
A CHARACTERIZATION OF LOCALLY FINITE
VARIETIES THAT SATISFY A NONTRIVIAL

CONGRUENCE IDENTITY

KEITH A. KEARNES

Abstract. We show that a locally finite variety satisfies a non-
trivial congruence identity if and only if it satisfies an idempotent
Mal’tsev condition that fails in the variety of semilattices.

1. Introduction

In [1], R. Freese and J. B. Nation prove that the variety of semi-
lattices satisfies no nontrivial lattice identity as a congruence identity.
Together with results in [6] or [7] this implies that if a variety satis-
fies some nontrivial congruence identity, then it satisfies an idempotent
Mal’tsev condition that fails in the variety of semilattices. In this pa-
per the converse statement is shown to hold for locally finite varieties,
thereby solving Problem 13 of [2]. The machinery for the proof is de-
veloped in Lemmas 3.2 and 3.4 using tame congruence theory. Modulo
these two lemmas the proof of our main result, Theorem 3.7, can be
read with no knowledge of the theory.

2. A Nice Lattice

The following lattice plays an important role in this paper.
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We denote it by N`. When ` = 0 this lattice is a five-element non-
modular lattice that is often called the pentagon. Our notation for
the pentagon, N0, is in conflict with the usual notation for it, but is
more convenient for the calculations we need to do later. (Usually the
pentagon is denoted N5.)

It is easy to see that N` is subdirectly irreducible, and it is shown in
Example 5.2 and Remark 6.3 of [5] that N` is projective. Let K` denote
the class of all lattices which have no sublattice isomorphic to N`. It
is immediate from the definition that K` is closed under the formation
of sublattices, while the subdirect irreducibility of N` implies that K`
is closed under the formation of products, and the projectivity of N`

implies that K` is closed under the formation of homomorphic images.
Hence K` is a variety. Fix an identity ν` that holds in K` but fails in
N`. Necessarily ν` axiomatizes K` relative to the variety of all lattices,
so for any lattice L exactly one of the following is true: L |= ν` or else
L has a sublattice isomorphic to N`.

Theorem 2.1. Let V be a variety of algebras. V satisfies ν` as a
congruence identity if and only if N` is not embeddable in Con (A) for
any finitely generated A ∈ V.

Proof. It is implicit in [7] (and not hard to prove) that a variety satisfies
a congruence identity if and only if its finitely generated members sat-
isfy it. Hence, this theorem is a consequence of the remarks above. �

3. The Main Result

We remind the reader that if A is a finite algebra and δ and θ are
congruences of A for which δ ≺ θ in Con (A), then a two-element set
{0, 1} is a 〈δ, θ〉-subtrace if (0, 1) ∈ θ − δ and {0, 1} is a subset of a
〈δ, θ〉-minimal set. Our immediate goal is to investigate how the shape
of a congruence lattice influences the equations that hold on subtraces.

In this section the notation a ≡θ b means (a, b) ∈ θ, and is read “a
is equivalent to b modulo θ”.

Definition 3.1. Let A be a finite algebra with congruences δ ≺ θ, and
let K = Int[δ, θ] be the two-element interval in Con (A) determined
by these congruences. If f and g are terms of A, then we will use the
notation f(x1, . . . , xn) ≈K g(x1, . . . , xn) to mean that whenever {0, 1}
is a 〈δ, θ〉-subtrace, then f(x1, . . . , xn) ≡δ g(x1, . . . , xn) holds provided
all xi ∈ {0, 1}.

If α < β are congruences on A and I = Int[α, β], then we will
write f(x1, . . . , xn) ≈I g(x1, . . . , xn) to mean that f(x1, . . . , xn) ≈K
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g(x1, . . . , xn) holds whenever K is a two-element subinterval of I. We
call equations of the type f ≈I g local equations.

