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Abstract. We prove that Zpn and Zp[t]/(t
n) are polynomially

equivalent if and only if n ≤ 2 or pn = 8. For the proof, employing
Bernoulli numbers, we explicitly provide the polynomials which
compute the carry-on part for the addition and multiplication in
base p. As a corollary, we characterize finite rings of p2 elements
up to polynomial equivalence.

1. Introduction

One of the most basic objectives of algebra is to characterize different
algebraic structures up to certain equivalences. Very often, character-
ization up to isomorphism is considered. In this paper, we investigate
certain finite rings, and characterize them up to polynomial equiva-
lence.

A polynomial function over an algebra is a function built up from
projections, constant functions and basic operations using composition.
Two algebras are polynomially equivalent if they are defined on the same
domain and have the same polynomial functions [5]. It is easy to see
that two algebras are polynomially equivalent if and only if the basic
operations of one algebra can be expressed as polynomials of the other
algebra, and vice versa.

The question to characterize algebras up to polynomial equivalence
arises quite naturally. From a Computer Science perspective, polyno-
mials capture the functions computable by the algebra, and polynomial
equivalent algebras can compute exactly the same functions. In many
cases though, different algebras are not defined on the same domain,
but can still be polynomial equivalent if the elements are identified via
some bijection ϕ. Therefore in the paper we use the following definition
of polynomial equivalence.
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Definition 1. Let R1 = (R1,+1,×1) and R2 = (R2,+2,×2) be two
rings, and let ϕ : R1 → R2 be a bijection. We say that the rings
R1 and R2 are polynomially equivalent via ϕ if there exist polynomial
functions f1, g1 over R1 and polynomial functions f2, g2 over R2 such
that for arbitrary x, y ∈ R1 we have

ϕ (x+1 y) = f2 (ϕ (x) , ϕ (y)) ,

ϕ (x×1 y) = g2 (ϕ (x) , ϕ (y)) ,

ϕ (f1 (x, y)) = ϕ (x) +2 ϕ (y) ,

ϕ (g1 (x, y)) = ϕ (x)×2 ϕ (y) .

In particular, R1

ϕ
' (R2, f2, g2) and (R1, f1, g1)

ϕ
' R2. One can

extend this notion to arbitrary algebras in a natural way, but we skip
the general definition as the scope of the paper is limited to rings.
Note, however, that if the elements of the two rings are identified via
the bijection ϕ, then our definition for polynomial equivalence coincides
with the usual one.

One of the most interesting cases of nonisomorphic algebras that
are polynomially equivalent comes from group theory. Any nonabelian
simple group is polynomially complete by [9], thus its polynomial equiv-
alence type is determined by its order. There are nonisomorphic non-
abelian simple groups of the same order, e.g. both PSL(4, 2) and
PSL(3, 4) have 20160 elements [11]. Similarly, any two simple uni-
tal rings of the same order are polynomially equivalent [8] but not
necessarily isomorphic. In particular, the full matrix ring Mm(q) is
isomorphic to Mn(r) if and only if m = n and q = r, but they are
polynomially equivalent if and only if qm2

= rn
2 .

In our paper we consider the rings Zpn and Zp[t]/(t
n) for positive

integers n and primes p. These rings are isomorphic only for n = 1,
but always have the same number of elements, same number of unary
polynomial functions [4] and the same ideal structure. Their elements
even have a natural correspondence: for P = { 0, 1, . . . , p− 1 }, every
element of Zpn can be uniquely written in the form of

∑n−1
i=0 aip

i (ai ∈
P ), and every element of Zp[t]/(t

n) can be uniquely written in the
form of

∑n−1
i=0 ait

i (ai ∈ P ). We determine when these two rings are
polynomially equivalent via some bijection.

Theorem 2. Let p be a positive prime and n a positive integer. Let
P = { 0, 1, . . . , p− 1 }. The two rings Zpn and Zp[t]/(t

n) are
(1) polynomially equivalent via ϕ : Zpn → Zp[t]/(t

n),
∑n−1

i=0 aip
i 7→∑n−1

i=0 ait
i (ai ∈ P ) for n ≤ 2 and for pn = 8;

(2) not polynomially equivalent via any bijection Zpn → Zp[t]/(t
n)

if n ≥ 3, except for pn = 8.

