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Abstract. We show that certain finite groups do not arise as the automorphism
group of the square of a finite algebraic structure, nor as the automorphism group
of a finite, 2-generated, free, algebraic structure.

1. Introduction

Every group can be represented as the automorphism group of some algebra. For
example, the regular G-set 〈G;G〉 has automorphism group isomorphic to G. In
[4], Matthew Gould determined which groups are representable as the automorphism
group of the square of some algebra. Aut(A2) contains the map σ : (x, y) 7→ (y, x)
that switches coordinates, which is an involution. Gould showed that, conversely, if G
is any group with an involution σ, then there is an algebra A such that Aut(A2) ∼= G
where σ corresponds to the map that switches the coordinates. Gould’s construction
produces an infinite algebra even when G is finite, which led him to consider the
question of which groups are representable as the automorphism group of the square
of a finite algebra. A sufficient condition for representability was supplied by Gould
in [5]: If G is a finite group with involution σ and G has a retraction onto the
subgroup {1, σ}, then there is a finite algebra A where Aut(A2) ∼= G and σ represents
the automorphism that switches the coordinates. Gould showed that this sufficient
condition is not a necessary one.

There is an equivalent version of this representability problem, which is the version
that will be considered in this paper. An algebra will be called free if it is a free
algebra in the variety that it generates. The automorphism group of a 2-generated
free algebra also has a distinguished involution, namely the automorphism induced by
switching the two free generators. Gould showed in [5] that a group G with involution
σ is representable as Aut(F) for some 2-generated free algebra F, with σ representing
the automorphism that switches the generators, if and only if G ∼= Aut(A2) for some
algebra A, with σ representing the automorphism that switches the coordinates. He
showed, moreover, that F can be taken to be finite if and only if A can be taken to

1991 Mathematics Subject Classification. Primary: 20B25; Secondary: 08A35, 08B20.
Key words and phrases. Finite automorphism groups, free algebras.

1



2 KEITH A. KEARNES AND STEVEN T. TSCHANTZ

be finite. Thus the existence of a finite algebra A with G ∼= Aut(A2) is equivalent to
the existence of a finite, 2-generated, free algebra F with G ∼= Aut(F).

The smallest group whose representability as Aut(F) for finite F is not decided by
the results of Gould is therefore Z4. The problem of deciding the representability of
this group was widely circulated for many years as the “Z4 Problem”. The surprising
fact that Z4 is not representable as Aut(F) when F is finite was announced by the
second author in 1996, but not published. Since then, Z4 has been the only known
nonrepresentable group of even order. The purpose of this paper is to identify several
infinite families of nonrepresentable groups of even order. (This paper also serves to
record the solution of the Z4 Problem.)

The groups that we consider will typically have a designated involution, always
denoted by σ, which in the automorphism group of a free algebra is the automorphism
that switches the two free generators. A group homomorphism ϕ that is assumed to
satisfy ϕ(σ) = σ will be written ϕ : Gσ → Hσ, while a homomorphism not assumed
to preserve σ will be written ϕ : G → H. Similarly, Gσ

∼= Hσ means that there
is a pointed group isomorphism from G to H. Whether or not Gσ is representable
as Aut(F)σ depends only on the isomorphism type of Gσ, in particular only on the
conjugacy class of σ. Throughout the paper, automorphisms act on the right, while
functions, operations and even other homomorphisms act on the left.

We approach the problem of determining which groups Gσ arise as Aut(F)σ for
some finite, 2-generated, free algebra F in the following way. First, we argue that if
Gσ is representable as Aut(F)σ, then F may be taken to belong to a certain variety
V[Gσ], defined in the next section. Then we consider a minimal subvariety M of the
variety generated by F. If E is the 2-generated free algebra in M, then there is a
natural surjective homomorphism ν : F → E. This algebra homomorphism induces
a pointed group homomorphism ν̂ : Aut(F)σ → Aut(E)σ. By partially classifying
the possibilities for M, E, and im(ν̂), we are able to show that certain groups Gσ

cannot arise as Aut(F)σ. This approach allows us to completely settle the question
of which pointed groups Gσ with σ in the center of G are representable as Aut(F)σ
when F is finite (Corollary 6.4). When σ does not lie in the center of G, we obtain an
assortment of nonrepresentability results involving alternating groups, special linear
groups, Suzuki groups, Mathieu groups, and groups whose 2-Sylow subgroups are
generalized quaternion.

2. Congruence Permutability

A variety V of algebras is congruence permutable if whenever α and β are congru-
ences on some algebra A ∈ V, then α ◦ β = β ◦ α. This property of V is equivalent
to the existence of a ternary term p of V such that the equations p(x, y, y) ≈ x and
p(x, x, y) ≈ y hold in V. Such a p is called a Maltsev term for V. In this section we
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establish the fact that certain pointed groups Gσ are representable as Aut(FV(x, y))σ
only when V is congruence permutable.

Definition 2.1. Let G be a group with a designated involution σ. V[Gσ] is the
variety with binary operation symbols {tα | α ∈ G} defined by the equations

(i) t1(x, y) ≈ x,
(ii) tσ(x, y) ≈ y, and

(iii) tαβ(x, y) ≈ tα(tβ(x, y), tσβ(x, y)) .

These equations entail tασ(x, y) ≈ tα(y, x).

Lemma 2.2. Let F be free on two generators in some subvariety V ≤ V[Gσ].
The endomorphism εα of F that is defined on the generators by x 7→ tα(x, y) and
y 7→ tσα(x, y) is an automorphism of F, and κ : Gσ → Aut(F)σ : α 7→ εα is a homo-
morphism of pointed groups.

Proof. Equations (i) and (ii) of Definition 2.1 guarantee that ε1 is the identity on the
generators of F and that εσ is the endomorphism defined on generators by x 7→ y and
y 7→ x (or, more simply, (x, y) 7→ (y, x)). Equation (iii) of Definition 2.1 guarantees
that εαβ agrees with εα ◦ εβ on the generators. Therefore κ is a σ-preserving monoid
homomorphism from Gσ to End(F). This forces each εα to be invertible, with inverse
εα−1 , and also forces κ to be a pointed group homomorphism from Gσ to Aut(F)σ. �

We call the homomorphism κ of Lemma 2.2 the canonical homomorphism from
Gσ to Aut(F)σ.

Theorem 2.3. Let W be a variety, F = FW(x, y), and Gσ = Aut(F)σ. There is
a variety V that is a reduct of W and a subvariety V[Gσ] such that the canonical
homomorphism κ : Gσ → Aut(FV(x, y))σ is an isomorphism.

Proof. For each α ∈ Gσ = Aut(F)σ, let tα be a binary W-term for which tα(x, y) :=
xα ∈ F is the image of the generator x ∈ F under the automorphism α. Clearly
t1(x, y) = x and tσ(x, y) = y in F. Moreover, since yα = (xσ)α = x(σα) = tσα(x, y),
the generators x and y are mapped by α to tα(x, y) and tσα(x, y) respectively. From
this it follows that

tαβ(x, y) = xαβ = tα(x, y)β = tα(xβ, yβ) = tα(tβ(x, y), tσβ(x, y)).

The equalities that we have established among the terms {tα | α ∈ Aut(F)} imply
that equations (i)—(iii) of Definition 2.1 hold in W.

Let F′ be the reduct of F to the terms {tα | α ∈ Aut(F)} and let V = H S P(F′).
V is a reduct of W because F′ is a reduct of F. The equations established in the
previous paragraph hold in F′, hence in V, so V ≤ V[Gσ].

We claim that the subalgebra F′′ ≤ F′ generated by {x, y} is free over {x, y} in
V. Since V is generated by F′, F′′ is a subalgebra of F′, and F′′ is generated by
{x, y}, to prove this we must show that every function f : {x, y} → F ′ extends to
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a homomorphism from F′′ to F′. If f : {x, y} → F ′ = F is a function, then the

freeness of F implies that f extends to an endomorphism f̂ : F → F. Thus f̂ |F ′′ is
an extension of f to a homomorphism of F′′ to F′.

To see why the canonical homomorphism κ : Gσ → Aut(F′′)σ is injective, assume
that α ∈ ker(κ). Then κ(α) = εα is the identity automorphism of F′′. Since εα is
defined on generators by (x, y) 7→ (tα(x, y), tσα(x, y)), it follows that tα(x, y) = x and
tσα(x, y) = y in F′′, and therefore in F. This implies that α is the automorphism of
F defined on generators by (x, y) 7→ (x, y), hence α = 1 in Aut(F) = G.

We now explain why κ is surjective. Arguing as in the first paragraph, there are
binary terms {sγ | γ ∈ Aut(F′′)} satisfying equations like those in Definition 2.1.
Since these equations hold in F′′, they hold also in F. For each γ ∈ Aut(F′′) define
an endomorphism ξγ of F on the generators by (x, y) 7→ (sγ(x, y), sσγ(x, y)). The
equations satisfied by the sγ ’s imply that ξγξγ−1 = ξγ−1ξγ = 1 in End(F). This
implies that ξγ ∈ Aut(F) = G for any γ ∈ Aut(F′′). Since κ(ξγ) is the automorphism
of F′′ defined on generators by

(x, y) 7→ (xξγ, yξγ) = (sγ(x, y), sσγ(x, y)),

we get that κ(ξγ) = γ for any γ ∈ Aut(F′′). �
One of the viewpoints that we will take in this paper is that the equations of

Definition 2.1 constitute a “Maltsev condition” (cf. [3]), which we will call the [Gσ]-
Maltsev condition. This viewpoint is not entirely adequate for our purposes, since this
Maltsev condition defines the class of varieties V for which there is a pointed group
homomorphism Gσ → Aut(FV(x, y))σ, and we are interested in the more restrictive
situation where there is an isomorphism Gσ

∼= Aut(FV(x, y))σ. We will find in
Theorem 2.6 that, in certain circumstances, the difference in these two situations
is partially reflected by a strengthening of the [Gσ]-Maltsev condition.

Definition 2.4. Let G be a group with a designated involution σ, and let K be a
subgroup of G containing σ. Then V[Gσ, K] is the subvariety of V[Gσ] defined by the
equations (i)—(iii) of Definition 2.1 and

(iv) tα(x, x) ≈ x if α ∈ K.

The equations (i)—(iv) define the [Gσ, K]-Maltsev condition.

Thus V[Gσ, K] = V[Gσ] if K = {1, σ}, while V[Gσ, G] is the largest idempotent
subvariety of V[Gσ].

Definition 2.5. Let G be a finite group with a designated involution σ, and let
C = CG(σ) be the centralizer of σ. A subgroup K ≤ C is a nucleus of Gσ if there is
a subgroup H ≤ G and an endomorphism ρ of C such that

(i) H ∩Hσ = [H,Hσ] = {1}, where Hσ := σHσ,
(ii) ρ is a retraction of C onto C ∩ (HHσ),

(iii) ρ(σ) = 1, and
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(iv) K = ker(ρ).

In particular, a nucleus of Gσ is a normal subgroup of CG(σ) containing σ. (CG(σ)
is itself a nucleus, arising when H = {1} and ρ is constant.)

Theorem 2.6. Let Gσ be a group with a designated involution σ. If F is the 2-
generated free algebra in a subvariety V ≤ V[Gσ], and the canonical homomorphism
κ : Gσ → Aut(F)σ is an isomorphism, then F must lie in V[Gσ, K] for some nucleus
K of Gσ.

Proof. The assumption that κ is an isomorphism implies that every automorphism of
F has the form κ(α) = εα for some uniquely determined element α ∈ G. (Recall that
εα is the automorphism of F defined on generators by (x, y) 7→ (tα(x, y), tσα(x, y)).)

Call a unary term u invertible if there is another unary term v such that u(v(x)) ≈
v(u(x)) ≈ x holds in V.

Let E = FV(x) be the free algebra on one generator in V. For each γ ∈ Aut(E) let
sγ be a unary term such that xγ = sγ(x). Then s1(x) = x and

(2.1) sγδ(x) = xγδ = sγ(x)δ = sγ(xδ) = sγ(sδ(x)),

so s1(x) ≈ x and sγδ(x) ≈ sγ(sδ(x)) hold in V. In particular, sγ(sγ−1(x)) ≈
sγ−1(sγ(x)) ≈ x, which shows that sγ is invertible for every γ ∈ Aut(E). Conversely,
if u(x) is invertible with inverse v(x), then x 7→ u(x) defines an automorphism with
inverse defined by x 7→ v(x). Indeed, the assignment γ 7→ sγ is an isomorphism from
Aut(E) to the group of V-equivalence classes of invertible terms.

If α ∈ CG(σ), then

(2.2) tσα(x, y) = tασ(x, y) = tα(y, x),

where the last equality is from the remark following Definition 2.1. Thus x = xα−1α =
tα−1(tα(x, y), tα(y, x)) and x = xαα−1 = tα(tα−1(x, y), tα−1(y, x)). If we apply the
endomorphism that is defined on generators by (x, y) 7→ (x, x) to these equalities
we obtain that for sα(x) := tα(x, x) and sα−1(x) := tα−1(x, x) we have sα−1(sα(x)) =
sα(sα−1(x)) = x. Hence tα(x, x) is an invertible unary term for every α ∈ CG(σ). This
proves that there is a function λ : CG(σ) → Aut(E) defined by α 7→ γ if tα(x, x) =
sγ(x) in E. From Definition 2.1 (iii) and line (2.2) we have

tαβ(x, x) = tα(tβ(x, x), tβ(x, x)),

so λ is a group homomorphism.
Let H be the subgroup of A := Aut(F) consisting of all automorphisms defined on

the generators by (x, y) 7→ (sγ(x), y) for some γ ∈ Aut(E). It can be checked that
Hσ consists of all automorphisms defined on the generators by (x, y) 7→ (x, sγ(y))
and CA(σ) ∩ (HHσ) consists of all automorphisms of F defined on the generators
by (x, y) 7→ (sγ(x), sγ(y)) for some γ ∈ Aut(E). It follows from line (2.1) that
the function µ : Aut(E) → CA(σ) that assigns to γ the automorphism defined on
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generators by (x, y) 7→ (sγ(x), sγ(y)), is a group homomorphism. This gives us a
(noncommuting) triangle of homomorphisms

CG(σ) CA(σ)

Aut(E)

-

@
@
@R �

�
��

κ

λ µ

where κ is an isomorphism.

Claim 2.7. λ ◦ κ−1 ◦ µ is the identity on Aut(E).

Proof. If γ ∈ Aut(E), then µ(γ) ∈ Aut(F) equals κ(α) = εα for some uniquely
determined α ∈ G. Since µ(γ) is defined on generators by (x, y) 7→ (sγ(x), sγ(y)) and
εα is defined on generators by (x, y) 7→ (tα(x, y), tσα(x, y)), it follows that tα(x, y) ≈
sγ(x) holds in F. Therefore tα(x, x) = sγ(x) in F, so λ(α) = γ. This shows that
γ = λ(α) = λ(κ−1(µ(γ))) for any γ ∈ Aut(E). �

It follows from Claim 2.7 that the function ρ := µ ◦ λ ◦ κ−1 is a retraction of
CA(σ) onto CA(σ)∩ (HHσ). The retraction ρ is the one that takes an automorphism
εα ∈ CA(σ) that is defined on the generators by

(x, y) 7→ (tα(x, y), tσα(x, y)) = (tα(x, y), tα(y, x))

to the automorphism that is defined on the generators by (x, y) 7→ (tα(x, x), tα(y, y)).
In particular, since σ is defined on the generators by (x, y) 7→ (y, x), ρ(εσ) is defined
on the generators by (x, y) 7→ (x, y); i.e., ρ(σ) = 1. According to Definition 2.5, this
forces KA := ker(ρ) to be a nucleus of Aut(F)σ.

