
CONGRUENCE LATTICES OF LOCALLY FINITE ALGEBRAS

KEITH A. KEARNES

Abstract. It is shown that there exist algebraic lattices that cannot be repre-
sented as the congruence lattice of a locally finite algebra.

1. Introduction

Recently, James Schmerl asked me if every finite lattice is isomorphic to the congru-
ence lattice of a locally finite algebra. Noting that it is still unknown whether every
finite lattice is isomorphic to the congruence lattice of a finite algebra, he reformu-
lated the question as: Are there any finite lattices which are known to be isomorphic
to the congruence lattice of an infinite locally finite algebra but not yet known to be
isomorphic to the congruence lattice of a finite algebra?
I don’t know the answer to either form of Schmerl’s question, but have found a

result of the opposite type: there exist finite lattices that are representable as the
congruence lattice of a finite algebra, but not representable as the congruence lattice
of an infinite locally finite algebra. Moreover, there exist algebraic lattices that are
not isomorphic to the congruence lattice of any locally finite algebra at all.
To represent an algebraic lattice as the congruence lattice of an algebra, there is

a lower bound on the cardinality of the representing algebra that must be satisfied.
Namely, if L ∼= Con(A), then A must be large enough so that the lattice of all
equivalence relations on A contains a complete 0,1-sublattice isomorphic to L. Con-
versely, if A is at least this large, and is infinite, then it is shown in Remark 2.8
that L ∼= Con(A) for some algebra with universe A. The main purpose of this pa-
per is to prove the existence of upper bounds on the cardinality of the representing
algebra in some cases where the algebra is assumed to be locally finite. When the
upper bound on cardinality is incompatible with the aforementioned lower bound, a
nonrepresentability result is obtained.

2. Nonrepresentable Lattices

A congruence α on an algebra A is abelian if

(2.1) s(a, c) = s(a,d)⇔ s(b, c) = s(b,d)

whenever s(x,y) is an (m+ n)-ary term operation of A, a,b are m-tuples satisfying
(ai, bi) ∈ α for all i, and c,d are n-tuples satisfying (cj, dj) ∈ α for all j. This may
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be reformulated in the following way. Call n-ary polynomials sa(y) := s(a,y) and
sb(y) := s(b,y) α-twins if they are obtained from the same term operation s(x,y) by
substituting α-related tuples a and b for x respectively. Now let Nj = cj/α = dj/α
be the α-class of cj for each j. The bi-implication (2.1) merely asserts that the two
functions

sa, sb : N1 × · · · ×Nn → A

have the same kernel. Thus, α is abelian if any pair of α-twins have the same kernel
when restricted to a product of α-classes. At first, this sounds like a strange way to
define abelianness, but this definition agrees with the abelianness concept from group
theory and generalizes it in a useful way. (Confer [1, 3].)
Theorem 2.1 of [4] proves that if A is a finite algebra, µ is a minimal abelian

congruence on A, and B is a maximal proper subalgebra of A, then B is either a
union of µ-classes or is contained in a µ-transversal (which is a set containing exactly
one element from every µ-class). Equivalently, if a subset X ⊆ A properly contains a
µ-transversal, then X generates A. Theorem 2.1 below partially extends this result
to locally finite algebras. Namely, it proves that if A is a locally finite algebra and µ
is a minimal abelian congruence of finite index, then any subset X ⊆ A that properly
contains a µ-transversal generates A. Of course, if µ has finite index, then there is a
finite subset X0 ⊆ A that properly contains a µ-transversal. If A is generated by this
finite subset, then by local finiteness A is finite. Conversely, if A is finite, then the
desired result is just Theorem 2.1 of [4]. Thus, the extension to locally finite algebras
should be worded as:

Theorem 2.1. Let A be a locally finite algebra. If A has a minimal abelian congru-
ence of finite index, then A is finite.

Note that this result implies the nontrivial and new fact that any locally finite,
abelian, simple algebra is finite. See Corollary 2.3 for a generalization. For the
necessity of assuming abelianness, see Example 2.16.