The proof of Theorem 2 consists of two main parts. We prove item (1)
in Section 3 and item (2) in Section 4. For proving item (1) we give the
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polynomials for f1, g1, f2, g2. The main differences between the addition
and multiplication of the two rings Zp2 and Zp[t]/(t

2) are essentially the
carry-on parts of addition and multiplication in base p. It turns out
that to make f1, g1, f2, g2 explicit, one has to determine the polyno-
mials for these carry-on functions. Note that the existence of such
polynomials follows from the fact that Zp is polynomially complete,
hence every function (and in particular, the carry-on functions) can be
represented as polynomials (see e.g. [10]). Moreover, the polynomial
equivalence of Zp2 and Zp[t]/(t

2) follows from the results of [1, 6], in
particular the existence of f1 and f2 is proved in [1, Lemma 22]. We,
in fact, provide the polynomials expressing the carry-on part of the
addition and multiplication in base p, therefore making the polynomial
equivalence of these rings explicit. We introduce these polynomials
employing Bernoulli numbers in Sections 2.4 and 2.5, then prove the
addition part of item (1) in Section 3.1 and the multiplication part of
item (1) in Section 3.2.

All the required notions and lemmas for the proof are summarized in
Section 2. Finally, in Section 5 we apply Theorem 2 to characterize the
rings containing p2 elements up to polynomial equivalence and prove
the following.

Corollary 3. Let us use the notation of [3] for rings having p2 ele-
ments, that is let A = Zp2, B = pZp3, C = p2Zp4, D = Zp ⊕ Zp, E
and F be the two noncommutative p2-element rings, G = Zp[t]/(t

2),
H = Zp ⊕ pZp2, I = tZp[t]/(t

3), J = pZp2 ⊕ pZp2, and K be the p2-
element field, where ⊕ denotes the direct sum of rings. Then the rings
A, E, F , G are polynomially equivalent to each other, B is polyno-
mially equivalent to I for p = 2, and no other two rings having p2

elements are polynomially equivalent.

Finally, we note that some of our results follow from the known
theory of polynomially rich algebras (see e.g. [6]). Polynomially rich
algebras are defined for arbitrary algebras, not only for rings. Never-
theless, their theory goes beyond the scope of this paper, therefore we
translate the known results for rings.

That is, a ringR is called polynomially rich if every map f : Rn → R
preserving ideals and the type of every single factor I/J for I,J CR
is a polynomial over R. In particular, if two polynomially rich rings
have the same ideal structure and have the same single factors I/J for
ideals I,J , then they are polynomially equivalent. Theorem 24 of [6]
shows that a ring R having a unique minimal ideal I is polynomially
rich if and only if conditions (SC1) and (GRp) hold for this ring. Now,
(SC1) holds for R if and only if for every ideal J 	 I the ideal IJ is
nonzero (that is, it contains I).

It is much harder to translate the condition (GFp) for rings, but
from Lemma 4 of [1] it follows that if for such a ring I2 = 0 and there
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exists a nonconstant, nonidentity unary, idempotent polynomial (i.e. a
polynomial p for which p ◦ p = p), then the ring is polynomially rich.

Now, the ideal structure of the rings A, E, F and G are the same:
there exists a unique ideal squaring to 0, the factor by this ideal is
isomorphic to the p-element field. It is clear that (SC1) holds for
all four rings, and an easy calculation shows that x 7→ xp2 is a non-
constant, nonidentity idempotent polynomial for all four rings, hence
(GFp) holds, as well. Thus the polynomial functions of all four rings
are the ones preserving their (same) ideal structures, and hence they
are all polynomially equivalent. In Section 5 we provide an elementary
proof of Corollary 3.

2. Preliminaries

2.1. Notation. Throughout the paper, p always denotes a positive
prime, n a positive integer, and m a nonnegative integer. We use i and
j for running indices, k for indexing Bernoulli numbers. We use ≡p for
indicating that the two sides are congruent modulo p. By P we denote
the set { 0, 1, . . . , p− 1 }.

For ringsR1 andR2, a function fromRi will be denoted by using the
index i ∈ { 1, 2 }. We denote the addition of Ri by +i, the subtraction
of Ri by −i, and the multiplication of Ri by ×i (i ∈ { 1, 2 }). For
p > 2 we write +p and ×p for the modulo p addition and multiplication
over P . Finally, we use the usual + and · for the usual addition and
multiplication over the integers, unless we explicitly indicate otherwise.

