congruence contained in Q.

Proof: Choose (u, v) ∈ (0 : µ) with u ∈ Q. Since (u, v) ∈ (0 : µ),

M2 ⊆ ker(Lu)⇔M2 ⊆ ker(Lv) & M2 ⊆ ker(Ru)⇔M2 ⊆ ker(Rv).

But for any unary polynomial p of S, p is injective if and only if M 2 6⊆ ker(p). Since u ∈ Q we
have that Lu and Ru are injective. Consequently Lv and Rv are injective, too, proving that
v ∈ Q. Therefore (0 : µ) is contained in Q. If λ denotes the largest congruence contained
in Q, then this proves that (0 : µ) ≤ λ. In addition to this, we have ζ := (0 : 1) ≤ (0 : µ)
simply because µ ≤ 1. Thus, ζ ≤ (0 : µ) ≤ λ. Now we show that λ ≤ ζ.

Assume instead that λ 6≤ ζ, so there is some (a, b) ∈ λ − ζ. Since (a, b) 6∈ ζ, there is a
matrix [

p q
r s

]
=

[
t(a,u) t(a,v)
t(b,u) t(b,v)

]

where t is a term, ui, vi ∈ S, and p = q while r 6= s (or the same condition with a and b
switched). Since S is subdirectly irreducible with 0 ∈ M , a µ-class, we may assume that
s = 0 (as we argued in the proof of Lemma 2.10). But now r ≡λ p = q ≡λ s = 0 ∈M ⊆ Q.
Since λ is contained in Q and 0 ∈ Q, we get that the congruence class 0/λ, which contains
p, q, r and s, is a subset of Q. Moreover, since 0 ∗ 0 = 0, the congruence class 0/λ is
closed under ∗. Therefore p ∗ p, r ∗ s, s ∗ s ∈ 0/λ ⊆ Q. Now we can copy the argument of
Lemma 2.10: If we have any matrix of the above form where p = q and r 6= s, then we get
(p ∗ p) ∗ (r ∗ s) = (p ∗ q) ∗ (r ∗ s) = (p ∗ p) ∗ (s ∗ s). Since p ∗ p ∈ Q, we can cancel it from
the left and obtain r ∗ s = s ∗ s. Since s = 0 ∈ Q we can cancel it from the right and obtain
r = s, a contradiction. This contradicts the assumption that λ 6≤ ζ, so the proof is finished.
2

THEOREM 2.12 If S is a subdirectly irreducible mode of quasi-affine type, then the center
ζ of S is nonzero, and all ζ-classes support quasi-affine subalgebras of S.

Proof: Lemma 2.10 shows that (0 : µ) > 0, and Lemma 2.11 proves that ζ = (0 : µ).
Thus, the center is nonzero.

In the proof of Lemma 2.11 we saw that the ζ-class Z = 0/ζ is entirely contained in Q.
This means that Z is closed under ∗ and that x∗y is a cancellative binary polynomial of the
(abelian) subalgebra Z which commutes with itself and with all terms of Z. The main result
of [3] proves that Z is quasi-affine in these circumstances. Now suppose that Y is any other
ζ-class. If u 6= v ∈ Y , then there is a polynomial puv ∈ Pol(S) such that 0 = puv(u) 6= puv(v)
or the same with u and v switched. Since puv preserves congruences, and maps u or v to
0 ∈ Z, it follows that puv(Y ) ⊆ Z. Therefore puv : Y → Z is a homomorphism from Y to
Z which separates u and v. The product of all such puv, u 6= v ∈ Y , is an embedding of Y
into a quasi-affine algebra. 2

We prove nothing more about the structure of subdirectly irreducible modes. However, in
[6] more is shown for finite subdirectly irreducible modes, which suggests possible directions
to explore. For example, it is shown that Q, as defined above, is a single ζ-class when S
is finite. Moreover, in the finite case, if S is of quasi-affine type then S/ζ has a semilattice
term. We have no proof or counterexample for these statements in the infinite case.
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3 Applications

The monolith of a subdirectly irreducible mode of semilattice type is nonabelian. The
monolith of a subdirectly irreducible mode of quasi-affine type is abelian but not strongly
abelian. We have proved nothing about subdirectly irreducible modes of set type, but in [6]
it is shown that the monolith of a finite subdirectly irreducible mode of set type is strongly
abelian. Thus, the classification of subdirectly irreducible modes into three types reflects
commutator properties.