Lemma 3.2. Assume that A is a finite algebra and that Con (A) has
a sublattice isomorphic to the pentagon, with congruences labeled as in
the following figure.

r
r

r

r
r

J
J
J
JJ











�
�
�

@
@
@

γ

σ

τ

α

β

Let I = Int[σ, τ ] and let J = Int[α, β]. If A satisfies the local equation
f(x, y, y) ≈I x, then A satisfies both of the local equations

f(x, x, y) ≈J x and f(x, y, x) ≈J x.
Proof. It is enough to prove that if the local equation f(x, y, y) ≈I x
holds, then the local equation f(x, x, y) ≈J x holds. The same argu-
ment applied to f ′(x, y, z) = f(x, z, y) shows that if the local equation
f(x, y, y) ≈I x holds, then f(x, y, x) ≈J x holds.

Assume to the contrary that f(x, y, y) ≈I x while f(x, x, y) 6≈J
x. Since f(x, x, y) 6≈J x, there exist a two-element subinterval K =
Int[δ, θ] of J , and a 〈δ, θ〉-subtrace {0, 1} such that w = f(0, 0, 1) 6≡δ 0.
We shall derive a contradiction to this.

The local equation f(x, y, y) ≈I x implies that

f(0, 1, 1) ≡δ 0 ≡δ f(0, 0, 0).

Assume that typ (δ, θ) = 1. Then θ is strongly abelian over δ (Defini-
tion 3.9 and Theorem 5.6 of [2]), so we can replace the argument in the
second position on each side of this equality with 0 and still maintain
a ≡δ-relation. This yields

w = f(0, 0, 1) ≡δ f(0, 0, 0) ≡δ 0,

which is false. Hence typ (δ, θ) 6= 1.
Assume now that typ (δ, θ) ∈ {4, 5}. The θ-class containing 0 and

1 is connected by a δ-closed preorder that is compatible with all op-
erations of A, which has the property that distinct elements of a two-
element subtrace are comparable. (See Theorem 5.26 of [2]). So, if
{x, y} = {0, 1}, then f(x, x, x) and f(x, y, y) are comparable elements
of this θ-class. The element f(x, x, y) is in the interior of the inter-
val determined by f(x, x, x) and f(x, y, y). For us, f(x, x, x) ≡δ x ≡δ
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f(x, y, y), so we deduce that f(x, x, y) ≡δ x as well. This also leads to
w = f(0, 0, 1) ≡δ 0, which is false, so typ (δ, θ) 6∈ {4, 5}.

Finally, assume that typ (δ, θ) ∈ {2, 3}. Continue to assume that
{0, 1} is a 〈δ, θ〉-subtrace for which w = f(0, 0, 1) 6≡δ 0. Let U be a
〈δ, θ〉-minimal set which has a 〈δ, θ〉-trace N containing 0 and 1. Since
w = f(0, 0, 1) ≡θ f(0, 0, 0) ≡δ 0, we have (w, 0) ∈ θ − δ. According
to Lemma 4.7 of [4], this fact together with typ (δ, θ) ∈ {2, 3} jointly
imply that it is possible to find an idempotent unary polynomial e
such that e(A) = U and (e(w), e(0)) = (e(w), 0) 6∈ δ. This is a key fact
which we will refer to at the end of the proof.

It is time to make use of the pentagon shape. Choose a congruence λ
in the interval Int[σ, γ] which is minimal for the property that λ∨δ ≥ θ.
Such a congruence exists and is larger than σ since σ∨ δ = δ 6≥ θ while

γ ∨ δ ≥ γ ∨ α = τ ≥ β ≥ θ.

Let λ∗ be a congruence for which σ ≤ λ∗ ≺ λ ≤ γ.

Claim 3.3. Let B and T denote the body and tail of U , respectively.
Let Ω denote the largest congruence on A such that Ω|U ⊆ B2 ∪ T 2.
Then

(1) B is a Ω|U -class, and
(2) λ 6≤ Ω and λ∗ ≤ Ω.

In particular, λ|B ⊆ λ∗.

We make two remarks before proving this claim. First, we explain
why there is largest congruence satisfying Ω|U ⊆ B2 ∪ T 2. Lemma 2.3
of [2] proves that restriction to U is a homomorphism from the lattice
Con (A) to the lattice of equivalance relations on U . Thus, the join Ω
of all Ω′ ∈ Con (A) which satisfy Ω′|U ⊆ B2∪T 2 is a largest congruence
that satisfies Ω|U ⊆ B2 ∪ T 2. Hence Ω exists and equals the join of
all Ω′ ∈ Con (A) such that Ω′|U ⊆ B2 ∪ T 2. Our second remark is
that, although we know that typ (δ, θ) ∈ {2, 3}, we will arrange the
argument so that it works even if typ (δ, θ) = 4. We will need to know
the result in this generality in the proof of Lemma 3.4.