Choose any α ∈ Gσ such that κ(α) = εα ∈ KA (⊆ CA(σ)). Then α ∈ CG(σ), so εα
is defined on the generators by (x, y) 7→ (tα(x, y), tα(y, x)). From the previous para-
graph, we get that ρ(εα) is defined on the generators by (x, y) 7→ (tα(x, x), tα(y, y)).
But ρ(εα) = 1 if εα ∈ KA, so (tα(x, x), tα(y, y)) = (x, y) in F. This proves that
tα(x, x) ≈ x is an equation that holds in F for every α ∈ Gσ for which κ(α) ∈ KA.
Since κ is an isomorphism and nuclei are intrinsically-defined subgroups, K :=
κ−1(KA) is a nucleus of Gσ. Now α ∈ K if and only if κ(α) ∈ KA, and these
conditions imply that tα(x, x) ≈ x holds in F. This shows that F ∈ V[Gσ, K] for
some nucleus K. �

It can be shown that if Gσ has a retraction onto 〈σ〉, then the [Gσ]-Maltsev con-
dition is trivial, i.e., it is satisfied by every variety. (If ρ : Gσ → 〈σ〉 is a retraction,
then the assignment tα(x, y) 7→ x if ρ(α) = 1 and tα(x, y) 7→ y if ρ(α) = σ defines an
interpretation of V[Gσ] into any variety. Indeed, this even shows that the stronger
[Gσ, G]-Maltsev condition is trivial.) Even if Gσ has no retraction onto 〈σ〉, then
the [Gσ]-Maltsev condition is nearly trivial: if |G| = 2k, then it can be shown that
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the [Gσ]-Maltsev condition is satisfied by the k-th matrix power of any variety. It is
therefore surprising to find that if a subgroup K of Gσ containing σ has no retrac-
tion onto 〈σ〉, then the [Gσ, K]-Maltsev condition implies congruence permutability,
which is equivalent to a very strong Maltsev condition. We begin this proof now.

Lemma 2.8. Let V be an idempotent variety that is not congruence permutable. If
F = FV(x, y) is the 2-generated free algebra in V, then F has subuniverses U and V
such that

(1) x ∈ U , x ∈ V ,
(2) y /∈ U , y /∈ V , and
(3) (U × F ) ∪ (F × V ) is a subuniverse of F× F.

Proof. Let S0 be the subuniverse of F2 that is generated by {(x, y), (x, x), (y, x)}.
The pair (y, y) is in this subuniverse if and only if V has a ternary term p such that
p((x, y), (x, x), (y, x)) = (y, y) in F2, or equivalently p(x, x, y) = y and p(y, x, x) = y
in F. Since F = FV(x, y) is free, this happens if and only if p is a Maltsev term for
V. Since we have assumed that V is not congruence permutable, (y, y) /∈ S0.

Since V is idempotent, SgF2

({(x, x), (x, y)}) = {x} × SgF({x, y}) = {x} × F .

Thus, if we take U0 = {x}, then SgF2

((U0 × F ) ∪ {(y, x)}) = S0, which implies that

(y, y) /∈ SgF2

((U0 × F ) ∪ {(y, x)}). Using Zorn’s lemma, extend U0 to a subuniverse

U of F that is maximal for the condition that (y, y) /∈ S := SgF2

((U ×F )∪{(y, x)}).
Let V be the subset of F defined by the equation {y} × V = S ∩ ({y} × F ). That
V is a subuniverse of F follows from the facts that S is a subuniverse of F2 and V is
idempotent. We now argue that U and V have the required properties.

The fact that x ∈ U follows from the fact that U extends the subuniverse U0 = {x}.
That x ∈ V follows from the fact that (y, x) ∈ S ∩ ({y} × F ) = {y} × V . If y ∈ U ,
then U would contain the generators of F, which would lead to the contradiction that
F × F = U × F ⊆ S $ F × F. If y ∈ V , then (y, y) ∈ ({y} × V ) ⊆ S, which is false.
These arguments show that (1) and (2) hold.

To prove that (3) holds, it will suffice to show that (U ×F )∪ (F ×V ) = S, since S
is a subuniverse of F2. It follows from the definition of S that U × F ⊆ S. If v ∈ V ,
then the definition of V implies that (y, v) ∈ S. Moreover (x, v) ∈ S since U×F ⊆ S

and x ∈ U . Thus, if v ∈ V , then S contains SgF2

({(x, v), (y, v)}) = F × {v}. This is
enough to show that F × V ⊆ S, hence (U × F ) ∪ (F × V ) ⊆ S.

To establish the reverse inclusion, assume that (p, q) ∈ S − (U × F ). Then p /∈ U ,
so if U ′ := SgF(U ∪ {p}) then the maximality of U implies that

(2.3) (y, y) ∈ SgF2

((U ′ × F ) ∪ {(y, x)}) .

Claim 2.9. SgF2

((U ′ × F ) ∪ {(y, x)}) is generated by

X := (U × {y}) ∪ {(p, y), (x, x), (y, x)} .
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Proof. Since (U × {y}) ∪ {(p, y), (x, x)} ⊆ U ′ × F , the subalgebra generated by X is

contained in SgF2

((U ′ × F ) ∪ {(y, x)}). To establish equality it will suffice to show

that U ′× F ⊆ SgF2

(X). We have U ′×{y} = SgF2

((U ×{y})∪ {(p, y)}) ⊆ SgF2

(X),

and U ′ × {x} ⊆ F × {x} = SgF2

({(x, x), (y, x)}) ⊆ SgF2

(X). Thus, for every u ∈ U ′
we have (u, x), (u, y) ∈ SgF2

(X), so {u}×F = SgF2

({(u, x), (u, y)} ⊆ SgF2

(X). This

shows that U ′ × F ⊆ SgF2

(X), ands completes the proof of the claim. �
Applying Claim 2.9 to line (2.3) leads to the conclusion that there is a term r

such that (y, y) = r((p, y), (x, x), (y, x), (u1, y), . . . , (uk, y)) where all ui are from U .
Writing the coordinate equations separately yields that y = r(p, x, y, u1, . . . , uk) and
y = r(y, x, x, y, . . . , y) in F. Applying the endomorphism of F determined on the
generators by x 7→ x and y 7→ q to the second of these equations, we derive that
q = r(q, x, x, q, . . . , q). Recombining this with the first of the equations yields that

(y, q) = r((p, q), (x, x), (y, x), (u1, q), . . . , (uk, q))

in F2. Since all of the pairs (p, q), (x, x), (y, x), (u1, q), . . . , (uk, q) belong to S, it
follows that the pair (y, q) is in S. This shows that (y, q) ∈ S ∩ ({y}×F ) = {y}×V ,
and therefore that q ∈ V . Altogether this shows that if (p, q) ∈ S − (U × F ), then
(p, q) ∈ F × V . Hence S ⊆ (U × F ) ∪ (F × V ). �
Theorem 2.10. Let K be a finite group with a designated involution σ. If K does
not have a retraction onto 〈σ〉, then V[Kσ, K] is congruence permutable.

Proof. We prove the contrapositive. Assume that V[Kσ, K] is not congruence per-
mutable. Since V[Kσ, K] is idempotent, Lemma 2.8 guarantees that the algebra
F ∈ V[Kσ, K] that is freely generated by {x, y} has subuniverses U and V , each
containing x but not y, such that (U × F ) ∪ (F × V ) is a subuniverse of F2.

Claim 2.11. Let L := {α ∈ K | tα(U, F ) ⊆ U} and R := {α ∈ K | tα(F, V ) ⊆ V }.
(i) 1 ∈ L −R and σ ∈ R − L.

(ii) L is a subgroup of K.
(iii) Rσ is a subgroup of K.

Proof. For (i), t1(x, y) = x and tσ(x, y) = y, so t1(U, F ) ⊆ U and tσ(F, V ) ⊆ V , and
therefore 1 ∈ L and σ ∈ R. Since x ∈ V and y = t1(y, x) /∈ V we get that 1 /∈ R.
Since x ∈ U and y = tσ(x, y) /∈ U we get σ /∈ L.

For (ii), assume that α, β ∈ L. Then by Definition 2.1 (iii)

tαβ(U, F ) ⊆ tα(tβ(U, F ), tσβ(U, F )) ⊆ tα(U, F ) ⊆ U ,

so αβ ∈ L.
For (iii), assume that α, β ∈ Rσ. Then ασ, βσ ∈ R, so

tαβσ(F, V ) ⊆ tα(tβσ(F, V ), tσβσ(F, V )) ⊆ tα(V, F ) = tασ(F, V ) ⊆ V .

This shows that αβσ ∈ R, so αβ ∈ Rσ. This proves the claim. �
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Claim 2.12. K = L ∪R.

Proof. Assume instead that K has an element α /∈ L∪R. Then there exist elements
p ∈ U, q, r ∈ F and s ∈ V such that tα(p, q) /∈ U and tα(r, s) /∈ V . Then (p, r) ∈ U×F
and (q, s) ∈ F × V , but

tα((p, r), (q, s)) /∈ (U × F ) ∪ (F × V ) .

This contradicts the fact that (U ×F )∪ (F × V ) is a subuniverse of F2, so the claim
is proved. �

Now we complete the proof of the theorem. We have shown in Claims 2.11 and
2.12 that K is the union of a proper subgroup L and a coset R of a proper subgroup
Rσ. This implies that L = Rσ is a subgroup of index 2. Since σ /∈ L, this subgroup
is the kernel of a retraction onto 〈σ〉. The theorem is proved. �

Corollary 2.13. Let G be a finite group with a designated involution σ, and let K
be a subgroup of G containing σ. If K does not have a retraction onto 〈σ〉, then
V[Gσ, K] is congruence permutable.

Proof. V[Gσ, K] satisfies the [Kσ, K]-Maltsev condition. Since K has no retraction
onto 〈σ〉, it follows from Theorem 2.10 that this Maltsev condition implies congruence
permutability. �

Example 2.14. Let G be a finite group with a designated involution σ. Suppose
that there is a γ ∈ G such that γ2 = σ. Let K = 〈γ〉 = {1, γ, γ2, γ3}. Since K
does not have a retraction onto 〈σ〉 = {1, γ2}, Corollary 2.13 implies that V[Gσ, K]
is congruence permutable. In this special case, a computer search has located the
shortest Maltsev term for V[Gσ, K], it is

p(x, y, z) = [((y(yx))((yx)z))((yz)x)][(x(zy))((z(xy))((xy)y))] ,

where the product xy is shorthand for tγ(x, y).

Corollary 2.15. Let G be a finite group with a designated involution σ. Assume
that no nucleus of Gσ has a retraction onto 〈σ〉. If Gσ

∼= Aut(FW(x, y))σ, then W is
a congruence permutable variety.

Proof. By Theorem 2.3, some reduct V of W is a subvariety of V[Gσ] and has the
property that the canonical homomorphism κ : Gσ → Aut(FV(x, y))σ is an isomor-
phism. If V is congruence permutable, then W will be, so it suffices to consider only
the case where W = V.

By Theorem 2.6, FV(x, y) ∈ V[Gσ, K] where K is some nucleus of Gσ. Since no
nucleus has a retraction onto 〈σ〉, it follows from Corollary 2.13 that V[Gσ, K], and
hence V, is congruence permutable. �
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If G is a group with a designated involution σ, then we will say that Gσ forces
congruence permutability if a variety V is congruence permutable whenever Gσ

∼=
Aut(FV(x, y))σ. The subscript σ will be dropped if Gσ forces congruence permutabil-
ity for every involution σ ∈ G.

Corollary 2.15 shows that a finite pointed groupGσ forces congruence permutability
if no nucleus K of Gσ has a retraction onto 〈σ〉. If ρ : K → 〈σ〉 were a retraction,
then N := ker(ρ) would be a normal complement of 〈σ〉 in K. Since K ≤ CG(σ) we
have σ ∈ Z(K), so K ∼= 〈σ〉×N . Thus, Corollary 2.15 may be reworded to state that
if 〈σ〉 is not a direct factor of any nucleus, then Gσ forces congruence permutability.

For later reference we identify some groups that do not force congruence per-
mutability.

Theorem 2.16. Let G be a finite group with designated involution σ. If either

(1) there is a retraction ρ : G� 〈σ〉, or
(2) G is the symmetric group S2k and σ is a fixed point free involution,

then Gσ does not force congruence permutability. In both cases, there is a finitely
generated variety V satisfying no nontrivial idempotent Maltsev condition such that
such that Gσ

∼= Aut(FV(x, y))σ. If (1) holds, V can be taken to be idempotent.

Proof. The argument for case (1) is based on Gould’s second construction in [4] and
his results in [5]. His work shows that if F is the algebra with universe G and basic
operations tα, α ∈ G, defined by

tα(β, γ) :=





αβ if γ = σβ,

β if γ 6= σβ and ρ(α) = 1,

γ if γ 6= σβ and ρ(α) = σ,

then F is free over {1, σ}, and the automorphisms of F are precisely the the right
multiplications Rα : x 7→ xα. That is, the right regular representation of G is an
isomorphism of the pointed group Gσ onto Aut(F)σ.

It is easy to check that each tα is an idempotent operation. Moreover, θ := ker(ρ) is
compatible with each tα, hence is a congruence of F. The quotient F/θ is a 2-element
algebra satisfying tα(x, y) ≈ x when ρ(α) = 1 and tα(x, y) ≈ y when ρ(α) = σ. Thus,
F/θ is term equivalent to the 2-element set, implying that F belongs to no variety
satisfying a nontrivial idempotent Maltsev condition. This establishes all claims
concerning case (1).

Concerning case (2), the k-th matrix power of the variety of sets is a finitely
generated variety that satisfies no nontrivial idempotent Maltsev condition, and for
this variety Aut(FV(x, y))σ ∼= (S2k)σ where σ is a fixed point free involution. �
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3. Examples

The following examples illustrate that the hypothesis of Corollary 2.15 can be
satisfied. The results of these examples will be used in Section 6.

Notation that will be fixed throughout these examples include that G is a finite
group with designated involution σ, C := CG(σ) is the centralizer of σ, H ≤ G
is a subgroup of G satisfying H ∩ Hσ = [H,Hσ] = 1, ρ is a retraction of C onto
C ∩ (HHσ) satisfying ρ(σ) = 1, and K is the kernel of ρ. Our task will be to show
that for H, ρ and K related in this way, there is no retraction of K onto 〈σ〉. Observe
that the conditions on H imply that the function (h, k) 7→ hkσ is an isomorphism
from H×H to HHσ, and under this isomorphism the diagonal of H×H corresponds
to C ∩ (HHσ) (so C ∩ (HHσ) ∼= H).

In these examples we will usually choose σ to be a 2-central involution of G, by
which we mean an involution that belongs to the center of some 2-Sylow subgroup of
G (equivalently C contains a 2-Sylow subgroup of G, equivalently C has odd index,
equivalently σ has an odd number of conjugates). There is no theoretical reason
to prefer 2-central involutions — there exist varieties where the automorphism that
interchanges the free generators of FV(x, y) is 2-central in Aut(FV(x, y)), and there
exist varieties where it is not — but some of the arguments below are harder or false
when σ is not 2-central.

Example 3.1. Assume that C is a normal Hall subgroup of G. We will argue that
Gσ has exactly one nucleus, namely K = C.

The fact that H ∩Hσ = {1} forces C ∩H = {1}. Since C is normal, |H| divides
[G : C]. Since ρ maps C onto C ∩ (HHσ) ∼= H, |H| also divides |C|. From gcd([G :
C], |C|) = 1 it follows that |H| = 1, so ρ is constant. Hence K = C is the only nucleus.
From Corollary 2.15, if C is a normal Hall subgroup and C has no retraction onto
〈σ〉, then Gσ forces congruence permutability.

Example 3.2. As a special case of Example 3.1, let σ belong to the center of G.
Then K = C = G is the only nucleus of Gσ. If G has no retraction onto 〈σ〉, then
Gσ forces congruence permutability.

Example 3.3. The 2-groups that contain a unique involution are the cyclic 2-groups
or the generalized quaternion groups. If the 2-Sylow subgroups of G are of this type,
then G contains exactly one conjugacy class of involutions, and all involutions are
2-central. We will argue that every nucleus of Gσ contains every 2-Sylow subgroup
containing σ.

If σ and τ are commuting involutions of G, then the subgroup they generate can
be extended to a 2-Sylow subgroup of G. But each 2-Sylow subgroup of G contains
a unique involution, so σ = τ . This proves that σ is the unique involution of C.
Therefore σ ∈ P2⇐⇒P2 ⊆ C when P2 is a 2-Sylow subgroup of G.
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Since ρ is a retraction and ρ(σ) = 1, it must be that σ /∈ im(ρ). Since im(ρ) ⊆ C,
the conclusion of the previous paragraph implies that im(ρ) contains no involution,
hence im(ρ) has odd order. Thus every 2-Sylow subgroup of C is contained in ker(ρ) =
K. Since a 2-Sylow subgroup of C is just a 2-Sylow subgroup of G containing σ, every
nucleus K of Gσ contains every 2-Sylow subgroup that contains σ.

In particular, if some nucleus had a retraction onto 〈σ〉, then the retraction could
be restricted to one of a 2-Sylow subgroup onto 〈σ〉. But if the 2-Sylow subgroups of
G are generalized quaternion or cyclic of order at least 4, then there can be no such
retraction. In these cases, G forces congruence permutability.