An algebra is said to be (congruence) neutral if it satisfies the commutator congruence
equation [α, β] = α∧β. We will call an algebra A hereditarily neutral if every subalgebra
of A is neutral. We will call D a divisor of A if D is a homomorphic image of a subalgebra
of A. It is easy to show that an idempotent algebra A is hereditarily neutral if and only if it
has no nontrivial abelian divisor. From this, and our earlier results, it is easy to deduce that
a subdirectly irreducible mode is hereditarily neutral if and only if it has a semilattice term.
For if S is subdirectly irreducible mode of set type or quasi-affine type which has monolith
µ, and M is a nontrivial µ-class, then the algebra M is a nontrivial abelian divisor of S.
Thus, if S is hereditarily neutral it has semilattice type, and therefore a semilattice term.

Homomorphic images of hereditarily neutral algebras are again hereditarily neutral, so if
A is a hereditarily neutral mode then every subdirectly irreducible homomorphic image of
A has a semilattice term. But this does not imply that A itself has a semilattice term!

Example 3.1 We are going to define a kind of mode which, within this example, we will
call “chain modes”.

Let C be an ordered chain. Let ∨ and ∧ denote the join and meet operations of this
chain. For each c ∈ C define a binary operation on C by c(x, y) := x ∧ (y ∨ c). It is readily
checked that the algebra C = 〈C; c(x, y), (c ∈ C)〉 is a mode. We call any mode that is term
equivalent to a mode constructed in this way a chain mode.

If c0 ∈ C is a minimal element, then c0(x, y) is a semilattice term of C. Conversely, if C
has no minimal element and t is any term of C, then t is composed from finitely many ci(x, y),
ci ∈ {c1, . . . , cn}. Let B be the subalgebra of C with universe {b ∈ C | b ≤ ci for all i}.
Then B is nontrivial and B |= ci(x, y) = x for i = 1, . . . , n. Hence t is a projection operation
on B. In particular, t cannot be a semilattice term of C. Thus, C has a semilattice term if
and only if C has a minimal element.

The observation of the previous paragraph shows that every finitely generated subalgebra
of a chain mode has a semilattice term. This implies that if C is a chain mode, then every
algebra in HSPfin(C) is neutral. In particular, chain modes are hereditarily neutral. But if
the underlying chain has no minimal element, then C does not have a semilattice term.

In contrast to this example, we will see that any hereditarily neutral mode of finite
signature has a semilattice term.

LEMMA 3.2 Let A be a mode of finite signature. Then A has a binary term x ∧ y which
interprets as a semilattice operation in each 2-element nonabelian divisor of A.

Proof: Since A has finite signature, there are only finitely many 2-element nonabelian
divisors of A up to isomorphism: D1, . . . ,Dn. Each such divisor is simple, hence subdi-
rectly irreducible, and has the property that the monolith (which is the total congruence) is
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nonabelian. Therefore, it cannot be that any Di is of quasi-affine type. If some Di was of
set type, then Di would be term equivalent to a set. This cannot happen, because sets are
abelian. Thus each Di has semilattice type, and this implies that each Di has a semilattice
term.

Now suppose that mi(x, y) is a term in the language of A which interprets as a semilattice
operation in Di. We describe a way to construct a single term x ∧ y which interprets as a
semilattice operation in every Di. First, given two binary terms b(x, y) and c(x, y), define

(b � c)(x, y) := b(c(x, y), c(y, x)).

Notice that if b(x, y) interprets as a semilattice operation on B ∈ V(A) and c(x, y) interprets
as a semilattice operation on C ∈ V(A), then

C |= (b � c)(x, y) = b(c(x, y), c(y, x)) = b(c(x, y), c(x, y)) = c(x, y),

and

B |= (b � c)(x, y) = b(c(x, y), c(y, x)) = c(b(x, y), b(y, x)) = c(b(x, y), b(x, y)) = b(x, y).