Proof. Suppose that T is a µ-transversal, that X0 is a finite subset of A properly
containing T , and B is the subalgebra of A that is generated by X0. It will be shown
that B = A. Since A is locally finite and B is finitely generated, this forces A to be
finite.
Since T is a µ-transversal, each element a ∈ A is µ-related to a uniquely determined

element a ∈ T . Equivalently, there is a uniquely determined function A → T : a 7→
a for which (a, a) ∈ µ. It is possible to extend this notation from constants to
polynomials by writing p for some (any) µ-twin of p whose parameters lie in T . More
explicitly, if p is a polynomial ofA, and p(y) = s(a,y) for some term operation s(x,y)
and some tuple a of elements of A, then s(a,y) is (one instance of) a polynomial
that may be denoted p(y).
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Suppose that N1 × · · · ×Nn is a product of n µ-classes of A. Then

(2.2) V := Bn ∩ (N1 × · · · ×Nn) = (B ∩N1)× · · · × (B ∩Nn)

is a product of n µ|B-classes of B. Let Pn be the collection of subsets of A of the form
p(V ) where V is as in (2.2), p(y) is an n-ary polynomial of A. Let P =

⋃

n<ω Pn.
Order P by inclusion.
Let W = p(V ) ∈ P where V is of the form described in (2.2), p(y) = s(a,y) for

some term operation s(x,y), and p be a µ-twin of p whose parameters lie in T ⊆ B.
Since µ is abelian, p and p have the same kernel when restricted to any (subset of a)
product of µ-classes of A, hence p and p have the same kernel when restricted to V .
This shows that |p(V )| = |p(V )|. But V ⊆ Bn and the sequence of parameters of p
lie in T ⊆ B. Thus p(V ) ⊆ s(Bm, Bn) ⊆ B, since s is a term operation and B is a
subalgebra. It follows that |W | = |p(V )| = |p(V )| ≤ |B|. SinceW ∈ P was arbitrary,
no chain in P can be longer than |B|. In particular, any W ∈ P is contained in set
M ∈ P that is maximal under inclusion.
The purpose of this paragraph is to show that the maximal elements of P are

subsets of B. The idea to do this comes from [6]. Let M ∈ P be a maximal element.
By the definition of P , M = p(V ) for some set V of the form described in (2.2) and
some polynomial p(y) = s(a,y) = s(a1, . . . , am,y) of A. Since B properly contains a
µ-transversal, there is a pair (u, v) ∈ µ|B with u 6= v. Let N denote the µ-class of u,
and let U = B∩N denote the µ|B-class of u. Since (am, am) ∈ µ = CgA(u, v) there is
a sequence am = w1, w2, . . . , wk+1 = am where for each i there is a unary polynomial
ri of A such that {wi, wi+1} = {ri(u), ri(v)}. The sets Mi := s(a1, . . . , am−1, wi, V )
all belong to P since they are polynomial images of V . The sets Mi all have the same
size, since for any i and j the µ-twins s(a1, . . . , am−1, wi,y) and s(a1, . . . , am−1, wj,y)
have the same kernel when restricted to V . M1 = s(a1, . . . , am−1, w1, V ) = p(V ) = M
is maximal in P . Moreover, for each i the set Mi ∪Mi+1 is contained in a set in P ,
namely the set s(a1, . . . , am−1, ri(U), V ). That this belongs to P follows from the
facts that s(a1, . . . , am−1, r(y0),y) is a polynomial of A and U × V is of the form
described in (2.2). That it contains both Mi and Mi+1 follows from the fact that
{wi, wi+1} = {ri(u), ri(v)} ⊆ ri(U). Altogether, it has been shown that M1, . . . ,Mk

are sets in P of the same size, thatM1 = M is maximal under inclusion in P , and that
Mi∪Mi+1 is contained in a subset of P for each i. By induction,M1 = M2 = · · · = Mk.
Thus, if M = s(a1, . . . , am, V ) is maximal in P , then changing ai to ai one by one
does not change M . But then M = s(a1, . . . , am, V ) ⊆ B, since ai ∈ B for each i,
V ⊆ Bn, s is a term operation, and B is a subalgebra.
It was shown in the previous paragraph that the maximal elements of P are subsets

of B. But then all elements of P are subsets of B, since P is ordered by inclusion.
In particular, the minimal elements of P , which are the sets of the form {a}, a ∈ A,
are subsets of B. This proves that A ⊆ B, so A = B. ¤