Now, to prove part (1) of the claim, note that the definition Ω implies
that it is the largest congruence on A such that B is a union of Ω|U -
classes. To see that B consists of single Ω|U -class, it is enough to show
that B is a Ω′|U -class for some congruence Ω′ ∈ Con (A) such that
Ω′|U ⊆ B2 ∪ T 2. If the type of 〈δ, θ〉 is 3 or 4, then by Lemma 4.17 of
[2] the congruence Ω′ = θ has this property. If the type of 〈δ, θ〉 is 2,
then a suitable congruence for Ω′ is described in Lemma 4.27(3) of [2].
This proves part (1) of the claim.
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To prove part (2), observe that if λ|U ⊆ B2∪T 2, then the congruences
λ|B, θ|B and δ|B would generate a nontrivial pentagon in the lattice
Con (A|B). But the fact that typ (δ, θ) ∈ {2, 3, 4} implies that A|B has
a Mal’tsev polynomial or lattice polynomials (Lemmas 4.17 and 4.20
of [2]), hence Con (A|B) must be modular. This shows that λ 6≤ Ω.

On the other hand, we must have λ∗|U ⊆ B2 ∪ T 2. Otherwise there
would exist a pair (r, s) ∈ λ∗ ∩ (B × T ). Since r ∈ B we can find r′ so
that (r, r′) ∈ θ|U − δ. Depending on the type of 〈δ, θ〉, A|U either has a
pseudo-Mal’tsev polynomial d(x, y, z) or pseudo-meet and pseudo-join
polynomials x ∧ y and x ∨ y. In any case, at least one of the choices
h(x) = d(x, r, r′), x∧r′ or x∨r′ is a unary polynomial of A|U for which
h(x) ≡θ x on U , and h(r) = r′. In particular, if we define s′ = h(s),
then we have

• (r, s) ∈ λ∗,
• (r′, s′) = (h(r), h(s)) ∈ λ∗, and
• (s, s′) ∈ θ|T ⊆ δ.

These conditions imply that r ≡λ∗ s ≡δ s′ ≡λ∗ r′. From this we get
that (r, r′) ∈ θ ∧ (λ∗ ∨ δ) = δ, contradicting our choice of r′. Hence
λ∗ ≤ Ω.

Since λ 6≤ Ω, λ∗ ≤ Ω, and λ∗ ≺ λ, it follows that λ ∧ Ω = λ∗. From
this and the fact that B is an Ω|U -class it is clear that λ|B ⊆ λ∧Ω = λ∗.
The proof of Claim 3.3 is complete.

Coupling the fact that λ is connected modulo λ∗ by 〈λ∗, λ〉-traces
(Theorem 2.8 of [2]) with the facts that we just established, λ∗ ⊆
B2∪T 2 and λ 6⊆ B2∪T 2, we see that there is 〈λ∗, λ〉-trace M such that
M ∩B 6= ∅ 6= M ∩T . Choose b ∈M ∩B and t ∈M ∩T . By Claim 3.3
we must have (b, t) 6∈ λ∗, so {b, t} is a 〈λ∗, λ〉-subtrace. From the local
equation f(x, y, y) ≈I x we get that f(b, t, t) ≡λ∗ b, so we also have
ef(b, t, t) ≡λ∗ e(b) = b ∈ B. (The polynomial e was fixed in the second
paragraph before Claim 3.3.) Recall that B is an Ω|U -class, where Ω
is the congruence defined in Claim 3.3. Hence, since 0, b ∈ B, we get
that ef(0, t, t) ≡Ω ef(b, t, t) ≡Ω b, so ef(0, t, t) ∈ B. Lemma 2.2 of [3]
shows that, for any polynomial p(x1, . . . , xn) ∈ Pol (A|U), if t is in the
tail of U and p(t, . . . , t) ∈ B, then p(θ|U , . . . , θ|U) ⊆ δ. Applying this
fact to the binary polynomial ef(0, x, y) we deduce from ef(0, t, t) ∈ B
that ef(0, θ|U , θ|U) ⊆ δ. But this leads to