Thus (b�c)(x, y) interprets as a semilattice operation on both B and C. From this observation
it is clear that

x ∧ y := (m1 � (m2 � · · · (mn−1 �mn) · · ·))(x, y)

interprets as a semilattice operation on each Di. 2

THEOREM 3.3 If A is a hereditarily neutral mode of finite signature, then A has a
semilattice term.

Proof: Let {Si | i ∈ I} be a representative set of subdirectly irreducible homomorphic
images of A. Each Si is hereditarily neutral, and therefore is of semilattice type. For each i,
let Mi be the subalgebra if Si which is supported by the unique nontrivial congruence class
of the monolith. Each Mi is a 2-element nonabelian divisor of A, so Lemma 3.2 guarantees
the existence of a term x ∧ y which interprets as a semilattice operation in each Mi. The
proof of Theorem 2.3 shows that any essentially binary term which is noncancellative on Mi

is a semilattice term of Si; therefore x ∧ y is a semilattice term for each Si. Since A is a
subdirect product of the Si, it follows that x ∧ y is a semilattice term for A. 2

COROLLARY 3.4 For a variety of modes, V, the following conditions are equivalent.

(1) V has no abelian algebras.

(2) All algebras in V are neutral.

(3) V has a semilattice term.
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Proof: Since V is idempotent, V has no abelian algebras if and only if every member
is hereditarily neutral, which holds if and only if every member is neutral since V is closed
under the formation of subalgebras. Therefore (1)⇐⇒ (2) for any idempotent variety. The
implication (3) =⇒ (2) follows from the fact that semilattices are neutral, and expansions of
neutral algebras are neutral.

To finish, we assume (2) and derive (3). Assume that V is a neutral variety of modes.
Neutrality is equivalent to a Mal’cev condition, as is proved in Corollary 4.7 of [7], so V has
a finite sequence of terms t1, . . . , tk which witness that V is congruence neutral. Let U be
the variety generated by the reducts of V-algebras to the operations t1, . . . , tk. Then U is
a variety of modes of finite signature, which satisfies the Mal’cev condition for neutrality.
It follows from Theorem 3.3 that each member of U has a semilattice term. In particular,
the reduct of FV(3) to t1, . . . , tk has a semilattice term. This implies that FV(3) has a
semilattice term, x ∧ y, constructible from t1, . . . , tk. Since semilattices have an equational
basis involving only three variables, and the term x ∧ y will satisfy these laws throughout V
if it is a semilattice term for FV(3), it follws that x ∧ y is a semilattice term for V. 2

Next we turn our attention to the characterization of varieties of modes which have a
Mal’cev term. We require the following preparatory lemma. If A is an algebra, r = s is an
equation in the language of A and U ⊆ A, then we say that r = s holds on U provided
that r(x1, . . . , xn) = s(x1, . . . , xn) whenever all xi ∈ U .

LEMMA 3.5 Let A be a mode and U ⊆ A be a subset. If r = s holds on U , then r = s
holds on the subalgebra generated by U .

Proof: Let B be the subalgebra generated by U . The assumption that r = s holds on
U means that the functions r, s : Un → A agree. For 0 ≤ i ≤ n− 1, if

r, s : Bi × Un−i → A

agree, then for b ∈ Bi and u ∈ Un−i−1 the equalizer of the endomorphisms

r(b, x,u), s(b, x,u) : A→ A

contains U , and therefore it contains B. Hence if r and s agree on B i × Un−i, then r and s
agree on Bi+1 × Un−i−1. By induction, r = s holds on B. 2

THEOREM 3.6 A variety of modes has a Mal’cev term if and only if it contains no algebra
term equivalent to a 2-element set or a 2-element semilattice.

Proof: A variety with a Mal’cev term cannot contain an algebra term equivalent to a
2-element set or 2-element semilattice, since these algebras do not have Mal’cev terms.