4 KEITH A. KEARNES

It will be necessary to apply Theorem 2.1 in the situation where µ is known to be
locally solvable rather than abelian, so recall from Chapter 7 of [3] the meaning of
this concept. A congruence α on an algebra A is solvable if there is a finite chain
of congruences 0 = α0 ≤ · · · ≤ αn = α such that αi+1/αi is an abelian congruence
of A/αi. A congruence α on A is locally solvable if its restriction to any finitely
generated subalgebra is solvable.

Lemma 2.2. If µ is a minimal congruence on A, then µ is abelian if and only if it
is locally solvable.

Proof. It follows easily from the definitions that any abelian congruence is locally
solvable.
Arguing the contrapositive of the converse implication, suppose that µ is a minimal

nonabelian congruence on A. There exist a term s(x,y) and elements such that

(2.3) s(a, c) = s(a,d) and u = s(b, c) 6= s(b,d) = v,

where (ai, bi) ∈ µ and (cj, dj) ∈ µ for all i and j. Let B be a finitely generated
subalgebra of A containing the finite set

Y = {ai, bi}1≤i≤m ∪ {cj, dj}1≤j≤n ∪ {u, v},

and enough other elements so that any two distinct µ-related elements of Y generate
the same congruence ν of B. This is possible since µ is a minimal congruence of A.
Using the commutator defined in Chapter 3 of [3], the implication in (2.3) implies that
(u, v) ∈ [ν, ν]. But [ν, ν] ≤ ν = CgB(u, v), so [ν, ν] = ν. Since 0B < ν = [ν, ν] ⊆ µ|B,
it follows that µ restricts to a nonsolvable congruence on B, so µ is not a locally
solvable congruence of A. ¤

An algebra is locally solvable if its largest congruence is. Congruences α and β
are locally solvably related, written α

s
∼ β, if (α ∨ β)/(α ∧ β) is a locally solvable

congruence on A/(α ∧ β). It is shown in Theorem 7.7 of [3] that when A is locally

finite the relation
s
∼ is a complete congruence on Con(A), and Con(A)/

s
∼ is meet

semidistributive. It follows from Exercise 7.14 (2) of [3] and the fact that the local
solvability relation is a congruence that when A is locally finite and δ ≤ α ∧ β the
relation α

s
∼ β in Con(A) is equivalent to α/δ

s
∼ β/δ in Con(A/δ).

Corollary 2.3. If A is a locally finite and locally solvable algebra, and Con(A) has
a finite maximal chain, then A is finite.

Proof. Suppose that 0 = α0 ≺ · · · ≺ αn = 1 is a finite maximal chain in Con(A).

SinceA is locally solvable, the relation
s
∼ is the largest congruence onCon(A). Hence

αi
s
∼ αi+1 for each i, forcing αi+1/αi to be a minimal locally solvable congruence of

A/αi. By Lemma 2.2, this congruence is abelian. It follows from Theorem 2.1 that
if αi+1 has finite index, then αi also has finite index. By descending the chain, the
least congruence 0 is of finite index, hence A is finite. ¤
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Definition 2.4. Let L be an algebraic lattice with largest element 1. Let Ω be the
smallest complete congruence on L such that L/Ω is meet semidistributive. The
cf-filter of L is the lattice filter generated by all elements x ∈ L such that

(i) x ≡ 1 (mod Ω), and
(ii) the interval [x, 1] has a finite maximal chain.

An element in the cf-filter of L is called a cf-element.

“Cf” stands for “cofinite”.

Theorem 2.5. If A is a locally finite algebra, then every cf-element of Con(A) is a
congruence of finite index.