2.2. Polynomially equivalent rings via a bijection. Let R1 and
R2 be two finite rings having the same number of elements. Let
ϕ : R1 → R2 be a bijection and assume R1 and R2 are polynomi-
ally equivalent via ϕ. Conjugating every polynomial function over R2

by adding ϕ (01) to them, we can assume that ϕ (01) = 02.

Lemma 4. Let R1 and R2 be finite rings, ϕ : R1 → R2 a bijection.
Assume R1 and R2 are polynomially equivalent via ϕ. Then there exists
a bijection ϕ′ : R1 → R2 such that ϕ′ (01) = 02, and R1 and R2 are
polynomially equivalent via ϕ′. Moreover, if I1CR1, then ϕ′ (I1)CR2.

Proof. Let h2 be an arbitrary invertible unary polynomial over R2

such that h2 (02) = ϕ (01). Such a polynomial exists, e.g. h2(x) =
x +2 ϕ (01) suffices. Denote the inverse polynomial of h2 by h−12 .
Let h1 : R1 → R1 be the corresponding polynomial over R1, that is
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ϕ (h1 (x)) = h2 (ϕ (x)). Let h−11 denote the inverse of h1. Then for

ϕ′ : R1 → R2, x 7→ h−12 (ϕ (x)) ,

f ′1 : R1 ×R1 → R1, (x, y) 7→ h1

(
f1
(
h−11 (x), h−11 (y)

))
,

g′1 : R1 ×R1 → R1, (x, y) 7→ h1

(
g1
(
h−11 (x), h−11 (y)

))
,

f ′2 : R2 ×R2 → R2, (x, y) 7→ h−12 (f2 (h2(x), h2(y))) ,

g′2 : R2 ×R2 → R2, (x, y) 7→ h−12 (g2 (h2(x), h2(y))) ,

the rings R1 and R2 are polynomially equivalent via ϕ′, where f ′1, g
′
1

correspond to +2 and ×2, and f ′2, g
′
2 correspond to +1 and ×1, moreover

ϕ′ (01) = 02.
If I1CR1 is an ideal, then the congruence defined by I1 is preserved

by polynomials of R1, in particular by f ′1 and g′1. Therefore the ϕ′-
image of this congruence is preserved by +2 and ×2, and thus is a
congruence of R2. As every congruence of a ring is defined by an ideal
and ϕ′ (I1) 3 ϕ′ (01) = 02, ϕ′ (I1) must be an ideal of R2. �

Note that a similar proof shows that for general algebras the ϕ-image
of a coset of a congruence has to be a coset of a congruence.

2.3. Bernoulli Numbers. Bernoulli numbers are defined by the re-
currence formula

m∑
k=0

(
m+ 1

k

)
Bk = 0

for m ≥ 1, and B0 = 1 [7, Chapter 15]. With this definition we have
B1 = −1/2, and Bk = 0 for every other odd k.

A basic property of Bernoulli numbers [7, Chapter 15, Theorem 1]
is that for all m ≥ 0, y ≥ 1 integers, we have

1

m+ 1

m∑
k=0

(−1)k
(
m+ 1

k

)
Bky

m+1−k =

y∑
k=1

km.(1)

For 2 | k Clausen [2] and Von Staudt [12] proved the following on the
denominators of the Bernoulli numbers:

Bk +
∑

q prime
(q−1)|k

1

q
∈ Z.(2)

In particular, B0 = 1 is an integer, and if p − 1 > k ≥ 1, then p
does not divide the denominator of Bk (in its simplified form). Thus
Bk for p − 1 > k can be calculated modulo p. Furthermore we use
a consequence of Voronoi’s Congruence [7, Proposition 15.2.3], which
relates the numerator and denominator of a Bernoulli number modulo
an integer. Let p ≥ 3 be a prime and x an integer not divisible by p.



6 G. GRASEGGER, G. HORVÁTH, AND K. A. KEARNES

For positive even k < p− 1 one can compute Bk/k modulo p, and then

Bk

k
(xk − 1) ≡p x

k−1
p−1∑
j=1

jk−1
⌊
jx

p

⌋
.(3)

Finally, for an odd prime p and for a ∈ { 1, . . . , p− 1 }, after evaluating
the sum of the corresponding geometric series, one has

p−1∑
i=1

ai ≡p

{
0, if a 6= 1,

−1, if a = 1,
(4)

p−3∑
k=2
2|k

ak−1 ≡p

{
− 1

a
, if a2 6≡p 1,

− 3
2a
, if a2 ≡p 1,

(5)

where the second sum runs only on the even indices for a prime p > 3.