e(w) = ef(0, 0, 1) ≡δ ef(0, 0, 0) ≡δ e(0) = 0,

which contradicts our earlier conclusion that (e(w), 0) 6∈ δ. This com-
pletes the proof. �
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Lemma 3.4. Assume that A is a finite algebra and that Con (A) has
a sublattice isomorphic to the pentagon, labeled as in Lemma 3.2. Let
I = Int[σ, τ ] and J = Int[α, β]. If A satisfies both of the local equations

f(x, x, y) ≈I x and f(x, y, x) ≈I x,
then A satisfies the local equation f(x, y, y) ≈J x.

Proof. Assume to the contrary that f(x, x, y) ≈I f(x, y, x) ≈I x while
f(x, y, y) 6≈J x. Since f(x, y, y) 6≈J x, there exist a two-element
subinterval K = Int[δ, θ] of J , and a 〈δ, θ〉-subtrace {0, 1} such that
w = f(0, 1, 1) 6≡δ 0. We shall derive a contradiction to this.

Assume first that typ (δ, θ) ∈ {1, 2}. Since f(x, x, y) ≈I x we have

f(0, 0, 1) ≡δ 0 ≡δ f(0, 0, 0).

By Theorems 5.5 and 5.6 of [2], θ is abelian over δ (Definition 3.6 of
[2]). This allows us to replace the argument in the second position on
each side of this equality with 1 and still maintain a ≡δ-relation. Hence

w = f(0, 1, 1) ≡δ f(0, 1, 0).

From f(x, y, x) ≈I x we get w ≡δ 0, which is false. Hence typ (δ, θ) 6∈
{1, 2}.

Now assume that typ (δ, θ) ∈ {4, 5}. Let U be a 〈δ, θ〉-minimal set
containing {0, 1}. Since (w, 0) ∈ θ − δ there is a unary polynomial k
such that k(A) = U and (k(w), k(0)) 6∈ δ (Theorem 2.8(4) of [2]). If
k(θ|U) ⊆ δ, then since f(x, x, x) ≈I x we get that

kf(0, 0, 0) ≡δ k(0) ≡δ k(1) ≡δ kf(1, 1, 1).

In the 〈δ, θ〉-preorder of the θ-class of 0 the element kf(0, 1, 1) is be-
tween the comparable elements kf(0, 0, 0) and kf(1, 1, 1). The latter
two elements are δ-related, so k(w) = kf(0, 1, 1) ≡δ kf(0, 0, 0) ≡δ k(0),
contrary to the choice of k. Consequently k|U is a permutation. Since
k preserves the 〈δ, θ〉-preorder we must have k(x) ≡δ x for all x in the
body of U . Thus, since k(w) 6≡δ k(0) ≡δ 0 6≡δ 1, we get 1 ≡δ k(w) ≡δ
kf(0, 1, 1). Together with

kf(x, y, x) ≡δ k(x) ≡δ x
on N , and kf(x, x, y) ≡δ x on N , it is not hard to show that kf(0, x, y)
and kf(x, y, 1) are meet and join modulo δ on the body of U with re-
spect to the order 0 < 1. The conclusions we draw are that typ (δ, θ) 6=
5, and that if typ (δ, θ) = 4 then k|U is a permutation. In this situ-
ation, let e be an idempotent iterate of k. The polynomial e has the
properties that e(A) = U and (e(w), e(0)) = (e(w), 0) ∈ θ − δ.

In the remaining case, when typ (δ, θ) = 3, Lemma 4.7 of [4] guaran-
tees the existence of an idempotent unary polynomial e with the same
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properties: e(A) = U and (e(w), e(0)) = (e(w), 0) ∈ θ − δ. We have
now shown that typ (δ, θ) ∈ {3, 4}, and that for either type we have a
special polynomial e.

Choose a congruence λ in the interval Int[σ, γ] which is minimal for
the property that λ ∨ δ ≥ θ and choose λ∗ such that σ ≤ λ∗ ≺ λ. As
in the proof of Claim 3.3 of Lemma 3.2, if B and T denote the body
and tail of U , then λ|U 6⊆ B2 ∪ T 2 while λ∗|U ⊆ B2 ∪ T 2.