Proof. As noted above,
s
∼ is a complete congruence on L := Con(A) for which the

quotient L/
s
∼ is meet semidistributive. If Ω is the smallest congruence with these

properties, then x Ω y ⇒ x
s
∼ y. Therefore, the cf-filter is generated by elements

x ∈ L for which x
s
∼ 1 and [x, 1] has a finite maximal chain. For each such element,

A/x is a locally solvable algebra whose congruence lattice has a finite maximal chain.
According to Corollary 2.3, A/x is finite, hence x has finite index. Since the cf-filter
is generated by elements of finite index, it consists of elements of finite index. ¤

For certain lattices L, this theorem can be used to establish an upper bound on
the size of a locally finite algebra A for which L ∼= Con(A).

Corollary 2.6. Let A be a locally finite algebra. If the least element of L := Con(A)
is a cf-element, then |A| < ω. If the least element of L is the meet of ≤ κ cf-elements
of L, for some infinite κ, then |A| ≤ 2κ.

Proof. The first claim is a direct consequence of Theorem 2.5. For the second claim,
if the least element of Con(A) is the intersection of ≤ κ cf-elements, then from
Theorem 2.5 the algebra A is a subdirect product of ≤ κ finite algebras. If κ is
infinite, this forces |A| ≤ ωκ = 2κ. ¤

In particular, this shows that if the least element of L is the meet of ≤ κ cf-
elements, and |L| > 22κ , then L is not representable as the congruence lattice of a
locally finite algebra (since a set of size ≤ 2κ supports ≤ 22κ equivalence relations).
More generally, if x ∈ L is above the meet of κ cf-elements, and the interval [x, 1] has
cardinality greater than 22κ , then L is not representable as the congruence lattice of
a locally finite algebra.
Next is a nonrepresentability result whose statement does not refer explicitly to

cf-elements.

Corollary 2.7. Let L be an algebraic lattice. Suppose that

(i) L has a finite maximal chain, and
(ii) there is no complete homomorphism from L onto a 2-element chain.
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If L ∼= Con(A) for some locally finite algebra A, then A is finite. In particular, if L
is an infinite algebraic lattice satisfying (i) and (ii), then L is not isomorphic to the
congruence lattice of a locally finite algebra.

Proof. The proof of the corollary is accomplished by showing that if (i) and (ii) hold,
then the least element of L is a cf-element. Then the conclusion follows from the first
part of Corollary 2.6.
Let Ω be the least complete congruence on L such that L/Ω is meet semidistribu-

tive. If Ω is not the total binary relation on L, then L/Ω is a nontrivial, complete,
meet semidistributive lattice. Since L is algebraic, it is meet continuous. The natu-
ral map ν : L→ L/Ω is complete, so L/Ω is also meet continuous. Since L/Ω has a
finite maximal chain, it has an atom α. The map ϕ : L/Ω → [0, α] : x 7→ x ∧ α is a
complete lattice homomorphism onto a 2-element chain. (That ϕ preserves complete
joins uses the meet semidistributivity and meet continuity of L/Ω.) But then ϕ◦ν is
a complete homomorphism of L onto a 2-element chain, contrary to (ii). Therefore
Ω is the total binary relation on L.
If 0 and 1 are the least and largest elements of L, then 0 ≡ 1 (mod Ω) by the

conclusion of the previous paragraph. Since [0, 1] = L has a finite maximal chain, 0
is a cf-element. ¤

Remark 2.8. It is asserted in the introduction of this paper that if L is an algebraic
lattice and the lattice of all equivalence relations on the infinite set A contains a
complete 0,1-sublattice isomorphic to L, then there is an algebra A with universe A
such that L ∼= Con(A). This claim will be supported now.
If L is isomorphic to a complete 0,1-sublattice of Eq(A), then the number κ of

compact elements of L does not exceed the number of compact elements of Eq(A),
which is |A|. Thus, the least possible cardinality for the universe A of an infinite
representing algebra for L is κ + ω. The constructions in [2, 5, 8] produce a repre-
senting algebra A of this size. The fact that representing algebras exist in all larger
cardinalities can be proved by slightly modifying the constructions in [2, 5, 8], or by
using the generalized matrix power construction described in the next paragraph.
Let A be an algebra, and let B be a Boolean algebra with Stone space B∗. Let

A[B]∗ be the Boolean power of A by B, which is the subalgebra of the direct power
AB∗

consisting of all continuous functions from B∗ to the discrete space A. Let A[B]

be the expansion of A[B]∗ obtained by adding the following new operations:

(i) for each homeomorphism h : B∗ → B∗ add a unary operation uh defined by
uh(f) = f ◦ h−1, and

(ii) for each clopen set U ⊆ B∗ add a binary operation bU defined by bU(f, g) =
f |U ∪ g|B∗\U .