Example 3.4. Let G = SL(n, q) where n > 1 and q is an odd prime power greater
than 3. We will show that for any involution σ ∈ G and any nucleus K of Gσ,
the subgroup K has no retraction onto 〈σ〉. This will prove that SL(n, q) forces
congruence permutability.

To show that Gσ forces congruence permutability for any σ, it suffices to show it
for one from each conjugacy class. Therefore, we may assume that σ is equal to a
block diagonal matrix of the form

[
−I 0

0 I

]
.

Here the upper left block is the negative of the m×m identity matrix where m is a
positive even integer, the bottom right block is the `× ` identity matrix where ` ≥ 0,
and m+ ` = n. Every involution in SL(n, q) is conjugate to such a matrix.

A computation shows that C is the group of all invertible block diagonal matrices
of the form [

A 0
0 B

]
,

where det(A) = det(B)−1. This representation makes it clear that C is isomorphic
to the subdirect product of GL(m, q) and GL(`, q) consisting of all pairs (A,B) with
det(A) = det(B)−1. We will use this more compact representation for C (so, for
example, σ = (−I, I)).

We assert that every nucleus of Gσ contains every matrix with the representation
(A, I), where A ∈ SL(m, q). According to Definition 2.5, to prove this it will suffice
to show that if ρ is a retraction of C satisfying ρ(σ) = r((−I, I)) = (I, I) = 1, then
ρ(SL(m, q)× {I}) = {(I, I)}.

Fix any retraction ρ of C satisfying ρ((−I, I)) = (I, I). This retraction must map
the fully invariant subgroup [C,C] = SL(m, q)×SL(`, q) into itself. We use the same
symbol ρ to denote the restriction of ρ to [C,C] or any other subgroup of G.

Claim 3.5. A nonconstant endomorphism of a special linear group SL(k, q), with
k > 1, q odd, and (k, q) 6= (2, 3) is an automorphism.
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Proof. When k > 1, q is odd, and (k, q) 6= (2, 3), the group SL(k, q) is a quasisimple
group (a perfect group G such that G/Z(G) is simple). Suppose that ε : G → G is
a nonconstant endomorphism. The kernel of ε is a proper normal subgroup of G,
hence lies in the center of G. Therefore im(ε) = H is also quasisimple and has the
same simple factor as G. This means that HZ(G) has the same composition factors
as G, so HZ(G) = G. This forces H to be normal in G, and not in the center, so
G = H = im(ε). Since G is finite, ε is an automorphism. �
Claim 3.6. The composite homomorphism

ρ1 : SL(m, q)× {I} ρ→ SL(m, q)× SL(`, q)
π1→ SL(m, q)

is constant.

Proof. Let τ be the isomorphism SL(m, q)→ SL(m, q)×{I} : A 7→ (A, I). Then ρ1◦τ
is an endomorphism of SL(m, q) that is not an automorphism (since ρ1 ◦ τ(−I) =
ρ1(σ) = I). By Claim 3.5, ρ1 ◦ τ is constant. Since τ is an isomorphism, ρ1 is
constant. �
Claim 3.7. If SL(m, q)× {I} 6⊆ ker(ρ), then

ρ(SL(m, q)× SL(`, q)) = {I} × SL(`, q).

Proof. Let ρ2 be the composite SL(m, q)× {I} ρ→ SL(m, q)× SL(`, q)
π2→ SL(`, q), so

ρ(x) = (ρ1(x), ρ2(x)). If SL(m, q)× {I} 6⊆ ker(ρ), then since ρ1 is constant we have

ρ(SL(m, q)× {I}) = {I} × ρ2(SL(m, q)× {I})
where M := ρ2(SL(m, q) × {I}) is a nontrivial subgroup of SL(`, q). A nontrivial
homomorphic image of a perfect group is perfect, hence nonsolvable, so M is a non-
solvable subgroup of SL(`, q). This proves that ` > 1. Since {I}×M is in the image
of the retraction ρ, it follows that ρ maps the normal subgroup generated by {1}×M
into itself. That subgroup can only be {1}× SL(`, q), so ρ restricts to a retraction of
{1} × SL(`, q) onto a subgroup containing {1} ×M . But since ` > 1, it follows from
Claim 3.5 that any retraction of {1}×SL(`, q) (∼= SL(`, k)) is constant or the identity.
The former possibility is contradicted by the nontriviality of M , forcing ρ(x) = x on
{I} × SL(`, q).

We have shown that ρ maps SL(m, q)×{I} to {1}×M ⊆ {1}×SL(`, q), and that it
maps {I}× SL(`, q) onto itself. Thus ρ maps a generating set for SL(m, q)× SL(`, q)
into {I}×SL(`, q) with a subset of generators mapping onto {I}×SL(`, q). It follows
that ρ(SL(m, q)× SL(`, q)) = {I} × SL(`, q) when SL(m, q)× {I} 6⊆ ker(ρ). �
Claim 3.8. SL(m, q)× {I} ⊆ ker(ρ).

Proof. If this is not so, then Claim 3.7 yields

ρ(SL(m, q)× SL(`, q)) = {I} × SL(`, q).
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Then ker(ρ), restricted to the product SL(m, q)×SL(`, q), is a normal complement of
ρ(SL(m, q)×SL(`, q)) = {I}×SL(`, q). But SL(m, q)×SL(`, q) is a perfect group, so
any normal subgroup (in this case {I}×SL(`, q)) has at most one normal complement
(which in this case can only be SL(m, q) × {1}). Thus SL(m, q) × {I} ⊆ ker(ρ),
indeed. �

Claim 3.8 is exactly what we had to establish to show that any nucleus of Gσ

contains SL(m, q)× {I}.
Finally, it is easy to see why no nucleus K of Gσ has a retraction onto 〈σ〉. Since

{1, σ} = {(I, I), (−I, I)} ⊆ SL(m, q)× {I} ⊆ K,

any retraction of K onto 〈σ〉 would restrict to a retraction of SL(m, q) × {I} onto
its subgroup {±I}× {I}. This would imply the existence of a retraction of SL(m, q)
onto {±I}, contradicting Claim 3.5.

Remark 3.9. The argument of the previous example applies without change to the
case q = 3 if σ has more than 2 negative eigenvalues. When q = 3 and σ has exactly
2 negative eigenvalues, then each of the Claims is false. Nevertheless, it can be shown
that the final result is true: for any involution σ ∈ SL(n, 3), no nucleus of SL(n, 3)σ
has a retraction onto 〈σ〉. Therefore SL(n, q) forces congruence permutability when-
ever n > 1 and q is an odd prime power. On the other hand, we do not know if
SL(n, q) forces congruence permutability when q is even.

By Theorem 2.16, (Sn)σ does not force congruence permutability when σ is a fixed
point free involution. Somewhat surprisingly, the alternating group An, n > 4, does
force congruence permutability when σ is a fixed point free involution.

Example 3.10. If An contains a fixed point free involution σ, then necessarily n = 4k
for some k and σ is a product of 2k disjoint transpositions. The purpose of this
example is to show that (An)σ forces congruence permutability if n = 4k > 4.

Claim 3.11. If m > 2, then Sm × Sm is not embeddable in A2m.

Proof. If the claim is not true, then there exists a faithful action of the group Sm×Sm
on a set X of size 2m where every group element acts as an even permutation. This
may be interpreted as a faithful action of Sm on X where every element acts evenly,
and where the automorphism group of the Sm-set X contains a subgroup isomorphic
to Sm acting evenly. We make use of the last interpretation.

Since Sm is subdirectly irreducible and acts faithfully on X, it follows that Sm acts
faithfully on a single orbit Y ⊆ X. It must be that Y has size at least m = |X|/2,
since Sm has no smaller faithful action. If there is a second orbit Y ′ on which Sm
acts faithfully, then necessarily |Y | = |Y ′| = |X|/2. In this case, |Aut(〈X;Sm〉)| ≤ 2,
since an Sm-set of size m is rigid when m > 2. Hence Sm does not embed into the
automorphism group of such an Sm-set, forcing Y to be the only orbit on which Sm
acts faithfully.
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Let Z = X − Y . By the previous paragraph, |Z| ≤ |X|/2 = m and Sm does not
act faithfully on Z. Since Y is a single orbit, and it is not isomorphic to any other
orbit,

Aut(〈X;Sm〉) ∼= Aut(〈Y ;Sm〉)× Aut(〈Z;Sm〉).
We have assumed that Sm is embeddable in Aut(〈X;Sm〉), so since it is a subdirectly
irreducible group Sm is embeddable in either Aut(〈Y ;Sm〉) or Aut(〈Z;Sm〉). If Sm
is embeddable in Aut(〈Z;Sm〉), then the elements of Z can be permuted in at least
m! ways. Since |Z| ≤ m, we conclude that |Z| = m and every permutation of Z is
an automorphism of the Sm-set 〈Z;Sm〉. This can only happen if Z consists of m
one-element Sm-orbits. In this case, X = Y ∪Z has one orbit of size m and m orbits
of size one. But this is not an action of Sm on X where every element acts evenly. It
must therefore be that Sm embeds in Aut(〈Y ;Sm〉). If the stabilizer of a point y ∈ Y
is H, then the fact that Y is a single orbit implies that Aut(〈Y ;Sm〉) ∼= NSm(H)/H.
For Sm to embed in this group we must have H = {1}. But then Sm acts regularly
on Y , so |Y | = m!. We have assumed that m > 2, so from m! = |Y | ≤ 2m we derive
that m = 3 and Y = X. But this cannot be so, since when S3 acts regularly on X
the transpositions of S3 do not act evenly on X. This contradiction completes the
proof. �

To fix notation for the rest of this example, let n = 4k and assume that the
set of 4k letters on which A4k acts is X = {1, 2, . . . , 2k} ∪ {1, . . . , 2k} and that

σ = (1 1)(2 2) · · · (2k 2k). We define i = i, so that in fact σ(x) = x for any x ∈ X.
For each 1 ≤ i ≤ 2k, choose an element i∗ ∈ {i, i}. For each α ∈ S2k, define a

permutation α∗ on X by α∗(i∗) = (α(i))∗ and α∗(i
∗
) = (α(i))∗, i.e., α∗ permutes

each of the sets {1∗, . . . , (2k)∗} and {1∗, . . . , (2k)∗} the same way that α permutes
{1, . . . , 2k}. Then α∗ ∈ A4k, α

∗ commutes with σ, and S∗2k := {α∗ | α ∈ S2k} is a
subgroup of CA4k

(σ) that is isomorphic to S2k.
Let C,H, ρ and K be as in the definition of a nucleus. H cannot contain a subgroup

isomorphic to S2k, since if it did S2k×S2k ≤ H×H ∼= HHσ would be embeddable in
A4k, contrary to Claim 3.11. Therefore, the diagonal C ∩ (HHσ) ∼= H of the square
subgroup HHσ does not have a subgroup isomorphic to S2k. Since C∩(HHσ) = ρ(C),
ρ cannot restrict to a 1-1 function on S∗2k, hence K = ker(ρ) contains the smallest
nontrivial normal subgroup of S∗2k for any choice function ∗. In particular, K contains
all elements of the form β := (i j)(k `)(i j)(k `) and γ := (i j)(k `)(i j)(k `), and
therefore all elements of the form βγ = (i i)(j j). The kernel of any retraction
ρ′ : K → 〈σ〉 contains [K,K], so for δ := (i i)(k k) ∈ K we have

(i i)(j j) = [(i j)(k `)(i j)(k `), (i i)(k k)] = [β, δ] ∈ [K,K] ≤ ker(ρ′).

But σ = (1 1)(2 2) · · · (2k 2k) is a product of k elements of this type, so σ ∈ ker(ρ′).
This contradicts the fact that ρ′ is a retraction with σ in its image.
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Remark 3.12. Using virtually identical arguments, it can be shown that if n = 4k+1 ≥
9 and σ ∈ An fixes exactly one letter, then (An)σ forces congruence permutability.
However, Corollary 2.15 cannot be used to prove that (An)σ forces congruence per-
mutability when n = 4, 5, 4k+ 2 or 4k+ 3 and σ ∈ An fixes at most 3 letters. In each
of these cases, some nucleus has a retraction onto 〈σ〉.

Example 3.13. The Suzuki groups Sz(q), q = 22m+1 and m > 0, are nonabelian
simple groups. Let σ ∈ Sz(q) be a 2-central involution. We will show that the only
nucleus of Gσ := Sz(q)σ is C, and that this nucleus has no retraction onto 〈σ〉. This
will prove that Sz(q)σ forces congruence permutability.

We will need the following Facts about Suzuki groups:

(1) If p is an odd prime, then the p-Sylow subgroups of G are cyclic (Theorem 3.9
of [7]).

(2) If P2 is a 2-Sylow subgroup of G, then Z(P2) = [P2, P2], and both P2/[P2, P2]
and [P2, P2] are elementary abelian 2-groups of cardinality q (from Theo-
rem 3.10(c) and Lemma 3.1 of [7]).

(3) If P2 and P 2 are distinct 2-Sylow subgroups of G, then P2 ∩ P 2 = {1} (The-
orem 13.9 of [7]).

The property described in Fact (3) is inherited by subgroups, so the 2-Sylow sub-
groups of C are pairwise disjoint. But they all contain σ, so C contains a unique
2-Sylow subgroup, P2.

Suppose that the subgroup H ≤ G is nontrivial. As noted at the beginning of
this section, HHσ ∼= H × H. Since HHσ is a square subgroup, none of its Sylow
subgroups are embeddable into cyclic groups. From Fact (1), HHσ must be a 2-
group, hence can be extended to a 2-Sylow subgroup P 2 ≤ G. The Sylow subgroups
P2 and P 2 must be different, since σ ∈ Z(P2) but σ does not centralize H ⊆ P 2.
Now, the 2-group C ∩ (HHσ) is contained in P 2, since HHσ is, and it is contained in
P2, since C ∩ (HHσ) is a 2-group that is contained in C and P2 is the unique 2-Sylow
subgroup of C. Thus, by Fact (3), C ∩ (HHσ) ⊆ P2 ∩ P 2 = {1}. Since ρ : C → C is
a retraction onto C ∩ (HHσ), ρ is constant, hence K = ker(ρ) = C.

Now suppose that ρ′ is a retraction of K = C onto 〈σ〉. Since 〈σ〉 ≤ P2 ≤ C = K,
ρ′ restricts to a retraction of P2 onto 〈σ〉. Necessarily ker(ρ′|P2) is a subgroup of
index 2 in P2 which does not contain σ. But any subgroup of index 2 in P2 contains
[P2, P2] = Z(P2), and σ ∈ Z(P2). Thus K has no retraction onto 〈σ〉. Corollary 2.15
applies to show that Sz(q)σ forces congruence permutability.

Example 3.14. Here we show that if σ is a 2-central involution in the Mathieu group
M11, then (M11)σ forces congruence permutability.

The only fact that we will need about this group is that if σ is a 2-central involution,
then C ∼= GL(2, 3) (Theorem 5.2 of [7]). Since −I is the unique central involution
of GL(2, 3), σ must correspond to −I under this isomorphism. The retraction ρ′



AUTOMORPHISM GROUPS OF SQUARES AND OF FREE ALGEBRAS 17

of GL(2, 3) that corresponds to ρ must restrict to a retraction of the commutator
subgroup SL(2, 3) into itself satisfying ρ′(−I) = I. Hence −I /∈ im(ρ′). But −I is
the unique involution of SL(2, 3), forcing ρ′(SL(2, 3)) to have odd order. This proves
that ker(ρ′) contains the unique 2-Sylow subgroup of SL(2, 3), which is an 8-element
quaternion group containing −I in its center. Applying this information to ρ, we
conclude that K = ker(ρ) contains an 8-element quaternion group with σ in its
center. The fact that the quaternion group has no retraction onto its center prevents
K from having a retraction onto 〈σ〉. Thus (M11)σ forces congruence permutability.

Remark 3.15. Using GAP, we have checked that when σ is a 2-central involution of
any of the other simple Mathieu groups, Mi, i = 12, 22, 23, 24, then no nucleus of
Mi retracts onto 〈σ〉. Hence each (Mi)σ forces congruence permutability when σ is
2-central.

4. Class size dimension

It follows from the equations in Definition 2.1 that for any C ∈ V[Gσ] there is an
action of G on the set C × C in which σ acts by switching coordinates, namely the
action defined by the rule

(4.1) α(a, b) := (tα(a, b), tσα(a, b)).

In this section we develop machinery to help determine when pairs (a, b), (c, d) ∈
C × C lie in the same G-orbit.