2.4. Carry-on for addition modulo p.

Lemma 5. Let p be an odd prime, and let P = { 0, 1, . . . , p− 1 }. Let
a : P × P → P be the carry-on for the modulo p addition, that is

a(x, y) =

{
0, if x+ y < p,

1, if x+ y ≥ p.

Let A(x, y) be defined by

A(x, y) =

p−1∑
i=1

p−i−1∑
k=0

1

p− i
(−1)k+i+1Bk

(
p− i

k

)
xiyp−i−k,

where every sum and multiplication is considered modulo p. Then
a(x, y) = A(x, y) for arbitrary x, y ∈ P .

Proof. First, we prove that A is well defined. Now, Bk appears in the
formula only for k < p− 1, and thus can be calculated modulo p. The
fraction 1/(p − i) can be calculated modulo p, as well. Hence, A is a
well defined polynomial over Zp.

If y = 0, then A(x, y) = 0 = a(x, y). Otherwise, y ∈ { 1, . . . , p− 1 },
and

A(x, y) ≡p

p−1∑
i=1

xi 1

p− i

p−i−1∑
k=0

(−1)k+i+1Bk

(
p− i

k

)
yp−i−k

(we apply (1) with m = p− i− 1)

=

p−1∑
i=1

(−1)i+1xi

y∑
k=1

kp−i−1



POLYNOMIAL EQUIVALENCE OF FINITE RINGS 7

(for k ∈ { 1, . . . , p− 1 } we have kp−1 ≡p 1)

≡p

y∑
k=1

p−1∑
i=1

(−1)i+1xik−i ≡p −
y∑

k=1

p−1∑
i=1

(
−x

k

)i
.

By (4), we have
p−1∑
i=1

(
−x

k

)i
≡p

{
−1, if k ≡p −x,
0, if k 6≡p −x.

Now, there exists at most one k ∈ { 1, . . . , y } such that k ≡p −x, and
such a k exists if and only if y ≥ p− x, that is if x+ y ≥ p. Thus,

−
y∑

k=1

p−1∑
i=1

(
−x

k

)i
≡p

{
−
∑y

k=1 0 = 0, if x+ y < p,

1, if x+ y ≥ p.

Therefore, A(x, y) = a(x, y) for arbitrary x, y ∈ P . �

2.5. Carry-on for multiplication modulo p.

Lemma 6. Let p be an odd prime, and let P = { 0, 1, . . . , p− 1 }. Let
m : P ×P → P be the carry-on for the modulo p multiplication, that is

m(x, y) =

⌊
xy

p

⌋
.

Let M(x, y) be defined by

M(x, y) =

p−2∑
k=1

Bk

k

(
x− xp−k) (y − yp−k

)
,

where every sum and multiplication is considered modulo p. Then
m(x, y) = M(x, y) for arbitrary x, y ∈ P .

Proof. First, we prove that M is well defined. Now, Bk appears in the
formula only for k < p− 1, and thus can be calculated modulo p. The
fraction 1/k can be calculated modulo p, as well. Hence, M is a well
defined polynomial over Zp.

For x = 0, or y ∈ { 0, 1 } the equation M(x, y) = m(x, y) is clear.
Otherwise, xp−1 = 1, yp−1 = 1, and the term for the index k = 1
in M(x, y) is B1/1 · (x− xp−1) · (y − yp−1) = −(x − 1)(y − 1)/2. For
y = p− 1 ≡p −1 and for even k we have y − yp−k ≡p 0. Since Bk = 0
for odd k ≥ 3, we have then M(x, p − 1) ≡p −(x − 1) · (−2)/2 =
x − 1 = bx(p− 1)/pc = m(x, p − 1). This finishes the proof in case
y ∈ { 0, 1, p− 1 }, and hence the case p = 3. Assume x 6= 0, y /∈
{ 0, 1, p− 1 }, p > 3. Now,

p−2∑
k=1

Bk

k

(
x− xp−k) (y − yp−k

)
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(we cut the sum for k = 1 and use that if 2 - k ≥ 3, then Bk = 0)

≡p −
(x− 1)(y − 1)