A finitary relational clone on a set A is an infinitary multisorted algebra whose
universe is a set R of finitary relations on A, graded by arity, which contains the
binary equality relation on A. Its operations are the binary product (×) of relations
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of possibly different arities, arbitrary intersection (∩) of relations of the same arity,
unary projections (pnI ) of n-ary relations onto (n − 1)-element subsets I of the n
coordinates, unary permutations of coordinates (Πσ) of n-ary relations for all σ ∈ Sn
and all n < ω, and directed unions (∪) of n-ary relations for each n < ω. It is known
that for any algebra A the set of finitary compatible relations of A forms a finitary
relational clone (written Rel(A)), and that every finitary relational clone is Rel(A)
for some algebra A (cf. [7, 9]). The elements of Con(A) are among the elements of
the binary component of Rel(A) and the complete lattice operations of Con(A) are
the restrictions to Con(A) of term operations of Rel(A), so Con(A) is a subalgebra
of a reduct of Rel(A). Since Con(A) is an equationally definable subset of Rel(A),
if Rel(A) ∼= Rel(B) then Con(A) ∼= Con(B).
If ρ is an n-ary compatible relation of A, then it is a subuniverse of An. For any

Boolean algebra B the Boolean power ρ[B]∗ is a subuniverse of An[B]∗ ∼= (A[B]∗)n,
hence may be viewed as a compatible n-ary relation of A[B]∗. ρ[B]∗ is compatible
with the operations uh and bU defined earlier, so ρ[B]∗ may be viewed as a compatible
n-ary relation on A[B]. When viewed this way, ρ[B]∗ will be denoted ρ[B].
A congruence θ of a Boolean algebra B is characteristic if α(θ) = θ for every

automorphism α ∈ Aut(B). B is characteristically simple if its only characteristic
congruences are 0B and 1B. Ideals and filters of B are characteristic if they generate
characteristic congruences.

Theorem 2.9. The following conditions are equivalent for a nontrivial Boolean al-
gebra B.

(1) For some (equivalently every) nontrivial algebra A, the mapping ρ 7→ ρ[B] is
an isomorphism from Rel(A) to Rel

(

A[B]
)

.

(2) For some (equivalently every) nontrivial algebra A, the mapping θ 7→ θ[B] is
an isomorphism from Con(A) to Con

(

A[B]
)

.
(3) B is characteristically simple.

Proof. By Stone duality, we may assume throughout the proof that B is the Boolean
algebra of clopen subsets of the Stone space B∗, and that the automorphisms of B
are those induced by homeomorphisms of B∗.
[(1) ⇒ (2)]: If (1) holds for some nontrivial algebra A, then (2) also holds for A

since Con(A) is an equationally definable subalgebra of a reduct of Rel(A).
[¬(3) ⇒ ¬(2)]: If F is a proper, nontrivial, characteristic filter of B, then the set

C of ultrafilters of B extending F is a proper, nonempty, closed subset of the Stone
space B∗ that is invariant under all homeomorphisms of B∗. The binary relation
Θ defined on A[B] by (f, g) ∈ Θ iff f |C = g|C is a congruence of A[B]. It cannot
be of the form θ[B] for any θ ∈ Con(A), since under the p-th coordinate projection
homomorphism πp : A

[B] → A : f 7→ f(p) we have πp(θ
[B]) = θ for any point p ∈ B∗.

But πp(Θ) equals 0A when p ∈ C and equals 1A when p /∈ C, and 0A 6= 1A when A
is nontrivial.