The results of this paper would be stronger and easier to prove if V[Gσ] was congru-
ence uniform.1 It isn’t, so we proceed to introduce a measure of the nonuniformity of
congruences. In the typical situation considered, B and C are finite algebras in V[Gσ]
and f : B → C is a surjective homomorphism. The function C → Z : c 7→ |f−1(c)|
lists the class sizes of the congruence ker(f). We will study the real vector space
Vect(C) spanned by the functions of the form

(4.2) φf : C → R : c 7→ log(|f−1(c)|) ,
as B ranges over all finite algebras in V[Gσ] and f ranges over all surjective homo-
morphisms f : B→ C. The vector space dimension of Vect(C), called the class size
dimension over C and denoted dim(C), is a measure of the nonuniformity of the
kernels of homomorphisms onto C.

If C ∈ V[Gσ] is a nonempty finite algebra and D ∈ V[Gσ] is a nontrivial algebra,
then the surjective homomorphism π1 : C×D → C : (c, d) → c induces the nonzero
constant function φπ1(c) = log(|D|) ∈ Vect(C). This shows that dim(C) ≥ 1 for
any nonempty finite algebra in V[Gσ]. It also shows that dim(C) = 1 if and only if

1A congruence is uniform if all classes have the same size. An algebra is congruence uniform if
all of its congruences are uniform, and a variety is congruence uniform if all of its algebras are.
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Vect(C) contains only constant functions, which holds if and only if the kernel of any
surjective homomorphism f : B→ C, with B ∈ V[Gσ] finite, is a uniform congruence.

Lemma 4.1. Let C be a finite algebra in V[Gσ]. If φ ∈ Vect(C), a, b ∈ C, and
α ∈ G, then

(4.3) φ(a) + φ(b) = φ(tα(a, b)) + φ(tσα(a, b)) .

Proof. Referring back to (4.2), Vect(C) is spanned by vectors of the form φf where
f is a surjective homomorphism B→ C. Therefore it is enough to verify (4.3) when
φ = φf . In this case, the left hand side of (4.3) is

φf(a) + φf(b) = log(|f−1(a)|) + log(|f−1(b)|) = log(|f−1(a)× f−1(b)|),
while the right hand side is

φf(tα(a, b)) + φf(tσα(a, b)) = log(|f−1(tα(a, b))× f−1(tσα(a, b))|).
To establish (4.3) it suffices to show that

|f−1(a)× f−1(b)| = |f−1(tα(a, b))× f−1(tσα(a, b))|.
We prove this by showing that the function (c, d) 7→ (tα(c, d), tσα(c, d)) is a bijection
from f−1(a) × f−1(b) onto f−1(tα(a, b)) × f−1(tσα(a, b)). Choose (c, d) ∈ f−1(a) ×
f−1(b). Then f(c) = a and f(d) = b. Thus f(tα(c, d)) = tα(f(c), f(d)) = tα(a, b),
meaning that tα(c, d) ∈ f−1(tα(a, b)), and similarly tσα(c, d) ∈ f−1(tσα(a, b)). This
proves that, in terms of the G-action on B×B defined by line ( 4.1), α maps pairs of
f−1(a)×f−1(b) to pairs of f−1(tα(a, b))×f−1(tσα(a, b)). The inverse map is provided
by α−1. �
Theorem 4.2. Let Gσ be a group with designated involution σ. Let F be a finite,
2-generated, free algebra in V[Gσ] for which the canonical homomorphism κ : Gσ →
Aut(F)σ is an isomorphism. Let V be the variety generated by F. If C ∈ V is finite
and (a, b), (c, d) ∈ C ×C, then (a, b) and (c, d) belong to the same G-orbit, under the
action defined in line (4.1), if and only if

(1) {a, b} and {c, d} generate the same subalgebra D of C, and
(2) φ(a) + φ(b) = φ(c) + φ(d) for all φ ∈ Vect(D).

Proof. Assume first that (a, b) and (c, d) belong to the same G-orbit. Then there is
an α ∈ G such that (c, d) = α(a, b) = (tα(a, b), tσα(a, b)). This shows that c = tα(a, b)
and d = tσα(a, b), so c and d belong to subalgebra generated by {a, b}. Similarly,
(a, b) = α−1(c, d), so a and b belong to the subalgebra generated by {c, d}. This
proves that (1) must hold. That (2) holds follows from Lemma 4.1.

Now we assume that (1) and (2) hold and argue that (c, d) = (tα(a, b), tσα(a, b))
for some α. By (1), the homomorphism f : F→ D that is defined on the generators
x, y ∈ F by x 7→ a and y 7→ b is surjective. For each subuniverse S ≤ F let

N(S; r, s) = |(f−1(r) ∩ S)× (f−1(s) ∩ S)|
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denote the number of pairs (p, q) ∈ S × S such that f(p) = r and f(q) = s.

Claim 4.3. N(S; a, b) = N(S; c, d) for all subuniverses S of F .

Proof. If f |S : S→ D is not surjective, then since {a, b} and {c, d} are both generating
sets there can be no pairs (p, q) ∈ S×S such that f(p) = a and f(q) = b, or f(p) = d
and f(q) = d. That is, N(S; a, b) = N(S; c, d) = 0 when f(S) 6= D.

Now suppose that g := f |S : S→ D is surjective. Then

log(N(S; a, b)) = log(|g−1(a)× g−1(b)|) = φg(a) + φg(b),

and similarly log(N(S; c, d)) = φg(c) + φg(d). Hence N(S; a, b) = N(S; c, d) is a
consequence of our assumption that (2) holds, �

The pairs (u, v) in f−1(a) × f−1(b) for which {u, v} is a generating set for F are
precisely the pairs in f−1(a) × f−1(b) that lie in no proper subuniverse S $ F .
Therefore, by the principle of inclusion and exclusion, the number of pairs (u, v) ∈
f−1(a)× f−1(b) for which {u, v} is a generating set for F is

N(F ; a, b)−
∑

S′⊆S
(−1)|S

′|+1N
(⋂
S ′; a, b

)

where S is the family of all proper subuniverses of F and S ′ ranges over nonempty
subfamilies of S. By Claim 4.3, N(S; a, b) = N(S; c, d) for any subuniverse S ⊆ F ;
therefore the number of pairs (u, v) ∈ f−1(a)×f−1(b) such that {u, v} is a generating
set for F is the same as the number of pairs (p, q) ∈ f−1(c)× f−1(d) such that {p, q}
is a generating set for F. But there is at least one pair (u, v) ∈ f−1(a)× f−1(b) such
that {u, v} is a generating set, namely (u, v) = (x, y). Therefore, there is at least one
pair (p, q) ∈ f−1(c)× f−1(d) such that {p, q} is a generating set for F.

If {p, q} is a generating set for F, then the endomorphism of F defined on gener-
ators by x 7→ p and y 7→ q is surjective. Since F is finite, this endomorphism is an
automorphism. Since the canonical homomorphism κ is an isomorphism, this endo-
morphism is κ(α) for some α ∈ G. But then (p, q) = (x, y)κ(α) = (tα(x, y), tσα(x, y)),
so c = f(p) = f(tα(x, y)) = tα(f(x), f(y)) = tα(a, b), and similarly d = tσα(a, b). This
proves that (c, d) = α(a, b), hence (a, b) and (c, d) lie in the same G-orbit. �

If d = dim(C), then there is a basis B = {φ0, . . . , φd−1} for Vect(C) with φ0 equal
to the nonzero constant function with range {1}. The function

(4.4) Φ: C → Rd : c 7→ (φ0(c), . . . , φd−1(c))

maps the finite set C into Rd. The convex hull of the finite set of points Φ(C) is a
polytope in Rd, which we will denote Poly(C). This polytope depends on the choice
of the basis B for Vect(C), but we will see that some of its properties — such as its
dimension — do not.
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To fix language, a hyperplane in Rd is a set of the form

(4.5) H = {x ∈ Rd | utx = r}

for some fixed u ∈ Rd and some fixed r ∈ R. The set {x ∈ Rd | utx ≤ r} is a
half space determined by the hyperplane (4.5). A polytope in Rd may be equivalently
defined as either the convex hull of a finite set of points or as a bounded set that is
the intersection of finitely many half spaces. A hyperplane H supports a polytope P
if P lies in a half space determined by H. A face of a polytope P is the intersection
of P with one of its supporting hyperplanes. A face may be empty. The face lattice
of a polytope is the lattice of all faces ordered by inclusion. It can be shown that
the intersection of two faces is a face, so the meet in this lattice is intersection.
The dimension of a (face of a) polytope is the least dimension of an affine subspace
containing the (face of the) polytope. A face of dimension zero is a vertex, and a face
of dimension one is an edge.

To compute the dimension of Poly(C), note that each point Φ(c) lies in the affine
subspace of Rd consisting of tuples with first coordinate 1 (since φ0 ≡ 1). Thus,
the dimension of Poly(C) is at most d − 1. If the dimension of Poly(C) is < d− 1,
then Poly(C) must lie in a proper linear subspace of Rd, hence there is a nonzero
vector (A0, . . . , Ad−1)t ∈ Rd orthogonal to all tuples Φ(c), c ∈ C. This implies
that A0φ0 + · · · + Ad−1φd−1 = 0 is a dependence relation among the elements of
B, contradicting the fact that B is a basis. Therefore, the dimension of Poly(C) is
exactly d−1 = dim(C)−1, which allows us to use Poly(C) to compute the class size
dimension over C.

Lemma 4.4. Let G be a group with a designated involution σ, and let C be a finite
algebra in V[Gσ]. If F is a face of Poly(C), then Φ−1(F ) is a subuniverse of C.
In fact, the function Φ−1 is a meet embedding of face lattice of Poly(C) into the
subalgebra lattice Sub(C).

Proof. Let F be a face of Poly(C). Suppose that a, b ∈ Φ−1(F ), or equivalently that
Φ(a),Φ(b) ∈ F . Choose any α ∈ G. It follows from Lemma 4.1 that

(4.6) Φ(a) + Φ(b) = Φ(tα(a, b)) + Φ(tσα(a, b)) .

Since (Φ(a) + Φ(b))/2 is the midpoint of the segment joining two elements of F ,
it belongs to F . Equation (4.6) implies that the midpoint of the segment joining
Φ(tα(a, b)) and Φ(tσα(a, b)) therefore lies in F , so each of these points lie in F since
F is a face. In particular, tα(a, b) ∈ Φ−1(F ). Since a, b and α were arbitrary, Φ−1(F )
is a subuniverse.

Since the meet operation in both the face lattice of Poly(C) and in Sub(C) is
intersection, it follows that Φ−1 preserves meet.
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To see that Φ−1 is 1-1, assume that F 6⊆ F ′ are faces. Then some vertex of F does
not belong to F ′. But a vertex of a face is a vertex of Poly(C), and all of these are
in the image of Φ. Thus Φ−1(F ) 6⊆ Φ−1(F ′). �
Corollary 4.5. If k is the largest number of nonempty subuniverses in any chain
∅ 6= U1 $ U2 $ · · · $ Uk in Sub(C), then dim(C) ≤ k.

Proof. If dim(C) = d, then the dimension of Poly(C) is d− 1. A (d− 1)-dimensional
polytope has faces ∅ 6= F1 $ · · · $ Fd where the dimension of Fi is i − 1. By
Lemma 4.4, ∅ 6= Φ−1(F1) $ · · · $ Φ−1(Fd) is a chain of d nonempty subuniverses of
C. Since k is the length of the longest chain of subuniverses, dim(C) = d ≤ k. �
Lemma 4.6. Let G be a group with a designated involution σ, let C be a finite
algebra in V[Gσ], and let S ≤ C be a nonempty subalgebra. If φ ∈ Vect(C), then
φ|S ∈ Vect(S).

In particular, if the function Φ defined in line (4.4) is nonconstant on S, then
dim(S) ≥ 2.

Proof. To prove that φ ∈ Vect(C) implies φ|S ∈ Vect(S), it suffices to prove it
on a basis for Vect(C). Hence we may assume that φ = φf for some surjective
homomorphism f from some finite B ∈ V[Gσ] to C.

Let B′ = f−1(S) and let g = f |B′ . Then g is a surjective homomorphism from
some finite B′ ∈ V[Gσ] to S, so φg ∈ Vect(S). But φg = φf |S.

The second claim of the lemma follows from the first and the fact that Vect(S)
contains a nonzero constant vector whenever S is nonempty. �
Lemma 4.7. Let G be a group with a designated involution σ and let C ∈ V[Gσ] be
finite. If γ ∈ Aut(C) and φ ∈ Vect(C), then φ ◦ γ−1 ∈ Vect(C).

Proof. Suppose that B ∈ V[Gσ] is finite, f : B → C is surjective, and φ = φf . The

composite homomorphism g : B
f→ C

γ→ C induces the vector φg = φf ◦ γ−1. This
shows that the implication

φ ∈ Vect(C) =⇒ φ ◦ γ−1 ∈ Vect(C)

holds when φ = φf , hence it holds for all φ ∈ Vect(C). �
Now we consider the class size dimensions over algebras C from a minimal, locally

finite, congruence permutable varietyM≤ V[Gσ]. Recall the structure of algebras in
such varieties: an algebra is strictly simple if it is finite, simple, and has no nontrivial
proper subuniverses. A minimal locally finite variety has the form M = H S P(A)
for some uniquely determined strictly simple algebra A (cf. [8]). IfM is congruence
permutable, then A is either a quasiprimal algebra or an affine algebra with a 1-
element subuniverse (cf. Theorems 12.1 and 12.4 of [2]). Whether A is quasiprimal
or affine, Fleischer’s Lemma guarantees that each finite algebra C ∈ M is isomorphic
to An for some finite n.
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Lemma 4.8. Let A be a strictly simple quasiprimal algebra. If S is a maximal proper
subuniverse of An for some n ≥ 1, then either S = A× · · ·× {0}︸︷︷︸

i

× · · ·×A for some

i and some 1-element subuniverse {0}, or

(4.7) S = {(a1, . . . , an) | ai = ajα for some i 6= j and some α ∈ Aut(A)}.

Proof. This follows from Theorem 4.2 of [9], which characterizes the subuniverses of
finite powers of quasiprimal algebras. �

Theorem 4.9. Let M ≤ V[Gσ] be a minimal, locally finite, congruence permutable
variety with strictly simple generator A. If dim(A) = 1, then dim(An) = 1 for all
n ≥ 1.

Proof. Assume not. Let n > 1 be the least positive integer such that dim(An) > 1.
The first fact to establish is that dim(An) = 2.

If instead dim(An) > 2, then Poly(An) has dimension greater then 1, so there is a
proper face F $ Poly(An) of dimension exactly 1 (an edge). According to Lemma 4.4,
S := Φ−1(F ) is a proper subuniverse of An. Φ(S) contains the distinct endpoints of
F , so Φ is nonconstant on S. By Lemma 4.6, dim(S) ≥ 2. But S ∼= Ak for some
k < n, contradicting the minimality of n. The conclusion is that dim(An) = 2 and
dim(S) = 1 for all proper subalgebras S ≤ An.

Poly(An) has dimension one, so it is an edge. Let u and v be the endpoints, and
let U = Φ−1({u}) and V = Φ−1({v}) be the proper nonempty subuniverses of An

that map to u and v respectively. These subuniverses are disjoint since U ∩ V =
Φ−1({u} ∩ {v}) = Φ−1(∅) = ∅. They are also maximal subuniverses, since if U ′ is a
subuniverse of An that properly extends U , then Φ is nonconstant when restricted to
U ′. By Lemma 4.6, dim(U′) ≥ 2, so U ′ = An. The maximal subuniverses of An, when
A is a strictly simple algebra in a congruence permutable variety, are isomorphic to
An−1.

Suppose that A has a 1-element subuniverse {0}. If U contains no tuple (a1, . . . , an)
with ai = 0 for some i, then the restrictions of the projections πi : An → A to U
fail to be surjective for every i. Since A is strictly simple and πi(U) is a proper
subuniverse of A, the restriction of each πi to U is constant, forcing |U | = 1. This
contradicts |U | = |A|n−1. Hence U contains a tuple (a1, . . . , an) with ai = 0 for
some i, and similarly V contains a tuple (b1, . . . , bn) with bj = 0 for some j. Let
W be the subuniverse of An of all tuples (a1, . . . , an) with ai = 0, and let X be the
subuniverse of An of all tuples (b1, . . . , bn) with bj = 0. Then, since U, V,W and X
are proper subuniverses, Φ is constant on each of these subuniverses. But U intersects
W , which intersects X, which intersects V , so Φ is constant on their union. This
contradicts the fact that Φ(U) = {u} and Φ(V ) = {v}. The conclusion is that A has
no 1-element subuniverse. In particular, we are not in the case where A is an affine
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algebra with a 1-element subuniverse, so we must be in the case where A is a strictly
simple quasiprimal algebra.