2
+

p−3∑
k=2
2|k

Bk

k

(
x− xp−k) (y − yp−k

)
(we have x ≡p x

p)

≡p −
(x− 1)(y − 1)

2
+

p−3∑
k=2
2|k

Bk

k

(
xp − xp−k) (y − yp−k

)

≡p −
(x− 1)(y − 1)

2
+

p−3∑
k=2
2|k

xp−k(y − yp−k) · Bk

k
(xk − 1)

(we apply (3) for 2 | k)

≡p −
(x− 1)(y − 1)

2
+

p−3∑
k=2
2|k

xp−k(y − yp−k) · xk−1
p−1∑
j=1

jk−1
⌊
jx

p

⌋

(we have xp−k · xk−1 = xp−1 ≡p 1, yp−k = yp−1 · y1−k ≡p y
1−k)

≡p −
(x− 1)(y − 1)

2
+

p−3∑
k=2
2|k

(y − y1−k)

p−1∑
j=1

jk−1
⌊
jx

p

⌋

= −(x− 1)(y − 1)

2
+

p−1∑
j=1

⌊
jx

p

⌋ p−3∑
k=2
2|k

(y − y1−k)jk−1.(6)

By (5), we have
p−3∑
k=2
2|k

yjk−1 = y

p−3∑
k=2
2|k

jk−1 ≡p

{
−y/j, if j 6≡p ±1,
−3y/(2j), if j ≡p ±1,

−
p−3∑
k=2
2|k

y1−kjk−1 = −
p−3∑
k=2
2|k

(
j

y

)k−1

≡p

{
y/j, if j 6≡p ±y,
3y/(2j), if j ≡p ±y,

and since y ∈ { 2, . . . , p− 2 }, we obtain

p−3∑
k=2
2|k

(
y − y1−k

)
jk−1 ≡p


−y/(2j), if ± 1 ≡p j 6≡p ±y,
+y/(2j), if ± 1 6≡p j ≡p ±y,
0, if ± 1 6≡p j 6≡p ±y.
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Now, we cut the sum in (6) into five parts: two parts for ±1 ≡p j 6≡p

±y, two parts for ±1 6≡p j ≡p ±y, and one part for j /∈ {±1,±y }:

− (x− 1)(y − 1)

2
+

p−1∑
j=1

⌊
jx

p

⌋ p−3∑
k=2
2|k

(y − y1−k)jk−1

≡p −
(x− 1)(y − 1)

2
+

⌊
x

p

⌋
· −y

2︸ ︷︷ ︸
j=1

+

⌊
(p− 1)x

p

⌋
· y
2︸ ︷︷ ︸

j=p−1

+

⌊
yx

p

⌋
· 1
2︸ ︷︷ ︸

j=y

+

⌊
(p− y)x

p

⌋
· −1
2︸ ︷︷ ︸

j=p−y

+

p−3∑
j=2
j 6=±y

⌊
jx

p

⌋
· 0

(we have bx/pc = 0, b(p− 1)x/pc = bx− x/pc = x − 1, and similarly
−b(p− y)x/pc = −bx− yx/pc = −(x− 1) + byx/pc)

≡p −
(x− 1)(y − 1)

2
+ 0 +

(x− 1)y

2

+

⌊
yx

p

⌋
· 1
2
− x− 1

2
+

⌊
yx

p

⌋
· 1
2
+ 0 =

⌊
yx

p

⌋
.

Therefore, M(x, y) = m(x, y) for arbitrary x, y ∈ P . �

3. Proof of item (1) of Theorem 2

For n = 1, the two rings are isomorphic, hence polynomially equiva-
lent. For pn = 4, by computing the operation tables, it is easy to check
that the following polynomials satisfy the requirements:

f1 (x, y) = x+ y + 2xy,

g1 (x, y) = xy,

f2 (x, y) = x+ y + txy,

g2 (x, y) = xy.

Here, we denoted the additions and the multiplications for both rings
in the usual way, because we believe that it does not cause confusion
and the formulas are more understandable this way. Furthermore, the
following polynomials satisfy the requirements for pn = 8:

f1 (x, y) = x+ y + 2xy + xy (1 + x) (1 + y) + 2xy
(
1 + x2

) (
1 + y2

)
,

g1 (x, y) = xy + x2y2 (3 + x) (3 + y) ,

f2 (x, y) = x+ y + txy + xy (1 + x) (1 + y) + txy (x+ y)2 ,

g2 (x, y) = xy + x2y2 (1 + x) (1 + y) .