8 KEITH A. KEARNES

[(3) ⇒ (1)]: The verification of the fact that the mapping ρ 7→ ρ[B] is an injec-
tive homomorphism from Rel(A) to Rel

(

A[B]
)

is routine and does not require the
assumption that B is characteristically simple. We argue only that if B is character-
istically simple, then the function Rel(A)→ Rel

(

A[B]
)

: ρ 7→ ρ[B] is surjective.
For a clopen set U ∈ B and a homeomorphism h : B∗ → B∗, call U(h) := h(U)

the translate of U by h. The assumption that B is characteristically simple means
that the characteristic ideal generated by any nonempty U ∈ B contains the set B.
But the characteristic ideal generated by U is the ordinary ideal generated by the
translates of U . Hence B is characteristically simple iff for any nonempty clopen set
U ∈ B it is possible to express B as a union of finitely many translates of U .
Choose any compatible relation R ∈ Rel

(

A[B]
)

, and any point p ∈ B∗. Let
ρ = πp(R). If a ∈ A, let ca : B

∗ → A be the constant function with image {a}.

Claim 2.10. A tuple (a1, . . . , an) of elements of A belongs to ρ if and only if the
corresponding tuple (ca1

, . . . , can) of constant functions in A[B] belongs to R.

If (ca1
, . . . , can) ∈ R, then (a1, . . . , an) = πp((ca1

, . . . , can)) ∈ ρ according to the defi-
nition of ρ. Conversely, if (a1, . . . , an) ∈ ρ, then there exist functions f1, . . . , fn ∈ A[B]

such that (f1, . . . , fn) ∈ R and πp((f1, . . . , fn)) = (f1(p), . . . , fn(p)) = (a1, . . . , an).
Since the universe of A[B] is A[B]∗, there is a clopen set U containing p such that fi|U
is constant for all i. Thus (f1, . . . , fn)|U = (ca1

, . . . , can)|U . Since B is characteristi-
cally simple and U 6= ∅, there is a finite sequence of translates U(hj), 1 ≤ j ≤ `, whose
union is B. For each j, the tuple uhj(f1, . . . , fn) = (f1 ◦ h

−1
j , . . . , fn ◦ h

−1
j ) belongs to

R, since uhj is a term operation, and it agrees with uhj(ca1
, . . . , can) = (ca1

, . . . , can)
on U(hj).
We prove by induction on k that R contains a tuple that agrees with (ca1

, . . . , can)
on U(h1) ∪ · · · ∪ U(hk). The base case was established in the preceding paragraph.
Let V equal the clopen set U(h1) ∪ · · · ∪ U(hk). If (g1, . . . , gn) ∈ R agrees with
(ca1

, . . . , can) on V , then since uhk+1
(f1, . . . , fn) ∈ R agrees with (ca1

, . . . , can) on
U(hk+1), it follows that

bV ((g1, . . . , gn), uhk+1
(f1, . . . , fn)) ∈ R

agrees with (g1, . . . , gn) on V and with (f1, . . . , fn) on B
∗ \V . Thus, it is a tuple in R

that agrees with (ca1
, . . . , can) on V ∪ U(hk+1), which is what was to be proved. By

induction, R contains a tuple that agrees with (ca1
, . . . , can) on U(h1)∪ · · · ∪U(h`) =

B∗, hence (ca1
, . . . , can) ∈ R.

Claim 2.11. πq(R) = ρ for every q ∈ B∗.

According to Claim 2.10, if C is the set of tuples in R consisting of constant
functions, then πp(R) = πp(C) for a arbitrarily chosen point p ∈ B∗. Thus πp(R) is
independent of p.

Claim 2.12. R = ρ[B].
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From Claim 2.11, R is contained in the restriction of full power ρB
∗

to A[B]. But
this restiction is just ρ[B], so R ⊆ ρ[B]. Now choose any tuple (f1, . . . , fn) ∈ ρ[B].
There exists a partition U1 ∪ · · · ∪ Uk of B∗ into clopen sets such that each fi is
constant on each Uj; say (f1, . . . , fn)|Uj = (cj1, . . . , c

j
n)|Uj for constant functions cji ,

1 ≤ j ≤ k. For p ∈ Uj we have

(cj1(p), . . . , c
j
n(p)) = (f1(p), . . . , fn(p)) ∈ ρ,

so (cj1, . . . , c
j
n) ∈ R for all j.