Claim 3.5. There exist 〈λ∗, λ〉-subtraces {0, u} and {v, 1} such that
(u, v) ∈ δ.

As argued after the proof of Claim 3.3 of Lemma 3.2, there is a
〈λ∗, λ〉-trace M such that M ∩ B 6= ∅ 6= M ∩ T . Choose r ∈ M ∩ B
and s ∈ M ∩ T . Since (r, s) ∈ (B × T ) we must have (r, s) 6∈ λ∗.
Therefore {r, s} is a 〈λ∗, λ〉-subtrace. Since r ∈ B we can find r′ so
that (r, r′) ∈ θ|U − δ. As argued in the proof of Claim 3.3, there is a
unary polynomial h of A|U for which h(x) ≡θ x on U , and h(r) = r′.
Define s′ = h(s). We have

• {r, r′} is a 〈δ, θ〉-subtrace in U ,
• {r, s} is a 〈λ∗, λ〉-subtrace,
• (s, s′) ∈ θ|T ⊆ δ, and
• (r′, s′) = (h(r), h(s)) ∈ λ ∩ (B × T ).

Since {r′, s′} is a polynomial image of the 〈λ∗, λ〉-subtrace {r, s} and
(r′, s′) 6∈ λ∗ it follows that {r′, s′} is also a 〈λ∗, λ〉-subtrace.

Since typ (δ, θ) ∈ {3, 4} the set {0, 1} is the unique 〈δ, θ〉-subtrace in
U , so {r, r′} = {0, 1}. If r = 0 and r′ = 1 then we take u and v to be s
and s′, while if r = 1 and r′ = 0 then we take u and v to be s′ and s.
All the assertions of the claim are proved.

Consider the following elements of U .

s

s

s

s
θ − δ δ

λ

λ

e(w) = ef(0, 1, 1)

0 ≡δ ef(0, 0, 1)

ef(0, v, 1)

ef(0, u, 1)

In this graph, an edge between a pair of elements is labeled by a
relation only when we know those elements to be so related. All
relations indicated follow from the previously determined facts that
(e(w), e(0)) = (e(w), 0) ∈ θ − δ and 0 ≡λ u ≡δ v ≡λ 1.
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Claim 3.6. The elements of the previous figure lie in the body of U

It is clear that ef(0, 0, 1) ≡δ 0 ∈ B and ef(0, 1, 1) = e(w) ∈ B.
Since {1, v} is a 〈λ∗, λ〉-subtrace and f(x, y, x) ≈I x, we get that
ef(1, v, 1) ≡λ∗ e(1) = 1. But since λ∗ ∨ δ 6≥ θ and B = {0, 1}, we must
have λ∗|B = 0B. Hence ef(0, v, 1) ≡θ ef(1, v, 1) = 1 ∈ B, which im-
plies that ef(0, v, 1) ∈ B. Similarly ef(0, u, 1) ≡θ ef(0, u, 0) = 0 ∈ B.
This completes the proof of the claim.

Since B2 = {0, 1}2 ⊆ θ, this claim shows that all of the elements in
the previous figure are θ|U -related. Therefore, since λ ∧ θ ≤ δ,

e(w) = ef(0, 1, 1) ≡δ ef(0, v, 1) ≡δ ef(0, u, 1) ≡δ ef(0, 0, 1) ≡δ 0,

which contradicts the fact that (e(w), 0) 6∈ δ. The proof is finished. �

Theorem 3.7. Let V be a locally finite variety. The following condi-
tions are equivalent.