The fact that these polynomials indeed satisfy the requirements can
be checked by hand or by a computer program rather easily. In the
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following, we provide some guidelines how it could be performed man-
ually. Let R1 = Z8, R2 = Z2[t]/t

3. Let P = { 0, 1 }. We identify the
elements of R1 and R2 with the elements of P × P × P via the bijec-
tions x0 + 2x1 + 4x2 7→ (x0, x1, x2) and x0 + tx1 + t2x2 7→ (x0, x1, x2)
for x0, x1, x2 ∈ P . Thus, we consider both R1 and R2 on the domain
P × P × P , i.e. R1 = (P × P × P,+1,×1), R2 = (P × P × P,+2,×2).
Note, that for this proof + and · denote the modulo 2 operations.

We detail the proof for f2 being the same function as +1. The other
three cases can be handled in a similar fashion. Now,

(x0, x1, x2) +1 (y0, y1, y2)

= (x0 + y0, x1 + y1 + a(x0, y0), x2 + y2 + b(x1, y1, a(x0, y0)),

where xi, yi ∈ P , a and b denote the binary and ternary carry-on
functions:

a(x, y) =

{
0, if x+ y < 2,

1, if x+ y ≥ 2,

b(x, y, z) =

{
0, if x+ y + z < 2,

1, if x+ y + z ≥ 2.

Now, it is not hard to see that a(x, y) = xy and b(x, y, z) = xy+(x+y)z,
yielding

(x0, x1, x2) +1 (y0, y1, y2)

= (x0 + y0, x1 + y1 + x0y0, x2 + y2 + x1y1 + (x1 + y1)x0y0).

An easy computation shows that for x = (x0, x1, x2), y = (y0, y1, y2)

f2(x, y)

= x0 + y0 + t (x1 + y1 + x0y0) + t2 (x2 + y2 + x1y1 + (x1 + y1)x0y0) ,

which corresponds to the same tuple from P ×P ×P as (x0, x1, x2) +1

(y0, y1, y2).
In the remaining of Section 3, p denotes an odd prime. LetR1 = Zp2 ,
R2 = Zp[t]/(t

2). Let P = { 0, 1, . . . , p− 1 }. We identify the elements
of R1 and R2 with the elements of P × P via the bijections x0 +
px1 7→ (x0, x1) and x0+ tx1 7→ (x0, x1) (x0, x1 ∈ P ). Thus, we consider
both R1 and R2 on the domain P × P , i.e. R1 = (P × P,+1,×1),
R2 = (P × P,+2,×2).

3.1. Addition. Now, we have (x0, x1) +1 (y0, y1) = (x0 +p y0, x1 +p

y1 +p a(x0, y0)), where

a(x0, y0) =

{
0, if x0 + y0 < p,

1, if x0 + y0 ≥ p,
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is the carry-on part of the addition in base p. Addition in R2 is the
modulo p addition in both coordinates: (x0, x1) +2 (y0, y1) = (x0 +p

y0, x1 +p y1). Thus, to express the operation +1 in R2, one needs
to find a polynomial over R2 (expressed by +2 and ×2) representing
a(x0, y0). Let f2(x, y) = x+2 y +2 t×2 A(x, y) over R2, where

A(x, y) =

p−1∑
i=1

p−i−1∑
k=0

1

p− i
(−1)k+i+1Bk

(
p− i

k

)
xiyp−i−k,

and every sum uses +2, and every multiplication uses ×2. Now, Bk

appears in the formula only for k < p− 1, and thus can be calculated
modulo p. The fraction 1/(p− i) can be calculated modulo p, as well.
Hence, f2 is a polynomial over R2. Moreover, t×2 t = 0 yields

t×2 A(x0 +2 t×2 x1, y0 +2 t×2 y1) = t×2 A(x0, y0),

and thus

f2(x0 +2 t×2 x1, y0 +2 t×2 y1) = x0 +2 y0 +2 t×2 (x1 +2 y1 +2 A(x0, y0))

over R2, that is,

f2 ((x0, x1), (y0, y1)) = (x0 +p y0, x1 +p y1 +p A(x0, y0)) .