We argue by induction on j that R contains a tuple that agrees with (f1, . . . , fn)
on U1 ∪ · · · ∪ Uj. The tuple (c11, . . . , c

1
n) ∈ R proves this when j = 1. Suppose that

(g1, . . . , gn) ∈ R agrees with (f1, . . . , fn) on W := U1 ∪ · · · ∪ Uj. Then

bW ((g1, . . . , gn), (c
j+1
1 , . . . , cj+1

n )) ∈ R

and this tuple agrees with (f1, . . . , fn) on U1 ∪ · · · ∪ Uj ∪ Uj+1. By induction,
(f1, . . . , fn) ∈ R. This completes the proof that the mapping ρ 7→ ρ[B] is surjec-
tive for every A. ¤

Free Boolean algebras are characteristically simple. Therefore if B is a free Boolean
algebra of infinite rank λ ≥ |A|, then A[B] has cardinality equal to |A[B]| = |A[B]∗| =
|A| · |B| = max(|A|, λ) = λ, and the map θ 7→ θ[B] is an isomorphism of Con(A)
onto Con

(

A[B]
)

. This shows that if L is representable as Con(A) for some algebra
A, then L is representable as the congruence lattice of an algebra of size λ for every
infinite λ ≥ |A|.

Example 2.13. Let X be an infinite set of cardinality κ, and let L = Eq(X) be
the lattice of all equivalence relations on X. If X = 〈X; ∅〉, then L = Con(X), so
L is representable as the congruence lattice of a locally finite algebra of size κ. By
Remark 2.8, if L is representable in cardinality κ, then it is representable in all larger
cardinalities. However, the generalized matrix power construction of Remark 2.8
usually does not produce locally finite algebras. (A[B] is locally finite if and only
if A is locally finite and B is finite.) Here it will be shown that L has infinitely
many different representations as the congruence lattice of a locally finite algebra
of cardinality κ, but no representation as the congruence lattice of a locally finite
algebra of any other cardinality.
L has infinitely many different representations in cardinality κ simply because the

ordinary matrix power X[k] has a congruence lattice isomorphic to L = Con(X)
for each k. The cardinality of X[k] is |Xk| = |X| = κ. Such representations are
“different” for different values of k because maximal congruences on X[k] have index
2k, and this changes as k does.
Since the lattice of equivalence relations on a κ-element set has κ compact elements

when κ ≥ ω, it is clear that L cannot be represented as a congruence lattice of any
algebra of cardinality less than κ. In this paragraph it will be shown that L cannot be
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represented as a congruence lattice of a locally finite algebra in cardinalities greater κ.
Indeed, suppose that ϕ : L→ Con(A) is an isomorphism, where A is a locally finite
algebra. It is easy to see that the elements θ ∈ L = Eq(X) that are of finite index are
cf-elements, and that the compact elements of L are the equivalence relations on X
with finitely many nonsingleton classes, each one finite. Therefore, L has κ compact
elements, and if α ∈ L is compact, then α has a lattice-theoretic complement that is
a cf-element. Using the isomorphism ϕ, we obtain that Con(A) has κ-many compact
elements, and each one has a lattice-theoretic complement that is a cf-element. Since
A is locally finite, the cf-elements have finite index. If a congruence α on A has a
cf-element θ as a complement, and the index of θ is m, then the classes of α have
size ≤ m. Therefore, if a ∈ A is fixed and Y := {a/α | α ∈ Con(A) compact}, then
Y consists of at most κ-many finite subsets of A, so |

⋃

Y | ≤ κ. But if b ∈ A, then
b ∈ a/Cg(a, b) and a/Cg(a, b) ∈ Y . Therefore A =

⋃

Y has size at most κ.

Example 2.14. Let V be a vector space of dimension greater than 1. Every subspace
of finite codimension is a cf-element in the lattice Sub(V ) of subspaces of V . If
Sub(V ) ∼= Con(A) for some locally finite algebraA, then it follows from Theorem 2.5
that V/U is finite when U has finite codimension. This forces V to be a vector
space over a finite field, implying that V itself is locally finite. In other words, if
the congruence lattice of a vector space of dimension ≥ 1 is representable as the
congruence lattice of a locally finite algebra, then the vector space itself must be
locally finite. Moreover, by arguments mirroring those of Example 2.13, the vector
space and the representing algebra must have the same size.