From Lemma 4.8, U = {(a1, . . . , an) | ai = ajα} and V = {(a1, . . . , an) | ak = a`β}.
Since U and V are disjoint, {i, j} = {k, `}. If n > 2, then there is a third coordinate
k /∈ {i, j}, and W = {(a1, . . . , an) | ai = ak} intersects both U and V . This means
that Φ is constant on U, V and W , hence on their union. But Φ is not constant on
U ∪ V since Φ(U ∪ V ) = {u, v}, a contradiction. The conclusion is that n = 2.

Since dim(A2) = 2, the function Φ(x) is of the form (φ0(x), φ1(x)) where φ0 is the
constant vector with range {1}. There is no harm in assuming that φ1 = φf is a
nonconstant vector in Vect(A2) induced by some surjective homomorphism f : B→
A2 from some finite B ∈ V[Gσ], so we make that assumption. This meaning for f
and φf should now be considered fixed for the remainder of the proof. The endpoints
u and v of Poly(A2) have the form u = (1, r) and v = (1, s) where r and s are the
least and largest real numbers in the set φf(A

2) in some order. The function φf
defines a linear quasiorder on A2 by (a, b) ≤ (c, d) if and only if φf(a, b) ≤ φf(c, d)
in R. The subuniverses U = Φ−1({u}) = φ−1

f (r) and V = Φ−1({v}) = φ−1
f (s) are the

sets of least and largest elements in A2 under this quasiorder. In particular,

(4.8) φf(U) = {r} 6= {s} = φf(V ).

Select another nonconstant vector φ ∈ Vect(A2), and use it to define a second
linear quasiorder on A2: (a, b) � (c, d) if and only if φ(a, b) ≤ φ(c, d) in R. Since
φ = c0φ0 + cfφf with cf 6= 0 when φ is nonconstant, and since φ0 is a constant
vector, it follows that � = ≤ when cf > 0 and � = ≤∂ when cf < 0. Thus, the
linear quasiorder on A2 arising from a nonconstant vector from Vect(A2) is uniquely
determined up to duality.

By Lemma 4.7, if Γ ∈ Aut(A2), then φ ◦ Γ−1 ∈ Vect(A2). The vector φ ◦ Γ−1

is nonconstant since φ is nonconstant and Γ is a permutation. Therefore the linear
quasiorder defined by φ ◦ Γ−1 is either ≤ or ≤∂. If it is ≤, then Γ preserves ≤, while
if it is ≤∂, then Γ reverses ≤. Since the sets of least and largest elements under the
quasiorder are U and V (in some order), this forces either (U)Γ = U and (V )Γ = V ,
or else (U)Γ = V and (V )Γ = U .

Both U and V are maximal proper subuniverses of A2, and A is a quasiprimal
algebra without proper subuniverses, so from Lemma 4.8 it follows that U and V
are graphs of automorphisms of A. Say U = {(a, aα) | α ∈ Aut(A)} and V =
{(a, aβ) | β ∈ Aut(A)}. If γ ∈ Aut(A), then Γ = id×γ ∈ Aut(A2). By the result
of the previous paragraph, Γ maps each of U and V into itself or else it interchanges
the two. Since (U)Γ = {(a, a(αγ)) | a ∈ A} is the graph of αγ and (V )Γ is the graph
of βγ, this implies that {αγ, βγ} = {α, β}. Since this holds for every γ ∈ Aut(A),
it must be that Aut(A) = {α, β} = {id, τ} for some involution τ . Since U and V
are the graphs of distinct automorphisms of A, and |Aut(A)| = 2, U and V are the
graphs of id and τ .
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Let us define some vectors in Vect(A3). As has been our convention, φ0 will denote
the constant vector with range {1}. From above we have a surjective homomorphism
f : B → A2, which we write here in terms of its components: f(x) = (f1(x), f2(x)),
where fi = πi ◦ f . The function g1 := id×f : A×B→ A×A2 = A3 is a surjective
homomorphism from an algebra A×B ∈ V[Gσ] to A3. In terms of its components,
it is the function g1(a, b) = (a, f1(b), f2(b)). By cyclically permuting coordinates
we obtain other surjective homomorphisms g2(a, b) = (f2(b), a, f1(b)) and g3(a, b) =
(f1(b), f2(b), a) from A × B to A3. Let φg,1, φg,2 and φg,3 be the induced vectors in
Vect(A3). Observe that if a = (a1, a2, a3) ∈ A3, then

(4.9) φg,1(a) = log(|g−1
1 (a)|) = log(|{a1} × f−1(a2, a3)|) = φf(a2, a3),

and similarly φg,2(a) = φf(a3, a1) and φg,3(a) = φf(a1, a2).
The fact that A is quasiprimal with no 1-element subuniverse implies that the sub-

universes of A3 have size |A|, |A|2 or |A|3. In particular, a maximal chain of nonempty
subuniverses of A3 contains at most 3 members. By Corollary 4.5, dim(A3) ≤ 3. This
means that the set {φ0, φg,1, φg,2, φg,3} is not linearly independent. Suppose that

(4.10) c0φ0 + c1φg,1 + c2φg,2 + c3φg,3 = 0

is a nontrivial dependence relation. It cannot be that c1 = c2 = c3 = 0, since φ0 6= 0,
so we may assume by symmetry that c1 6= 0. Choose and fix an element 0 ∈ A.
By applying φg,1 to a triple of the form (0, x, y) ∈ A3 we derive from (4.9) that
φg,1(0, x, y) = φf(x, y). Similarly, φg,2(0, x, y) = φf(y, 0) and φg,3(0, x, y) = φf(0, x).
Thus, if we solve for φg,1 in equation (4.10), evaluate all functions at (0, x, y), and
write everything in terms of φf we get that

(4.11) φf (x, y) = −(c2/c1)φf(y, 0)− ((c3/c1)φf(0, x) + (c0/c1))

proving that φf(x, y) is the sum of two real valued unary functions. For simplicity of
notation, we will rewrite (4.11) as φf(x, y) = h(x) + k(y).

By (4.8), φf(U) = {r}, φf(V ) = {s}, and r 6= s. We have established that U and V
are the graphs of the automorphisms id, τ ∈ Aut(A2). By interchanging U with V and
r with s if necessary we may assume that U is the graph of id and V is the graph of τ .
Since φf (U) = {r}, and U = {(x, x) | x ∈ A}, we get that φf(x, x) = h(x) +k(x) = r
for all x ∈ A. Thus, k(x) = r − h(x), and so φf(x, y) = h(x) − h(y) + r. The fact
that φf(V ) = {s} and V = {(x, xτ) | x ∈ A} implies that

(4.12) h(x)− h(xτ) + r = φf(x, xτ) = s

for all x ∈ A. Averaging the left and right sides over all x ∈ A, and using that τ is a
permutation, yields r = s. This contradicts (4.8), and completes the proof. �

If A is strictly simple, then its nonempty subuniverses can have size 1 or |A| only.
Hence dim(A) ≤ 2, according to Corollary 4.5. Theorem 4.9 gives all the information
we will need in the case where dim(A) = 1, so we turn now to the case dim(A) = 2.
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Theorem 4.10. Let M≤ V[Gσ] be a minimal, locally finite, congruence permutable
variety with strictly simple generator A. If dim(A) = 2, then dim(An) = n + 1 for
all n ≥ 1. Moreover, A has a linear quasiorder ≤ such that

(1) A has exactly one minimal element 0 under ≤, and {0} is a subuniverse. A
has exactly one maximal element 1 under ≤, and {1} is a subuniverse.

(2) If P ⊆ A is the set of covers of 0, then ({0} × P ) ∪ (P × {0}) ⊆ A× A is a
union of orbits under the action defined in line (4.1).

(3) A has at most one non-identity automorphism. If it exists, then it is order-
reversing with respect to ≤.

Proof. We discuss the linear quasiorder first. Since dim(A) = 2, Φ(x) may be taken
to be of the form (φ0(x), φf(x)) where φ0 is the constant vector with range {1}
and φf is induced by some surjective homomorphism f : B → A from some finite
B ∈ V[Gσ]. Necessarily Poly(A) is an edge. If its endpoints are u = (1, r) ∈ R2

and v = (1, s) ∈ R2. then r and s are the least and largest real numbers in range
of φf . The vector φf defines a linear quasiorder on A by a ≤ b if and only if
φf(a) ≤ φf(b) in R. This is the quasiorder referred to in the statement of the
theorem. U = Φ−1({u}) = φ−1

f (r) and V = Φ−1({v}) = φ−1
f (s) are the sets of least

and largest elements in A under this quasiorder. Since endpoints are faces, U and
V are proper subuniverses of A, hence U = {0} and V = {1} for some 0, 1 ∈ A.
Here the notation is chosen so that φf(0) < φf(1), equivalently 0 < 1 in the linear
quasiorder on A. This establishes property (1) of the linear quasiorder.

Let P ⊆ A be the set of covers of 0, i.e. p ∈ P if and only if t := φf(p) is the
second smallest value attained by φf . (Recall that φf(0) = r is the smallest value
attained by φf .) If (p, q) ∈ X = ({0} × P ) ∪ (P × {0}), then φf(p) + φf(q) =
r + t. If (m,n) = α(p, q) = (tα(p, q), tσα(p, q))), then from Lemma 4.1 we get that
φf(m) + φf(n) = r + t. But this forces one of the elements m or n to be 0 and the
other to be from P . Thus, if (p, q) ∈ X, then α(p, q) ∈ X for any α ∈ G.

As argued in the seventh and eighth paragraphs of the proof of Theorem 4.9, the
linear quasiorder is unique up to duality and any automorphism of A either preserves
the quasiorder or reverses it. An automorphism that preserves the linear quasiorder
must fix the least and largest elements 0 and 1. Since the set of fixed points of an
automorphism is a subuniverse, and A is strictly simple, only the identity automor-
phism can preserve the linear quasiorder. This means that any two automorphisms
that reverse the linear quasiorder are inverses to one another, so there exists at most
one automorphism that reverses the linear quasiorder. This establishes (3).

We now argue that dim(An) = n+ 1 for all finite n. Since a subuniverse of An has
cardinality |A|k for some 0 ≤ k ≤ n, Corollary 4.5 proves that dim(An) ≤ n+ 1. We
establish equality by exhibiting a set of n+ 1 independent vectors in Vect(An). The
pullback of the homomorphism f : B → A along the i-th projection πi : An → A is
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a surjective homomorphism

fi : A× · · · × B︸︷︷︸
i

× · · · ×A→ An : (a1, . . . , bi, . . . , an) 7→ (a1, . . . , f(bi), . . . , an).

This function induces the vector φf,i ∈ Vect(An) defined by φf,i(a1, . . . , an) = φf(ai).
Let φ0 be the constant vector with range {1}. Each one of the vectors in the set
{φ0, φf,1, . . . , φf,n}, except φf,i, is independent of its i-th variable when considered as
a function of n variables. Thus, for all i, φf,i is not a combination of the remaining
vectors. Since φ0 is not the zero vector, the set {φ0, φf,1, . . . , φf,n} is an independent
set of n + 1 vectors in Vect(An). Thus, dim(An) = n+ 1 for all n, as claimed. �

We record some useful information that emerged from the previous proof.

Corollary 4.11. LetM≤ V[Gσ] be a minimal, locally finite, congruence permutable
variety with strictly simple generator A. Assume that dim(A) = 2. If φ ∈ Vect(A) is
nonconstant, φ0 ∈ Vect(An) is the constant vector with range {1}, and φi ∈ Vect(An)
is defined by

φi(a1, . . . , an) := φ(ai),

then {φ0, φ1, . . . , φn} is a basis for Vect(An).

Proof. In the proof of Theorem 4.10 this is established in the case where φ = φf .
It can be derived for every other nonconstant φ ∈ Vect(A) from the fact that φ =
c · φ0 + d · φf for some c, d ∈ R where d 6= 0. �

The next two theorems add further information to Theorem 4.10.

Theorem 4.12. Let M≤ V[Gσ] be a minimal, locally finite, congruence permutable
variety with strictly simple generator A. If dim(A) = 2, then A is quasiprimal.

Proof. To prove that A is quasiprimal, it suffices to show that it is not an affine
algebra with a 1-element subuniverse. Assume instead that it is, and that {0} is a 1-
element subuniverse of A. Then A is polynomially equivalent to a module with zero
element 0. If p(x, y, z) is a Maltsev term for A, then the polynomial x−y := p(x, y, 0)
is the subtraction of this module, and

(4.13) Γ: A2 → A2 : (x, y) 7→ (x− y, y)

is an automorphism of A2.
Choose and fix a nonconstant vector φ ∈ Vect(A). From Theorem 4.10 we have

dim(A2) = 3, so according to Corollary 4.11 an explicit basis for Vect(A2) is B :=
{φ0, φ1, φ2} where φ0 is the constant vector with range {1}, and φi(a1, a2) = φ(ai)
for i = 1, 2. Applying Lemma 4.7 to the automorphism Γ defined on line (4.13), we
get that φ1 ◦ Γ−1 ∈ Vect(A2). Here

φ1 ◦ Γ−1(x, y) = φ1(x+ y, y) = φ(x + y).
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If we express φ1 ◦ Γ−1 in terms of the basis B, we get

φ1 ◦ Γ−1 = c0φ0 + c1φ1 + c2φ2

for certain ci ∈ R. Applying both sides to a typical pair (x, y) ∈ A2, we find that

φ(x+ y) = c0 + c1φ(x) + c2φ(y).

This proves that φ(x + y) is the sum of a real valued function of x ∈ A and a real
valued function of y ∈ A. Equivalently,

φ(x+ y)− φ(x + 0)− φ(0 + y) + φ(0 + 0) = 0,

which may be rewritten as

φ(x+ y)− φ(0) = (φ(x)− φ(0)) + (φ(y)− φ(0)).

Thus, φ(x)− φ(0) is a homomorphism from the additive group of A to the additive
group of real numbers. Since A is finite and R has characteristic zero, the only such
function is constant. This is impossible because φ was chosen to be nonconstant.
This contradiction concludes the proof that A is not affine. �

The homomorphism µ of the following theorem plays a vital role in Section 6.

Theorem 4.13. Let Gσ be a group with designated involution σ. Let F be a finite,
2-generated, free algebra in V[Gσ] for which the canonical homomorphism κ : Gσ →
Aut(F)σ is an isomorphism. Let V be the variety generated by F, and let M be
a minimal, locally finite, congruence permutable subvariety of V with strictly simple
generator A. Assume that dim(A) = 2. If P is the set of covers of 0 in the linear qua-
siorder of Theorem 4.10 (2), then every permutation of X := ({0}×P )∪ (P×{0}) is
induced by an element of G. Hence, for n = |X|, there is a surjective homomorphism
of pointed groups,

µ : Gσ � (Sn)σ
where Sn is the symmetric group on n letters and σ ∈ Sn is a fixed point free involu-
tion.

Proof. According to Theorem 4.10 (2), X is a union of G-orbits under the action
defined in line (4.1). This yields a representation G → SX . Fix an enumeration
{(ai, bi) | 1 ≤ i ≤ n} of the pairs in X, and use this to re-express this representation
as µ : G→ Sn. Our tasks are to show that µ is surjective and that µ(σ) is fixed point
free (in which case we will take µ(σ) ∈ Sn to be the element of Sn denoted σ, so that
µ is a pointed group homomorphism).

We must show that for any λ ∈ Sn there exists α ∈ G such that α(ai, bi) =
(aλ(i), bλ(i)) for all i. If 1 ∈ P , where 1 is the largest element in the linear quasiorder
of Theorem 4.10, then P = {1}, X = {(0, 1), (1, 0)}, n = 2, and id, σ ∈ G induce the
two distinct permutations of X. This proves the theorem in the case where 1 ∈ P ,
so henceforth we assume that 1 /∈ P .
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Claim 4.14. If a = (a1, . . . , an) and b = (b1, . . . , bn), then {a,b} generates An.