Assume that V is a variety of modes which contains no 2-element set or 2-element semi-
lattice. This implies that there is no clone homomorphism from the clone of V onto the clone
of the 2-element set or onto the clone of the 2-element semilattice. In particular, there is no
clone homomorphism from the clone of V into the clone of the 2-element semilattice. Since
the variety of semilattices is locally finite, a compactness argument proves that some finitely
generated subclone of the clone of V has no homomorphism into the clone of the 2-element
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semilattice. This statement is equivalent to the statement that V satisfies an idempotent
Mal’cev condition which fails in the variety of semilattices.

Now we are in a position to invoke Theorem 4.10 of [7], which states that in any variety
satisfying an idempotent Mal’cev condition which fails in the variety of semilattices it is
the case that abelian algebras are affine. Let A be the subvariety generated by the abelian
algebras of V. The free algebras in A are abelian, and so affine, and this implies that A is
an affine variety. Let m(x, y, z) be a Mal’cev term for A. To finish the proof of this theorem
we will prove that m(x, y, z) is a Mal’cev term for V, and that in fact A = V.

Choose any S ∈ V which is subdirectly irreducible with monolith µ, and let M be a
nontrivial µ-class. The subalgebra M supported by M cannot be term equivalent to a set
or to a 2-element semilattice, because we have assumed that V contains no such algebras.
It follows that every subdirectly irreducible S ∈ V is of quasi-affine type. Thus each algebra
M supported by a monolith class is abelian, hence belongs to A, and this implies that
M |= m(x, y, y) = x = m(y, y, x) for any such M. We will use Lemma 3.5 to lift these
equations from the monolith of a subdirectly irreducible algebra to the whole algebra.

If there is some algebra in V for which m(x, y, z) is not a Mal’cev operation, then there
is an algebra A ∈ V generated by a 2-element set {a, b} such that at least one of the
following inequalities holds: m(a, a, b) 6= b,m(b, b, a) 6= a,m(b, a, a) 6= b, or m(a, b, b) 6= a.
Factor A by a congruence θ which is maximal for the property that at least one of these
four inequalities remains an inequality in the quotient S = A/θ. Then S is subdirectly
irreducible and generated by ā = a/θ and b̄ = b/θ. The maximality of θ implies that all four
inequalities become equalities in S/µ, where µ denotes the monolith S. That is, Mal’cev’s
equations m(x, y, y) = x = m(y, y, x) hold on U = {ā/µ, b̄/µ} ⊆ S/µ. But U generates
S/µ. In this situation Lemma 3.5 proves that S/µ |= m(x, y, y) = x = m(y, y, x), and so
S |= m(x, y, y) ≡µ x ≡µ m(y, y, x). Therefore, m(x, y, z) is a Mal’cev operation modulo
µ, and also is a Mal’cev operation on µ-classes by the arguments in the fourth paragraph of
this proof.

Let m′(x, y, z) = m(x,m(x, y, y), m(x, y, z)). Clearly, from this definition, the equation
m = m′ holds in any algebra where m(x, y, z) is a Mal’cev operation. However, in addition
we have

m′(ā, b̄, b̄) = m(ā, m(ā, b̄, b̄), m(ā, b̄, b̄)) = ā

since ā ≡µ m(ā, b̄, b̄) and m is a Mal’cev operation on µ-classes. Similarly m′(b̄, ā, ā) = b̄.
This shows that m′(x, y, y) = x holds on V = {ā, b̄} ⊆ S. Since V generates S, this equation
holds on S.

Let M(x, y, z) = m′(m′(x, y, z), m′(y, y, z), z). The same arguments as in the last para-
graph show that M = m′ in any algebra where m′(x, y, z) is a Mal’cev operation, and that
M(y, y, x) = x holds on V , and therefore on S. But we also have

S |= M(x, y, y) = m′(m′(x, y, y), m′(y, y, y), y) = m′(x, y, y) = x.

This proves that M(x, y, z) is a Mal’cev operation on S.
Since S is a mode, the Mal’cev term operation M(x, y, z) commutes with all term op-

erations of S. This implies that S is affine, and so is a member of A. But now we have a
contradiction: we have shown that S ∈ A, that m(x, y, z) is a Mal’cev term for all algebras
in A, but that m(x, y, z) is not a Mal’cev term for S. This contradiction arose from the
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assumption that m(x, y, z) is not Mal’cev on some algebra in V, so this assumption was
false. 2
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