By Lemma 5, we have A(x0, y0) = a(x0, y0), which proves that +1

is a polynomial over R2. Hence, the polynomial f2 corresponds to the
addition ofR1. Similarly, the polynomial f1(x, y) = x+1y−1p×1A(x, y)
over R1 expresses the addition of R2.

3.2. Multiplication. We continue with the multiplication in a similar
fashion. Now, (x0, x1) ×1 (y0, y1) = (x0 ×p y0, x0 ×p y1 +p x1 ×p y0 +p

m(x0, y0)), where

m(x0, y0) =

⌊
x0y0
p

⌋
is the carry-on part of the multiplication in base p. Multiplication in
R2 is similar, except there is no carry-on part: (x0, x1) ×2 (y0, y1) =
(x0 ×p y0, x0 ×p y1 +p x1 ×p y0). Thus, to express the operation ×1 in
R2, one needs to find a polynomial over R2 (expressed by +2 and ×2)
representing m(x0, y0). Let g2(x, y) = x×2 y +2 t×2 M(x, y) over R2,
where

M(x, y) =

p−2∑
k=1

Bk

k

(
x− xp−k) (y − yp−k

)
,

and every sum uses +2, and every multiplication uses ×2. Now, Bk

appears in the formula only for k < p− 1, and thus can be calculated
modulo p. The fraction 1/k can be calculated modulo p, as well. Hence,
g2 is a polynomial over R2. Moreover, t×2 t = 0 yields

t×2 M(x0 +2 t×2 x1, y0 +2 t×2 y1) = t×2 M(x0, y0),
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and thus

g2(x0 +2 t×2 x1, y0 +2 t×2 y1) =

x0 ×2 y0 +2 t×2 (x0 ×2 y1 +2 x1 ×2 y0 +2 M(x0, y0))

over R2, that is,

g2 ((x0, x1) , (y0, y1)) = (x0 ×p y0, x0 ×p y1 +p x1 ×p y0 +p M(x0, y0)) .

By Lemma 6, we have M(x0, y0) = m(x0, y0), which proves that ×1 is
a polynomial over R2. Hence, the polynomial g2 corresponds to the
multiplication of R1. Similarly, the polynomial g1(x, y) = x +1 y −1

p×1 M(x, y) over R1 expresses the multiplication of R2.

4. Proof of item (2) of Theorem 2

Let R1 = Zpn , R2 = Zp[t]/(t
n), and assume that they are poly-

nomially equivalent via ϕ : R1 → R2. By Lemma 4 we may assume
ϕ (01) = 02. Let f2 over R2 correspond to the addition in R1. Let I1 be
the unique ideal in R1 containing p2-many elements, i.e. I1 = (pn−2),
and let I2 be the unique ideal in R2 containing p2-many elements, i.e.
I2 = (tn−2). Then by Lemma 4 we have ϕ (I1) = I2. In this section
0 denotes the zero element of R2, + and · denote the addition and
multiplication of R2. Assume n ≥ 3, then I32 = (0).

Consider f2(x, y) overR2, restricted to I2. This function corresponds
to the addition over R1 restricted to I1. Since I32 = (0), for every
x, y ∈ I2 the function f2 attains the same value at (x, y) ∈ I2 × I2
as a + bx + cy + dxy + ex2 + fy2 for some a, b, c, d, e, f ∈ R2. Now,
f2(0, 0) = 0 implies a = 0, f2(x, 0) = x implies bx+ex2 = x, f2(0, y) = y
implies cy + fy2 = y, hence f ′2(x, y) = x + y + dxy attains the same
values on I2 as f2. By induction on m, it is easy to prove that for
every positive integer m we have f ′2(f

′
2(. . . f

′
2(f
′
2(x, x), x), . . . , x), x) =

mx+ d
(
m
2

)
x2, if we compose the polynomial f ′2 with itself m− 1-many

times. Consider the case m = p. For p > 2, by p |
(
p
2

)
we obtain

that f ′2(f
′
2(. . . f

′
2(f
′
2(x, x), x), . . . , x), x) is the constant 0 function over

I2, while x +1 x +1 · · · +1 x = p ×1 x is not a constant function over
I1. This contradiction proves that if p > 2, n ≥ 3, then R1 and R2 are
not polynomially equivalent.