Proof. Let S be the subuniverse of An generated by {a,b}. By Lemma 4.8, the fact
that A is quasiprimal (Theorem 4.12) implies that if S is a proper subuniverse of
An then there are coordinates 1 ≤ i < j ≤ n such that the projection Sij := πij(S)
is a proper subuniverse of A2. The subuniverse Sij contains {(ai, aj), (bi, bj)} =
{(0, 0), (p, q)} or {(0, p), (p′, 0)} where p, p′, q ∈ P and p 6= q. Since 0 /∈ P , Sij
is a subdirect subuniverse of A2, hence is the graph of an automorphism of A. If
{(ai, aj), (bi, bj)} = {(0, 0), (p, q)}, then this automorphism fixes 0 and moves p to
q. But no nonidentity automorphism of A fixes 0, according to Theorem 4.10 (3).
If {(ai, aj), (bi, bj)} = {(0, p), (p′, 0)}, then this automorphism moves 0 to p and p′

to 0. But a nonidentity automorphism of A can only move 0 to 1, according to
Theorem 4.10 (3), and 1 /∈ P . Thus S = An, as claimed. �

Choose and fix λ ∈ Sn. Let c = (aλ(1), . . . , aλ(n)) and d = (bλ(1), . . . , bλ(n)). Using
the same argument as that for Claim 4.14, {c,d} generates An. This shows that
item (1) of Theorem 4.2 holds, when C = D = An.

Let φ ∈ Vect(A) be a nonconstant vector inducing the linear quasiorder on A that
is described in Theorem 4.10. Suppose that φ(0) = r and φ(P ) = {t}. Let B =
{φ0, . . . , φn} be the explicit basis of Vect(An) described in Corollary 4.11, namely φ0

is constant and φi(x) = φ(xi). Since φi(a) +φi(b) = φ(ai) +φ(bi) and (ai, bi) = (0, p)
or (p, 0), we get that φi(a) + φi(b) = φ(0) + φ(p) = r + t for all i. Similarly,
φi(c) + φi(d) = r + t for all i. This is enough to imply that

φ(a) + φ(b) = φ(c) + φ(d)

holds for all φ ∈ B, hence for all φ ∈ Vect(An). This shows that item (2) of Theo-
rem 4.2 holds. The conclusion guaranteed by that theorem is that there is an α ∈ G
such that (c,d) = α(a,b) = (tα(a,b), tσα(a,b)). By comparing coordinates we get
the middle equality in

α(ai, bi) = (tα(ai, bi), tσα(ai, bi)) = (ci, di) = (aλ(i), bλ(i)).

This proves that α(ai, bi) = (aλ(i), bλ(i)) holds for all i, as desired.
The fact that µ(σ) is fixed point free, equivalently that σ acts without fixed points

on X = ({0}×P )∪ (P ×{0}) ⊆ A×A, is a consequence of the facts that 0 /∈ P and
σ interchanges coordinates of A× A. �

5. Free Algebras and Their Automorphism Groups

At the end of the introduction we gave a brief sketch of our approach to the
representability problem for Gσ. Recall that we must determine Aut(E) for E =
FM(x, y), where M is a minimal locally finite variety. We do not know how to do
this for arbitrary minimal locally finite M, but in this section we will determine
Aut(E) for E = FM(x, y) where M is a congruence permutable, minimal, locally
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finite variety. The assumption of congruence permutability guarantees that M is
generated by a strictly simple algebra A that is quasiprimal or affine with a 1-element
subuniverse, and that E is a power of A. We consider the case E ∼= A1 first.

Theorem 5.1. Let A be a strictly simple algebra. A is a 2-generated free algebra if
and only if A is idempotent and Aut(A) acts sharply 2-transitively on A.

Proof. Since A has no nontrivial proper subuniverses, it is generated by any two
distinct elements. A is freely generated by {a, b} ⊆ A if and only if every function
f : {a, b} → A extends to an endomorphism of A. Since A is simple, the extension
is either constant or an automorphism, with the two cases distinguished according
to whether f(a) = f(b). All constant functions f : {a, b} → A have extensions to
endomorphisms if and only if A is idempotent, and all nonconstant functions have
extensions to automorphisms if and only if Aut(A) acts 2-transitively on A. The
action must be sharp, since otherwise some nonidentity automorphism of Aut(A) fixes
two elements, and the set of all fixed points would be a nontrivial proper subuniverse
of A. �
Theorem 5.2. Suppose that H acts sharply 2-transitively on a finite set A. Then H
is a Frobenius group whose Frobenius kernel K is elementary abelian of order |K| =
|A| = pt and of index [H : K] = pt− 1 for some prime p and some positive integer t.
K is the intersection of all nontrivial normal subgroups of H, and CH(K) = K.

In fact, either there is a finite field Fq, q = pt, such that H is a subgroup of the
group of semilinear transformations

x 7→ axα + b, a ∈ F×q , b ∈ Fq, α ∈ Aut(Fq)
containing the subgroup K of all translations (x 7→ x + b), or else H is one of
seven exceptional groups for which pt = 52, 72, 112, 112, 232, 292, or 592 (there are two
exceptional groups for which pt = 112).

If a 2-Sylow subgroup of H is generalized quaternion, then it is an 8-element quater-
nion group and H is one of the exceptional groups for which pt = 52, 112, 112, 292, or
592.

Proof. The information of the first two paragraphs can be derived from Section XII.9
of [7], particularly Theorems 9.1 and 9.8. If H is not exceptional, then a 2-Sylow sub-
group is a semidirect product of two cyclic groups, so it is not generalized quaternion.
If H is exceptional, then it follows from Remark 9.5 of [7] that the 2-Sylow subgroup
of H is the 8-element quaternion group Q8 in the cases where pt = 52, 112, 112, 292,
or 592, and has the form Q8 o Z2 in the cases where pt = 72 or 232. �

Next we discuss the situation where E ∼= An and n > 1, considering the quasiprimal
case first. Let A be a strictly simple quasiprimal algebra. Let Aut(A) act diagonally
on A × A on the right, i.e. (a, b)α := (aα, bα). A bad orbit under this action is an
orbit containing a pair (a, a) where {a} is a 1-element subuniverse of A. (If an orbit
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has one pair of this type, then every pair in the orbit is of this type.) An orbit that
is not bad is good. A subset of A× A will be called a good set of pairs if it contains
exactly one pair from each good orbit.

Lemma 5.3. Let A be a strictly simple quasiprimal algebra. If {(ai, bi) | 1 ≤ i ≤ n}
is a good set of pairs, then An is free on two generators in the variety generated by
A and a = (a1, . . . , an), and b = (b1, . . . , bn) are free generators of An.

Proof. Let S be the subuniverse of An generated by {a,b}. We use Lemma 4.8
to show that S = An. If this is not the case, then S is contained in a maxi-
mal proper subuniverse. If S is contained in a maximal subuniverse of the form
A × · · · × {0}︸︷︷︸

i

× · · · × A for some i and some 1-element subuniverse {0}, then

(ai, bi) = (0, 0). But this is not the case, since (0, 0) represents a bad orbit and
no pair (ai, bi) represents such an orbit. If S is contained in a maximal subuniverse
of the form {(a1, . . . , an) | ai = ajα for some i 6= j and some α ∈ Aut(A)}, then
(ai, bi) = (aj, bj)α. But this is not the case, since our set of good pairs contains only
one pair from each Aut(A)-orbit. Thus, S = An, indeed.

To prove that An is free over {a,b}, it will suffice to prove that An is the largest
2-generated algebra in the variety generated by A. Suppose that Am ∈ H S P(A)
is generated by c = (c1, . . . , cm) and (d1, . . . , dm). We cannot have (ci, di) = (0, 0)
for some 1-element subuniverse {0} of A, for then c and d both lie in the proper
subuniverse of An consisting of tuples with 0 in the i-th coordinate. If (ci, di) =
(cj, dj)α for some i 6= j and some α ∈ Aut(A), then c and d both lie in the proper
subuniverse consisting of all tuples x with xi = xjα. Thus, if Am is generated by
{c,d}, then {(ci, di) | 1 ≤ i ≤ m} is a set of pairs from distinct good orbits. This
shows that ≤n, since n is the number of good orbits. �

A semidirect product written MoQ will consist of pairs (m, q) ∈M×Q with multi-
plication given by (m1, q1)(m2, q2) = (m1γ(q1)(m2), q1q2) where γ : Q→ Aut(M) is a
homomorphism. If written QnM , then it consists of pairs (q,m) ∈ Q×M with mul-
tiplication given by (q1, m1)(q2, m2) = (q1q2, γ(q2)(m1)m2) where γ : Q → Aut(M)op

is a homomorphism. A wreath product M o Sn is a semidirect product Mn o Sn
where γ : Sn → Aut(Mn) is defined by γ(α)(m1, . . . , mn) = (mα−1(1), . . . , mα−1(n)).
We will typically write this as a right action and drop the reference to γ, i.e.,
(m1, . . . , mn)α = (mα(1), . . . , mα(n)),

Lemma 5.4. If A is quasiprimal, then Aut(An) = Aut(A) o Sn. If A is strictly
simple, then Aut(A) acts on A so that no nonidentity element has more than one
fixed point.

Proof. The automorphisms of An include those in Aut(A) o Sn for any algebra A.
Here α ∈ Aut(A) acts on the right in the i-th coordinate by (a1, . . . , ai, . . . , an) 7→
(a1, . . . , aiα, . . . , an) and λ ∈ Sn acts on the right on the set of coordinates by
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(a1, . . . , an) 7→ (aλ(1), . . . , aλ(n)). These generate all automorphisms of the form
(a1, . . . , an) 7→ (aλ(1)α1, . . . , aλ(n)αn). What we must show is that there are no other
automorphisms when A is quasiprimal. The property of quasiprimal algebras that we
will use is that An has a unique direct factorization as an n-th power, which follows
from the distributivity of Con(An).

Let θi be the kernel of the i-th coordinate projection πi : An → A. If Γ : An → An

is an automorphism, then the uniqueness of direct decompositions forces {(θi)Γ−1} =
{θi}, so there is a permutation λ ∈ Sn such that θλ(i) = (θi)Γ

−1. By the first

isomorphism theorem, the surjective homomorphism An Γ→ An πi→ A can be factored

as An πj→ A
αj→ A where j = λ(i) and αj ∈ Aut(A), We have (a1, . . . , an)Γ 7→

(aλ(1)α1, . . . , aλ(n)αn), so Γ ∈ Aut(A) o Sn, as desired.
That each α ∈ Aut(A)− {1} acts with at most one fixed point when A is strictly

simple follows from the fact that the set of fixed points of α is a subuniverse. �

The diagonal action of Aut(A) on A × A commutes with the interchanging of
coordinates. Therefore, the reflection of the orbit of a pair (u, v) across the diagonal
of A×A is the orbit of the pair (v, u). Either both or neither of the orbits are good.
We call a pair (u, v) from a good orbit isolated or nonisolated according to whether
the orbits of (u, v) and (v, u) are disjoint or equal.

We will distinguish between diagonal nonisolated pairs (those pairs from a good
orbit that have the form (u, u)) and off-diagonal nonisolated pairs (the rest of the
nonisolated pairs). A good sequence of pairs with parameters k, ` and m is a sequence
〈(ai, bi) | 1 ≤ i ≤ n〉 where {(ai, bi) | 1 ≤ i ≤ n} is a good set of pairs, and

(1) (a2i−1, b2i−1) = (u, v) and (a2i, b2i) = (v, u) are isolated pairs, for 1 ≤ i ≤ k,
(2) (a2k+i, b2k+i) = (u, u) is a diagonal nonisolated pair for 1 ≤ i ≤ `,
(3) (a2k+`+i, b2k+`+i) = (u, v) is an off-diagonal nonisolated pair for 1 ≤ i ≤ m,

and
(4) 2k + `+m = n.

In other words, a good sequence is obtained from a good set by ordering the pairs
so that the isolated pairs come first, followed by the diagonal nonisolated pairs, and
then the off-diagonal nonisolated pairs. Moreover, we assume that isolated pairs are
chosen in pairs, (u, v) followed by (v, u).

Theorem 5.5. Let A be a strictly simple quasiprimal algebra. If 〈(ai, bi) | 1 ≤ i ≤
n〉 is a good sequence of pairs with parameters k, ` and m, then An is free on two
generators in the variety generated by A and a = (a1, . . . , an), and b = (b1, . . . , bn)
are free generators of An. The element of Aut(An) that interchanges a and b is the
element σ := (α, β) ∈ Aut(A) o Sn where

(1) β = (1 2)(3 4) · · · (2k − 1 2k) ∈ Sn.
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(2) α = (α1, . . . , αn) ∈ Aut(A)n is the automorphism where αi = id for 1 ≤ i ≤
k+ ` and αj is the unique involution in Aut(A) satisfying (aj, bj)αj = (bj, aj)
for k + ` < j ≤ n.

Proof. We first clarify the use of the word “unique” in the last sentence of the theorem
statement. If a 6= b and α, β ∈ Aut(A) satisfy (a, b)α = (a, b)β = (b, a), then αβ−1

fixes both a and b. But no nonidentity element of Aut(A) has more then one fixed
point, so α = β. Thus, there is at most one α ∈ Aut(A) such that (a, b)α = (b, a),
while if (a, b) is a nonisolated pair then there is at least one.

Since a good sequence is a special ordering of the pairs in a good set, the fact
that An is freely generated by {a,b} follows from Lemma 5.3, while the fact that
Aut(An) ∼= Aut(A) o Sn follows from Lemma 5.4. Since (a2i, b2i) = (b2i−1, a2i−1) for
1 ≤ i ≤ k and (ai, bi) = (ai, ai) for 2k < i ≤ 2k + `, the tuples a and b are

a = (a1, b1, a3, b3, . . . , a2k−1, b2k−1, a2k+1, . . . , a2k+`, a2k+`+1, . . . , a2k+`+m)
b = (b1, a1, b3, a3, . . . , b2k−1, a2k−1, a2k+1, . . . , a2k+`, b2k+`+1, . . . , b2k+`+m).

If we apply σ to a we get

aσ = (aβ(1), bβ(1), . . . , a2k+1, . . . , a2k+`, a2k+`+1α2k+`+1, . . . , a2k+`+mα2k+`+m)
= (a2, b2, . . . , a2k+1, . . . , a2k+`, b2k+`+1, . . . , b2k+`+m)
= (b1, a1, . . . , a2k+1, . . . , a2k+`, b2k+`+1, . . . , b2k+`+m) = b,

and similarly bσ = a. �

Now we consider the case where A is affine.

Lemma 5.6. A strictly simple affine algebra A with a 1-element subuniverse {0}
is term equivalent to an algebra of the following type. There is a finite field Fq and
parameters 0 ≤ d ≤ m such that the universe is A = Fmq and the term operations are
precisely the linear operations of the form M1x1 + · · · + Mkxk where Mi ∈ Mm(Fq)
and M :=

∑
Mi is a matrix for which Mei = ei for 1 ≤ i ≤ d. Here ei is the i-th

standard basis vector.
The automorphisms of such an algebra are the functions of the form λx+ c where

λ ∈ F×q and c ∈ A belongs to the subspace V that is generated by {ei | 1 ≤ i ≤ d}.
Proof. The claims of the first paragraph follow from Proposition 2.6 of [9], which
fully describes the clones of all affine algebras. (The claims can be derived even more
easily from Proposition 2.10 of [9], which specializes the result to strictly simple affine
algebras). Here V is the set of elements of A that are 1-element subuniverses.

If α ∈ Aut(A), then 0α = c for some c ∈ V . It follows from the description of
the clone of A that the translation T−c : x 7→ x − c is an automorphism of A, so
T−c ◦ α is an automorphism of A that fixes 0. Hence T−c ◦ α is an automorphism of
A considered as a module over Mm(Fq), so T−c ◦α = λx for some λ ∈ F×q . Therefore,
α = Tc(λx) = λx + c. �
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Henceforth we will assume that any strictly simple affine algebra with a 1-element
subuniverse has the form described in the theorem, and that the meaning of the
notation Fq, m, d, V etc. is understood.

Lemma 5.7. Let A be a strictly simple affine algebra with a 1-element subuniverse.
If S is a maximal proper subuniverse of An for some n ≥ 1, then there exist λi ∈ Fq,
not all zero, and c ∈ V such that

(5.1) S =

{
(a1, . . . , an)

∣∣∣
n∑

i=1

λiai = c

}
.

Proof. Every subuniverse of An is a congruence class, and every congruence class
containing a subuniverse is itself a subuniverse. Since the congruences of an affine
algebra are uniform, a maximal subuniverse is a class of a unique maximal congruence.
Let θ be the congruence that has S as a class. Then An/θ ∼= A, so there is a surjective
homomorphism ϕ : An → A whose kernel is θ. If 0 = (0, . . . , 0), then by composing
ϕ with the translation T−ϕ(0) if necessary, we may assume that ϕ(0) = 0, i.e., ϕ is a
surjective module homomorphism. Moreover, ϕ(S) = {c} is a 1-element subuniverse
of A, so S = ϕ−1(c) for some c ∈ V .