(1) V satisfies a nontrivial congruence identity.
(2) V satisfies an idempotent Mal’tsev condition which fails in the

variety of semilattices.
(3) typ {V} ⊆ {2, 3, 4}.
(4) V |=con α ∩ (β ◦ γ) ⊆ (γ ∨ (α ∧ β)) ◦ (β ∨ (α ∧ γ)).
(5) There exists k < ω and 3-ary terms d0, . . . , d2k+1, e0, . . . , e2k+1, p

such that V satisfies the following equations:
(i) d0(x, y, z) ≈ p(x, y, z) ≈ e0(x, y, z);

(ii) di(x, y, y) ≈ di+1(x, y, y) and ei(x, x, y) ≈ ei+1(x, x, y) for
even i;

(iii) di(x, x, y) ≈ di+1(x, x, y), di(x, y, x) ≈ di+1(x, y, x),
ei(x, y, y) ≈ ei+1(x, y, y) and ei(x, y, x) ≈ ei+1(x, y, x) for
odd i;

(iv) d2k+1(x, y, z) ≈ x and e2k+1(x, y, z) ≈ z.
(6) There exists ` < ω such that the lattice N` cannot be embedded

into Con (A) for any finite A ∈ V.

Proof. The implication (6)⇒ (1) follows from Theorem 2.1. The impli-
cations (1)⇒ (2)⇔ (3)⇔ (4)⇔ (5) are from Theorems 9.8 and 9.18
of [2]. (Our notation in (5) differs slightly from that of [2].) The rest
of the proof will be devoted to establishing the implication (5)⇒ (6).

Fix a k for which (5) holds. Assume that N2k is a sublattice of the
congruence lattice of some finite A ∈ V. Label the elements of the
sublattice as in the following figure.
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By (5)(ii) and (5)(iv), the algebra A satisfies the equations

d2k(x, y, y) ≈ d2k+1(x, y, y) and d2k+1(x, y, z) ≈ x.

In particular, this implies that d2k(x, y, y) ≈I x for I = Int[σ2k, τ2k].
Assume that for some i satisfying 0 ≤ i < k we have shown that

d2k−2i(x, y, y) ≈I x holds for I = Int[σ2k−2i, τ2k−2i]. By Lemma 3.2 we
have that

d2k−2i(x, x, y) ≈J x and d2k−2i(x, y, x) ≈J x
hold for J = Int[σ2k−2i−1, τ2k−2i−1]. By (5)(iii) we have that A satisfies
d2k−2i−1(x, x, y) ≈ d2k−2i(x, x, y) and d2k−2i−1(x, y, x) ≈ d2k−2i(x, y, x),
so

d2k−2i−1(x, x, y) ≈J x and d2k−2i−1(x, y, x) ≈J x.
This establishes the hypotheses of Lemma 3.4 for f = d2k−2i−1. The
conclusion of that lemma is that the local equation d2k−2i−1(x, y, y) ≈K
x holds for K = Int[σ2k−2i−2, τ2k−2i−2]. Now, by (5)(ii), A satisfies
d2k−2i−2(x, y, y) ≈ d2k−2i−1(x, y, y), hence d2k−2i−2(x, y, y) ≈K x. To
summarize, we have shown that

(a) d2k(x, y, y) ≈I x holds for I = Int[σ2k, τ2k], and
(b) if d2k−2i(x, y, y) ≈I x holds for I = Int[σ2k−2i, τ2k−2i], then

d2k−2(i+1)(x, y, y) ≈K x holds for K = Int[σ2k−2(i+1), τ2k−2(i+1)].

By induction, d0(x, y, y) ≈L x holds for L = Int[σ0, τ0]. The same
argument works for the ej’s in place of the dj’s. (One should reverse
the order of the variables in the ej’s in order to use Lemmas 3.2 and
3.4 in the form in which they are stated.) Altogether this proves that
d0(x, y, y) ≈L x and e0(y, y, x) ≈L x for L = Int[σ0, τ0]. But (5)(i)
states that

d0(x, y, z) ≈ p(x, y, z) ≈ e0(x, y, z),
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so the term p(x, y, z) in condition (5) is a term satisfying p(x, y, y) ≈L
x and p(y, y, x) ≈L x. Applying Lemma 3.2 to p(x, y, y) ≈L x we
find that x ≈M p(x, x, y) for M = Int[α, β], while p(y, y, x) ≈L x
trivially implies p(x, x, y) ≈M y. Hence x ≈M y. But the definition of
a subtrace implies that the local equation x ≈M y never holds when
M is a nontrivial interval. This contradiction shows that N2k is not a
sublattice of Con (A) for any finite A ∈ V. �
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