If n ≥ 4, then already I22 = (0). Thus, f ′2(x, y) = x+y, and therefore
ϕ : R1 → R2 is an isomorphism between the additive groups of Zp2 and
(Zp)

2. This contradiction proves that if n ≥ 4, then R1 and R2 are not
polynomially equivalent.

5. Proof of Corollary 3

Let us use the notation of [3], that is A = Zp2 , B = pZp3 , C = p2Zp4 ,
D = Zp ⊕ Zp, E and F are the two noncommutative p2-element rings,
G = Zp[t]/(t

2), H = Zp⊕pZp2 , I = tZp[t]/(t
3), J = pZp2⊕pZp2 , and K
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is the p2-element field, where ⊕ denotes the direct sum of rings. Note
that pZp2 and p2Zp4 are zero rings.

Now, A and G are polynomially equivalent by Theorem 2. The
proof detailed in Section 4 shows that B and I are not polynomially
equivalent for p 6= 2. For p = 2, Z8 and Z2[t]/(t

3) are polynomially
equivalent by Theorem 2. Moreover, as described in the beginning
of Section 3, the polynomials f1, g1 over Z8 exist over the unique four-
element ideal B, and the polynomials f2, g2 over Z2[t]/(t

3) exist over the
unique four-element ideal I. Thus B and I are polynomially equivalent
for p = 2. The rings E and F are opposite rings of each other, thus
they are polynomially equivalent (x +1 y = x +2 y, x ×1 y = y ×2 x).
Finally, we show that G and F are polynomially equivalent.

Let P = { 0, 1, . . . , p− 1 } and consider. The ring F can be repre-
sented by {(

a b
0 0

)
: a, b ∈ P

}
,

with the usual matrix addition and multiplication. Let ϕ : G → F be
defined by

a+ bt 7→
(
a b
0 0

)
.

Here, we denote the additions and the multiplications for both rings
in the usual way, because we believe that it does not cause confusion
and the formulas are more understandable this way. Now, ϕ is an iso-
morphism between the additive groups of G and F , hence it is enough
to provide polynomials for the multiplications. Let e be the nonzero
diagonal idempotent matrix in F . We claim that the polynomials

g1(x, y) = xpy,

g2(x, y) = (p− 1)xye+ xy + yx

give the multiplication for F and G, respectively. Indeed, if x = a+ bt
and y = c+ dt (for arbitrary a, b, c, d ∈ P ), then

ϕ (g1(x, y)) = ϕ ((a+ bt)p (c+ dt)) = ϕ (ap (c+ dt)) = ϕ (ac+ adt)

=

(
ac ad
0 0

)
=

(
a b
0 0

)(
c d
0 0

)
= ϕ (x)ϕ (y) ,

g2 (ϕ(x), ϕ(y)) = (p− 1)

(
a b
0 0

)(
c d
0 0

)(
1 0
0 0

)
+

(
a b
0 0

)(
c d
0 0

)
+

(
c d
0 0

)(
a b
0 0

)
= (p− 1)

(
ac 0
0 0

)
+

(
ac ad
0 0

)
+

(
ac bc
0 0

)
=

(
ac ad+ bc
0 0

)
= ϕ (ac+ (ad+ bc)t)

= ϕ (xy) .
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Polynomially equivalent rings must have the same ideal structure by
Lemma 4, and the factors by the corresponding ideals must be poly-
nomially equivalent. Thus, K is not polynomially equivalent to the
others, as that is the only simple ring of p2 elements. The only ring
having p+1 nontrivial ideals is J , hence it is not polynomially equiva-
lent to any of the other rings. There are two rings having two nontrivial
ideals (D and H), and in D both ideals are isomorphic to the p-element
field, while in H one of the ideals is isomorphic to the p-element zero-
ring. Since the factors by the corresponding ideals isomorphic to the
p-element field are not polynomially equivalent, neither are D and H.

A ring R which is not a zero-ring cannot be polynomially equiva-
lent to C, because the multiplication of R cannot be expressed as a
polynomial over C. Namely, every polynomial over C is of the form
g(x, y) = ax + by + c. Now, if g corresponds to the multiplication,
assuming 0 in R corresponds to 0 in C, then g(0, 0) = 0 yields c = 0,
g(x, 0) = 0 yields ax = 0, g(0, y) = 0 yields by = 0, hence g is the 0
function.

Finally, the ring A is not polynomially equivalent to either B or I,
because the factors by the unique nontrivial ideal are not polynomially
equivalent.
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