Any module homomorphism ϕ ∈ Hom(An,A) is an n-ary operation of the central-
izer of the clone of A, which is the clone of a module over the ring End(A). Hence
ϕ has the form

∑n
i=1 εi(xi) where εi ∈ End(A). Since the module endomorphisms of

A are the functions x 7→ λx, λ ∈ F×q , and ϕ is surjective, ϕ(x) =
∑n

i=1 λixi where

λi ∈ F×q and not all λi are zero. Thus, if S is a maximal subuniverse of An, then
S = ϕ−1(c) = {(a1, . . . , an) | ∑n

i=1 λiai = c} where c ∈ V and not all λi are zero. �

If A is a strictly simple affine algebra with a 1-element subuniverse, then Fq acts
on A×A diagonally making this set a 2m-dimensional Fq-vector space. Write ∆V for
the subspace consisting of all pairs (c, c), c ∈ V . A good set of pairs for A is a subset
{(a1, bi) | 1 ≤ i ≤ n} ⊆ A× A which is a basis modulo ∆V . That is, it is a maximal
subset of A× A such that

∑n
i=1 λi(ai, bi) = (c, c) ∈ ∆V implies λi = 0 for all i.

Lemma 5.8. Let A be a strictly simple affine algebra with a 1-element subuni-
verse and parameters d ≤ m. The size of any good set of pairs is n = 2m − d.
If {(ai, bi) | 1 ≤ i ≤ n} is a good set of pairs, then An is free on two generators in the
variety generated by A and a = (a1, . . . , an), and b = (b1, . . . , bn) are free generators
of An.

Proof. The size of a good set of pairs is the Fq-dimension of (A × A)/∆V , which is
2m− d since the dimension of A is m and the dimension of ∆V equals dim(V ) = d.

The set {(ai, bi) | 1 ≤ i ≤ n} fails to be independent modulo ∆V if and only if
there is a dependence relation

∑n
i=1 λi(ai, bi) = (c, c) ∈ ∆V where not all λi are zero.

This holds if and only if the tuples a and b belong to the maximal proper subuniverse
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defined by {
(x1, . . . , xn)

∣∣∣
n∑

i=1

λixi = c

}
.

Thus, {(ai, bi) | 1 ≤ i ≤ n} fails to be independent modulo ∆V if and only if {a,b}
fails to generate An. It follows that An is freely generated by {a,b} if and only if
{(ai, bi) | 1 ≤ i ≤ n} is a good set of pairs. �
Theorem 5.9. Let A be a strictly simple affine algebra with a 1-element subuniverse
and parameters d ≤ m. The set

Z := {(e1, 0), (e2, 0), . . . , (ed, 0), (ed+1, 0), (0, ed+1), . . . , (em, 0), (0, em)}
is a good set of pairs. The algebra An = A2m−d is free on two generators in the
variety generated by A, and

a := (e1, e2, . . . , ed, ed+1, 0, ed+2, 0, . . . , em, 0)

and

b := (0, 0, . . . , 0, 0, ed+1, 0, ed+2, . . . , 0, em)

are free generators. Aut(An) consists of all linear functions of the form Lx + K
where L = [λij] ∈ GL(n, q) and K = (c1, . . . , cn)t ∈ V n, and is therefore isomorphic to
GL(n, q)nT where T is an elementary abelian group of order qdn. The automorphism
σ ∈ Aut(An) that interchanges a and b is

Lx +K =




−I 0 0 0 0
0 S 0 0 0
0 0 S 0 0
...

. . .
...

0 0 · · · 0 S







X0

X1

X2
...

Xm−d




+




c
0
0
...
0




where −I is the negative of the d×d identity matrix, S =

[
0 1
1 0

]
, X0 = (x1, . . . , xd)

t,

Xi = (xd+2i−1, xd+2i)
t if i > 1, and c = (e1, . . . , ed)

t.

Proof. The set Z has 2m − d elements, so it is the right size to be a good set of
pairs. It suffices to show that it is independent modulo ∆V . Choose any dependence
relation

∑n
i=1 λi(ai, bi) = (c, c) ∈ ∆V where a = (a1, . . . , an) and b = (b1, . . . , bn)

are defined as in the theorem statement. Considering this dependence relation in
the second coordinate only yields

∑n
i=1 λibi =

∑m−d
j=1 λd+2jed+j = c. But c ∈ V and

{ed+1, . . . , em} spans a space complementary to V . Thus c = 0 and λd+2j = 0 for
1 ≤ j ≤ m − d. Now considering the dependence relation in the first coordinate
yields

∑n
i=1 λiai =

∑d
j=1 λjaj +

∑m−d
k=1 λd+2k−1ed+k = c = 0. This is a Fq-dependence

relation among the basis vectors {e1, . . . , em}, hence λj = 0 when 1 ≤ j ≤ d and
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λd+2k−1 = 0 when 1 ≤ k ≤ m− d. This accounts for all λ’s, proving that the original
dependence relation was trivial. Hence Z is independent modulo ∆V .

The 1-element subuniverses of An are the elements K ∈ V n, so the translations
TK : x 7→ x+K are among the automorphisms of An. The group T ∼= 〈V ; +,−, 0〉n of
all translations is an elementary abelian group of order |V |n = (qd)n. If α ∈ Aut(An),
then K := 0α is a 1-element subuniverse, and T−K ◦α is an automorphism of An that
fixes 0, i.e., it is a module automorphism. But the group of module automorphisms
of a direct sum of n copies of a simple module A over Fq is just GL(n, q) acting
on An (considered as a module of column vectors) by left multiplication. Thus,
x(T−K ◦α) = Lx for some L ∈ GL(n, q), and therefore xα = Lx+K ∈ GL(n, q)nT .

It remains to check that σ is represented by Lx +K where L and K are as stated.
For this, one must show that b = La +K and a = Lb +K, which is too obvious for
words. �

6. Main Results

In this section we draw upon our previous work to prove that certain pointed
groups do not arise as the automorphism group of a finite, 2-generated free algebra.

We will derive results concerning a diverse collection of pointed groups, but the
scheme of proof is the same in all instances. We will start with a finite pointed group
Gσ that forces congruence permutability. If Gσ is representable as the automorphism
group of a finite, 2-generated, free algebra F, then according to Theorem 2.3 we may
assume that F belongs to V[Gσ] and the canonical homomorphism κ : Gσ → Aut(F)σ
is an isomorphism. Let V be the variety generated by F, and let M be a minimal
subvariety of V. Since V is congruence permutable, so is M, hence M is generated
by a strictly simple algebra A that is either quasiprimal or affine with a 1-element
subuniverse.

Let E = FM(xE, yE) be the 2-generated free algebra inM. The natural surjective
homomorphism ν : F→ E : xF 7→ xE, yF 7→ yE induces a homomorphism

(6.1) ν̂ : Aut(F)→ Aut(E) : α 7→ ν ◦ α ◦ ν−1.

(That ν̂(α) is a well-defined function follows from the fact that ker(ν) is a character-
istic congruence of F.) Here ν acts on the left, but α acts on the right, so what is
meant in (6.1) is that (a)ν̂(α) = ν((ν−1(a))α).

We would like to understand when an automorphism γ ∈ Aut(E) is in the image
of ν̂. If γ = ν̂(α), then

(xE, yE)γ = (xE, yE)ν̂(α) = (tα(xE, yE), tσα(xE, yE)).

Thus, γ ∈ im(ν̂) if and only if the pair (xEγ, yEγ) ∈ E × E lies in the same G-orbit
as (xE, yE) under the action defined in line (4.1). By Theorem 4.2, this will be true
if two conditions hold:

(1) {xE, yE} and {xEγ, yEγ} generate the same subalgebra of E.



36 KEITH A. KEARNES AND STEVEN T. TSCHANTZ

In fact, SgE({xE, yE}) = SgE({xEγ, yEγ}) = E, since {xE, yE} is a free generating
set and γ is an automorphism. Thus, the second is the only interesting condition:

(2) φ(xE) + φ(yE) = φ(xEγ) + φ(yEγ) for all φ ∈ Vect(E).

Whether or not condition (2) holds can be determined with the aid of Theorem 4.9
and Corollary 4.11, since E ∼= An. In particular, if dim(A) = 1, then dim(E) = 1
according to Theorem 4.9. In this case, φ(xE) + φ(yE) = φ(xEγ) + φ(yEγ) holds
trivially for all φ ∈ Vect(E), since all φ are constant. Thus, when dim(A) = 1, the
homomorphism ν̂ is surjective. When dim(A) = 2, then dim(E) 6= 1 and ν̂ is not
surjective. Its image could be determined completely using Corollary 4.11 provided
we had enough information about A (e.g., if we knew a nonconstant φ ∈ Vect(A) and
the exponent in the equation E ∼= An). We avoid the problem of determining im(ν̂)
by appealing to Theorem 4.13. If ν̂ is not surjective, then this theorem produces a
surjective homomorphism µ that can be used instead. Altogether, the conclusion is:

Theorem 6.1. Let G be a finite group with designated involution σ. If Gσ forces
congruence permutability and is representable as Aut(F)σ for some finite, 2-generated
free algebra F, then there is a surjective homomorphism ϕ : Gσ � Hσ where Hσ is a
pointed group of a type described in Theorems 4.13, 5.5 or 5.9. (That is, either H =
Sn and σ is a fixed point free permutation, H = Aut(A) o Sn and σ is as is described
in Theorem 5.5, or H = GL(n, q)n T and σ is as is described in Theorem 5.9).

This result is the main theorem of this paper. It is worth observing that, conversely,
if there is an isomorphism ϕ : Gσ � Hσ where Hσ is one of the three types of pointed
groups, then Gσ is representable as Aut(F)σ for some finite, 2-generated free algebra
F. That Sn with a fixed point free involution is representable was established in
Theorem 2.16. The other two types are representable because they were originally
identified as automorphism groups of finite, 2-generated free algebras in Theorems 5.5
and 5.9.

We proceed to make the general statement of Theorem 6.1 specific by showing that
many of the groups described in the examples of Section 2 are not representable as
Aut(FV(x, y))σ when FV(x, y) is finite.

Lemma 6.2. Let G be a finite group with involution σ. If G has no retraction onto
〈σ〉, then every finite algebra B ∈ V[Gσ] has cardinality |B| ≡ 0 or 1 (mod 4).

Proof. The action of G on B×B defined in line (4.1) yields a homomorphism ϕ : G→
S|B|2 in which σ (which switches coordinates in B×B) maps to a product of |B|2−|B|
disjoint transpositions. If |B| 6≡ 0, 1 (mod 4), then |B|2 − |B| is odd, and so σ maps
to an odd permutation. Composing ϕ : G → S|B|2 with the sign homomorphism
S|B|2 → {±1} yields a homomorphism whose kernel is a normal complement N to
〈σ〉 in G. But then N is the kernel of a retraction of G onto 〈σ〉. �
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Theorem 6.3. Let G be a finite group with designated involution σ. If C := CG(σ)
is a normal Hall subgroup of G and C has no retraction onto 〈σ〉, then Gσ is not
representable as Aut(F)σ for any finite, 2-generated, free algebra F.

Proof. Assume otherwise that Gσ
∼= Aut(F)σ where F is a finite, 2-generated, free

algebra. We may assume that F is free in a subvariety of V[Gσ]. The fact that C has
no retraction onto 〈σ〉 implies that G has no such retraction, so by Lemma 6.2 every
finite algebra B ∈ V[Gσ] has cardinality |B| ≡ 0 or 1 (mod 4).

According to Example 3.1, Gσ forces congruence permutability. Therefore there
is a surjective homomorphism ϕ : Gσ � Hσ where Hσ is a pointed group of a type
described in Theorems 4.13, 5.5 or 5.9.

Let D = CG(C) be the double centralizer of σ. Then C and D are both normal in
G, σ ∈ D ≤ C, [C,D] = {id}, and C is Hall subgroup of G that has no retraction
onto 〈σ〉. If M = ϕ(C) and N = ϕ(D), then

(1) M and N are both normal in H,
(2) σ ∈ N ≤M ,
(3) [M,N ] = {id}, and
(4) M is Hall subgroup of H,

since ϕ is surjective and preserves σ. It follows from these properties that

(5) M contains every element of H whose order is a power of 2,

since M is a normal Hall subgroup containing an involution. Finally,

(6) M has no retraction onto 〈σ〉,
since conjugating such a retraction by ϕ would lead to a retraction of C onto 〈σ〉.
Fix this meaning for M and N for the remainder of the proof.

Case 1. H = Sn and σ is a fixed point free involution.

Since M contains every element whose order is a power of 2, and H = Sn is
generated by involutions, M = H = Sn. Since [M,N ] = {id}, N is a nontrivial
central subgroup of M = Sn. Hence n = 2, in which case the identity function is
a retraction of H = M = N = 〈σ〉 onto 〈σ〉, a contradiction. Thus, Case 1 cannot
arise.

Case 2. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple quasiprimal algebra A (so H = Aut(A) o Sn and σ is as is described
in Theorem 5.5).

Assume first that n > 1. The subgroup S ≤ H = Aut(A) o Sn consisting of pairs
(α, β) with α = (id, . . . , id) ∈ Aut(A)n is isomorphic to Sn, hence is generated by
involutions. Therefore S ≤M , since M contains every element of H whose order is a
power of 2, and consequently N ≤ CH(M) ≤ CH(S). But when n > 1 the centralizer
of S in H = Aut(A) o Sn is either

(i) the set of pairs (α, id) where α = (τ, τ, . . . , τ) ∈ Aut(A)n (when n > 2), or
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(ii) the set of pairs (α, β) where α = (τ, τ) ∈ Aut(A)2 and β ∈ S2 (when n = 2).

For the normal subgroup N to consist of pairs of this type, τ must lie in the cen-
ter of Aut(A). Otherwise, if τ δ := δ−1τδ 6= τ , then the conjugate of (α, β) =
((τ, τ, . . . , τ, τ), β) ∈ N by ((id, id, . . . , id, δ), id) is ((τ, τ, . . . , τ, τ δ), β) /∈ N .

Now that we know the form of all elements of N , it is clear that form of the
involution σ ∈ N is σ = ((τ, . . . , τ), β) where either

(a) τ is a central involution in Aut(A), or
(b) τ = id, n = 2 and β = (1 2) ∈ S2.

If it is (a) that holds, then by Theorem 5.5 this form for σ implies that A × A
has no isolated pairs nor any diagonal nonisolated pairs. Moreover, any off-diagonal
Aut(A)-orbit contains a pair (u, v) such that (u, v)τ = (uτ, vτ) = (v, u). But since
τ ∈ Z(Aut(A)), if this holds for one pair from every off-diagonal orbit, it holds for
every pair from every off-diagonal orbit. Thus, (u, v)τ = (v, u) whenever u 6= v in A.
This is impossible if |A| > 2. (If u, v and w are distinct, then (u, v)τ = (v, u) and
(u, w)τ = (w, u), since the first equality implies uτ = v while the second implies that
uτ = w.) But since |A| > 1 and Lemma 6.2 guarantees that |A| ≡ 0, 1 (mod 4), we
do have |A| > 2. This is contradiction.

Now assume that it is (b) that holds, namely n = 2 and σ = ((id, id), (1 2)). For
γ ∈ Aut(A), and Γ := ((id, γ), id) ∈ H, the element Λ := Γ−1σΓσ−1 = ((γ, γ−1), id)
belongs to the normal subgroup generated by σ. Since N is a normal abelian subgroup
containing σ, N contains Λ, and therefore Λ = ((γ, γ−1), id) has the form ((τ, τ), β).
Hence γ = γ−1 for any γ ∈ Aut(A). This means that Aut(A) is an elementary abelian
2-group. The subgroup L of H consisting of all elements of the form ((γ, γ), β) ∈
Aut(A) o S2 is generated by σ and all elements of the form Λ above. Thus L is
contained in the normal subgroup generated by σ, and therefore

L ≤ N ≤M ≤ CH(σ) = L.

This proves that M = L is the normal subgroup generated by σ, which is an elemen-
tary abelian 2-group. This contradicts the fact that M has no retraction onto 〈σ〉,
thereby completing the proof that n 6> 1 in Case 2.

Now assume that n = 1. Then A is both strictly simple and free on two generators.
By Theorem 5.1, H = Aut(A) acts sharply 2-transitively on A. Moreover, H has sub-
groups M and N satisfying the properties listed in the third paragraph of this proof.
But no sharply 2-transitive group has subgroups satisfying all of these properties.
The normal subgroup of H generated by σ must be an elementary abelian 2-group,
since σ ∈ N and N is normal and abelian. But since the Frobenius kernel K of H
is the smallest nontrivial normal subgroup, it is contained in the normal subgroup
generated by σ, so K must be an elementary abelian, normal, 2-Sylow subgroup of
H. Thus K ≤ N ≤ M and M ≤ CH(N) ≤ CH(K) = K. But then M = K has
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a retraction onto σ, because it is an elementary abelian 2-group containing σ. This
concludes the proof that Case 2 cannot arise.

Case 3. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple affine algebra A with a 1-element subuniverse (so H = GL(n, q)n T
and σ is as is described in Theorem 5.9).

Suppose that the parameters associated with A are 0 ≤ d ≤ m, so that n =
2m − d. Consider first the situation where n > 1. M contains every element of
H = GL(n, q)nT whose order is a power of 2. When n > 1 and q is even, this means
that M contains SL(n, q)n T . But then

σ ∈ N ≤ CH(M) ≤ CH(SL(n, q)n T ) = {id},
which is impossible. If n > 1 and q is odd, then the fact that M contains every
element whose order is a power of 2 implies that M contains SL(n, q)n {id}. In this
situation

σ ∈ N ≤ CH(M) ≤ CH(SL(n, q)n {id}) = Z(GL(n, q))n {id}.
Thus, xσ = −x, which can only happen when d = m = n, according to Theorem 5.9.
Moreover, we have M ≤ CH(N) ≤ CH(σ) = GL(n, q) n {id}. Thus q divides |M |,
since M contains SL(n, q) n {id} and n > 1, and q also divides |T | = qnd = qn

2
,

which divides [H : M ]. This contradicts the fact that M is a Hall subgroup. Thus,
the assumption that n > 1 leads to a contradiction.

If n = 1, then A is a strictly simple algebra that is free on 2 generators. By
Theorem 5.1, A is idempotent and H = Aut(A) acts sharply 2-transitively on A.
Arguing as we did in the second paragraph of Case 2, we see that this cannot occur.

We have excluded all potential candidates for Hσ. The conclusion is Gσ is not
representable. �
Corollary 6.4. If σ ∈ Z(G), then Gσ

∼= Aut(F)σ for a finite, 2-generated, free
algebra if and only if G has a retraction onto 〈σ〉.
Proof. “If” is from Theorem 2.16; “only if” is from Theorem 6.3. �
Remark 6.5. The 8-element dihedral group is the underlying group for exactly two
isomorphism types of pointed groups (D4)σ, σ an involution. The types can be distin-
guished according to whether σ ∈ Z(D4). The preceding theorem implies that (D4)σ
is not representable as Aut(FV(x, y))σ when σ ∈ Z(D4). But (D4)σ is representable
when σ /∈ Z(D4), since this pointed group can be realized as the automorphism group
of the free 2-generated rectangular band.

Theorem 6.6. Let F be a finite, 2-generated, free algebra. If G = Aut(F) has a
2-Sylow subgroup that is a generalized quaternion group or cyclic of order at least 4,
then there is a surjective homomorphism ϕ : G� H where
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(1) H is sharply 2-transitive.
(2) ϕ restricts to an isomorphism from any 2-Sylow subgroup of G onto a 2-Sylow

subgroup of H.

Proof. By Example 3.3, if the 2-Sylow subgroups of G are generalized quaternion
or cyclic of order at least 4, then Gσ forces congruence permutability. Thus, there
is a surjective homomorphism ϕ : Gσ � Hσ where Hσ is of a type described in
Theorems 4.13, 5.5 or 5.9. Since all involutions inG are conjugate, and ϕ(σ) = σ 6= id,
it follows that the kernel of ϕ has odd order. Hence the restriction of ϕ to any 2-Sylow
subgroup of H maps it isomorphically onto a 2-Sylow subgroup of H. This shows
that the 2-Sylow subgroups of H are also generalized quaternion or cyclic of order
at least 4. What remains to show is that this can only happen when H is sharply
2-transitive.

A criterion we will use to imply that a group has 2-Sylow subgroups that are nei-
ther generalized quaternion nor cyclic is that the group contains a pair of distinct
commuting involutions. Then, each 2-Sylow subgroup will contain a pair of commut-
ing involutions, but generalized quaternion groups and cyclic groups contain only one
involution.

Case 1. H = Sn and σ is a fixed point free involution.

If n < 4, then the 2-Sylow subgroup has order 2, and is therefore too small to be
generalized quaternion or cyclic of order at least 4. If n ≥ 4, then Sn contains a pair
of commuting involutions, e.g., (1 2) and (3 4).

Case 2. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple quasiprimal algebra A (so H = Aut(A) o Sn).

If n = 1, then H is sharply 2-transitive, and we are done. Thus we may assume
that n > 1. If Aut(A) has even order, and τ ∈ Aut(A) is an involution, then
((τ, τ, . . . , τ), id) and ((id, id, . . . , id), (1 2)) are distinct commuting involutions. In
this case, the 2-Sylow subgroups of H cannot be generalized quaternion or cyclic
of order at least 4. If Aut(A) has odd order, then the 2-Sylow subgroups of H =
Aut(A) o Sn are isomorphic to those of Sn, and therefore cannot be generalized
quaternion or cyclic of order at least 4, as we argued in Case 1.

Case 3. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple affine algebra A with a 1-element subuniverse (so H = GL(n, q)nT ).

As in Case 2, it suffices to prove that n > 1 cannot occur. Suppose otherwise
that H = GL(n, q) n T and n > 1. If q is odd, then H contains at least three
mutually commuting involutions of the form Lx+K where K = 0 and L is a diagonal
matrix with ±1’s distributed along the diagonal in different ways. If q is even and
the parameter d from Theorem 5.9 is nonzero, then the group of translations is an
elementary abelian 2-group of size qnd, so there exist distinct commuting involutions.
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Thus d = 0, and H = GL(n, q) for some n > 1 and some q = 2k. Consider involutions
of the form Lax and L′x where

La =




1 a 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1




with a ∈ F×, and L′ =




1 0 1 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1



.

If q > 2, then there exist a 6= b in F×q , and Lax and Lbx are distinct commuting
involutions in H. If n > 2, then L1x and L′x are distinct commuting involutions in
H. Thus q = n = 2, and H = GL(2, 2) has order 6. Now the 2-Sylow subgroup of
H is not big enough to be generalized quaternion or cyclic of order at least 4. This
completes the proof. �

Corollary 6.7. If G has a 2-Sylow subgroup that is a generalized quaternion group
of more than eight elements, then G is not the automorphism group of a finite, 2-
generated, free algebra.

Proof. Suppose that G has a 2-Sylow subgroup that is a generalized quaternion group.
By Theorem 6.6, there is a surjective homomorphism ϕ : G� H where H is sharply
2-transitive and has an isomorphic 2-Sylow subgroup. By Theorem 5.2, if a sharply
2-transitive group has a 2-Sylow subgroup that is generalized quaternion, then the
2-Sylow subgroup is the 8-element quaternion group. �

Remark 6.8. In fact, this proof shows that even the 8-element quaternion group rarely
occurs as the 2-Sylow subgroup of the automorphism group G of a finite, 2-generated
free algebra. It can occur only if G has a homomorphism onto some exceptional
2-transitive group of degree 52, 112, 112, 292, or 592.

Conversely, if there is an isomorphism of G onto any sharply 2-transitive group,
then G may be realized as the automorphism group of a finite, 2-generated free alge-
bra. For suppose that G acts sharply 2-transitively on A. Let A be the algebra with
universe A and operations consisting of all idempotent operations on A that commute
with the permutations in G. Then A is a strictly simple quasiprimal algebra. If E is
the 2-generated free algebra in the variety generated by A, then Aut(E) ∼= G.

Theorem 6.9. If n > 1 and q is an odd prime power, then SL(n, q) is not the
automorphism group of a finite, 2-generated, free algebra.

Proof. We consider the case where (n, q) = (2, 3) first. The matrix −I ∈ Z(SL(2, 3))
is the unique involution of SL(2, 3), and SL(2, 3) has no retraction onto {±I}. By
Corollary 6.4, SL(2, 3) is not representable as the automorphism group of a finite,
2-generated, free algebra.
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When n > 1, q is an odd prime power, and (n, q) 6= (2, 3), the group G = SL(n, q) is
quasisimple. This property is preserved by nonconstant surjective homomorphisms,
so if ϕ : Gσ � Hσ then Hσ is quasisimple.

Case 1. H = Sn and σ is a fixed point free involution.

Sn is not quasisimple, so this case does not arise.

Case 2. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple quasiprimal algebra A (so H = Aut(A) o Sn).

Aut(A) o Sn is not quasisimple when n > 1, since it has a homomorphism onto
Sn. Thus, n = 1, A is strictly simple and free, and H acts sharply 2-transitively
on A. The Frobenius kernel K of H satisfies CH(K) = K. Since the proper normal
subgroups of H lie in the center, H = CH(K) = K, contradicting the fact that H is
quasisimple.

Case 3. Hσ is the automorphism group of a free algebra in a variety generated by a
strictly simple affine algebra A with a 1-element subuniverse (so H = GL(k, r)n T ).

H = GL(k, r) n T is quasisimple if and only if T is trivial, k > 1, and r = 2.
It follows from Theorem 5.9 that if T is trivial, then parameter d = 0, so k = 2m
is even. Thus, if H is quasisimple, then H = GL(2m, 2) = PSL(2m, 2) is simple.
A surjective homomorphism ϕ : Gσ → Hσ induces an isomorphism between their
simple factors, i.e., PSL(n, q) ∼= PSL(2m, 2). But it follows from the results of [1]
that if PSL(n, q) ∼= PSL(2m, 2), then (n, q) = (2m, 2). Since q is odd, this does not
happen. �

Theorem 6.10. Let G be a simple group with designated involution σ. If Gσ forces
congruence permutability, then Gσ is the automorphism group of a finite, 2-generated,
free algebra if and only if Gσ

∼= GL(2m, 2)σ for some m ≥ 2, where σ ∈ GL(2m, 2)
is the matrix




S 0 · · · 0
0 S 0
...

. . .
...

0 0 · · · S


 , and S is the matrix

[
0 1
1 0

]
.

This involution is not 2-central.

Proof. For the “if” part of the theorem, GL(2m, 2) = PSL(2m, 2) is simple when
m ≥ 2. By Theorem 5.9, GL(2m, 2)σ arises as the automorphism group of the 2-
generated free algebra in a minimal congruence permutable variety generated by a
strictly simple affine algebra with exactly one 1-element subuniverse. More explicitly,
it is the automorphism group of a 2-generated free module over the ring of 2m× 2m-
matrices over F2.
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Conversely, if Gσ forces congruence permutability, then there must be a homo-
morphism ϕ : Gσ � Hσ onto one of our special groups Hσ. This homomorphism is
nonconstant, since it preserves σ. G is simple, so Gσ

∼= Hσ. But the only simple
groups that can occur as the target group Hσ in Theorems 4.13, 5.5 and 5.9 are the
groups of the form GL(2m, 2), m ≥ 2, from Theorem 5.9. This group arises only
when the parameter d equals 0, and when that happens the matrix for σ is the one
described in the theorem statement.

Now we argue that this involution is not 2-central. The group U of unipotent
matrices (i.e., matrices of the form I + N where N is strictly upper triangular) is a
2-Sylow subgroup of GL(2m, 2). Let Ei,j be the matrix with 1 in the ij-th position
and 0’s elsewhere. The only nonidentity matrix I + N ∈ U that commutes with all
I + Ei,j, i < j, is I + E1,2m, so U has a unique central involution. Therefore every
2-Sylow subgroup of GL(2m, 2) has a unique central involution, implying that the
set of 2-central involutions equals the conjugacy class of I + E1,2m. But the matrix
for σ from Theorem 6.10 is not in the conjugacy class of I+E1,2m when m ≥ 2, since
the number of Jordan blocks for σ is m and for I + E1,2m is 2m− 1. �
Corollary 6.11. Let σ ∈ G be a 2-central involution. If G is a (non-sporadic) Suzuki
simple group, a Mathieu simple group, or An with n ≡ 0, 1 (mod 4) and n ≥ 8, then
Gσ is not the automorphism group of a finite, 2-generated, free algebra.

Proof. If G is one of these groups and σ is a 2-central involution, then it follows from
Section 3 that Gσ forces congruence permutability. By Theorem 6.10, these groups
are not representable. �
Remark 6.12. Since A8

∼= PSL(4, 2) = GL(4, 2) (cf. [1]), A8 is representable as Aut(F)
when F = FV(x, y) is the 2-generated free module over the ring of 2 × 2-matrices
over F2. By Corollary 6.11, (A8)σ is not representable as Aut(F)σ when σ is a 2-
central involution. Thus (A8)σ illustrates that a simple group may be representable
when σ is from one conjugacy classes of involutions and not representable when σ is
from another class. Since A8 has only two conjugacy classes of involutions, we have
complete information concerning the representability of this group.

Gould’s constructions in [4] of algebras whose squares have prescribed automor-
phism groups have an extra property that proves the following when translated into
the the free algebra setting:

(†) If G is any group with designated involution σ, then Gσ is the automorphism
group of a 2-generated, idempotent, free algebra.

(‡) If G is a finite group with designated involution σ and there is a retraction
of G onto 〈σ〉, then Gσ is the automorphism group of a finite, 2-generated,
idempotent, free algebra. (Cf. Theorem 2.16 (1).)

This raises the question of whether or not every group representable as Aut(F)σ,
where F = FV(x, y) is finite, is representable when F is finite and idempotent. If
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so, then according to the proof of Theorem 2.3 it could be arranged that F lies in
V[Gσ, G]. When G has a retraction onto 〈σ〉, then there is such an F, by (‡). When
G does not have a retraction onto 〈σ〉, then from Theorem 2.10 we know at least that
V[Gσ, G] is congruence permutable, so the techniques of this paper may be applied.

Theorem 6.13. Let G is a finite group with designated involution σ. If G has no
retraction onto 〈σ〉 and Gσ is representable as Aut(FV(x, y))σ for some finite free
algebra in an idempotent variety, then there is a surjective homomorphism ϕ : Gσ →
Hσ where

(1) H = Sn, σ is a fixed point free involution, and n ≡ 0 (mod 4).
(2) Hσ is as in Theorem 5.5 with k even and ` = 0.
(3) Hσ is as in Theorem 5.9 with d = m. (In particular, H = GL(n, q)nT where

|T | = qnd = qn
2
> 1.)

Proof. If G has no retraction onto 〈σ〉, then Gσ forces congruence permutability for
idempotent varieties. There must be a surjective homomorphism ϕ : Gσ → Hσ where
Hσ is as in Theorem 4.13, 5.5 or 5.9.

If Hσ is as in Theorem 4.13, then H = Sn and σ is a fixed point free involution.
The existence of a fixed point free involution forces n ≡ 0 (mod 2), but if n 6≡ 0
(mod 4) then σ is an odd permutation. In this case H has a retraction onto 〈σ〉, so
composing ϕ with that retraction leads to a retraction of G onto 〈σ〉. Thus it must
be that n ≡ 0 (mod 4).

If Hσ is as in Theorem 5.5, then H = Aut(A) o Sn. Here, since A is idempotent,
every diagonal pair of A×A lies in a bad orbit, so there are no diagonal nonisolated
pairs. This implies that ` = 0. If there are an odd number k of isolated pairs,
then the surjective homomorphism ψ : Aut(A) o Sn → Sn : (α, β) 7→ β maps σ to an
odd permutation. Composing ϕ with ψ and then a retraction onto 〈σ〉 leads to a
retraction of G onto 〈σ〉.

If Hσ is as in Theorem 5.9, then the parameter m is the Fq-dimension of A while
the parameter d is the Fq-dimension of the space of 1-element subuniverses of A. If
A is idempotent, then d = m = 2m− d = n. �
Corollary 6.14. If G is a finite, nonabelian, simple group with designated involution
σ, then Gσ is not representable as the automorphism group of a finite, 2-generated,
idempotent, free algebra.

Proof. The simplicity of G forces Gσ
∼= Hσ for one of the pointed groups Hσ of

Theorem 6.13. But none of these groups is simple. �
Remark 6.15. As noted in Remark 6.12, the alternating group A8 is representable
as the automorphism group of a finite, 2-generated, free module. Corollary 6.14
shows that is not representable as the automorphism group of any finite, idempotent,
2-generated, free algebra.
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