Example 2.15. Let G be a group, and let L = Sub(G) be the lattice of subgroups
of G. Then L is isomorphic to the congruence lattice of G considered as a G-set over
itself. Such an algebra is never simultaneously locally finite and infinite, and it seems
to happen frequently that the lattice L is not representable as the congruence lattice
of any algebra that is simultaneously locally finite and infinite.
For example, ifH is a nontrivial finite group andG = H×H, then Sub(G) contains

elements H × {1}, {1} ×H, and the diagonal subgroup D = {(h, h) | h ∈ H}. These
three subgroups pairwise join to G and pairwise meet to {1}. This is enough to show
that Sub(G) has no homomorphism onto the 2-element chain. By Corollary 2.7,
Sub(G) is not isomorphic to the congruence lattice of an infinite locally finite algebra.
For another example, it can be argued that if G is any nontrivial finite group

satisfying [G,G] = G, then Sub(G) has no homomorphism onto a 2-element chain.
(For if ϕ : Sub(G)³ 2, then the largest subgroup ϕ maps to zero can be shown to
be normal in G of prime power index. Thus, if [G,G] = G, then there is no such
normal subgroup, so there can be no such homomorphism.) By Corollary 2.7, in this
situation Sub(G) is not isomorphic to the congruence lattice of an infinite locally
finite algebra.
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Some subgroup lattices are not isomorphic to the congruence lattice of any locally
finite algebra at all. For example, let G = SO(3,R) be the special orthogonal group,
viewed as the rotation group of the unit sphere in R

3. For a on the unit sphere, the
stabilizer Ga consists of the rotations around the axis whose direction vector is a. If
Ga 6= Gb, then Ga ∧Gb = {1} and Ga ∨Gb = G in L. This is enough to prove that
the least complete congruence Ω such that L/Ω is meet semidistributive is the total
relation. Hence the cf-filter of L is generated by those H ∈ L such that the interval
[H,G] contains a finite maximal chain. Since the interval [Ga, G] contains only three
elements, namely Ga, G and the setwise stabilizer G{a,−a} of {a,−a}, it follows that
each Ga is in the cf-filter. Since Ga ∧ Gb = {1} when Ga 6= Gb, it follows that {1}
is a cf-element. By Theorem 2.5, L is not the congruence lattice of a locally finite
algebra.

Example 2.16. It has been shown that certain finite lattices are not representable
as the congruence lattice of an infinite locally finite algebra. Here is will be shown
that every finite distributive lattice is the congruence lattice of a locally finite algebra
of cardinality κ for any infinite κ (and for infinitely many finite κ).
Let D be a finite distributive lattice, and let B be a Boolean lattice of cardinality

κ that contains D as a 0, 1-sublattice. For each x ∈ B, let c(x) be the least ele-
ment of the sublattice D that lies above x. Then c : B → B is an increasing join
homomorphism whose fixed points are the elements of D. Let A = 〈B;∨,∧, c〉.
A is locally finite, since if C is a subalgebra generated by a finite subset X0 ⊆ B,

then C is contained in the sublattice of B generated by the finite set X0 ∪D. Since
B is a locally finite lattice, C is finite.
Any congruence on A is a congruence on the Boolean lattice B, hence is uniquely

determined by the ideal I of elements congruent to 0. For the congruence to be
compatible with c also, it is necessary to have c(I) ⊆ I, which means that I must
be a principal ideal generated by an element of D. Conversely, if I is a principal
ideal generated by an element d ∈ D, then the lattice congruence corresponding to
I is CgB(0, d) = {(x, y) ∈ B2 | x ∨ d = y ∨ d}. This is the kernel of the lattice
endomorphism x 7→ x ∨ d of B, which is readily seen to be an endomorphism of A
also. Hence CgB(0, d) is a congruence of A when d ∈ D. Altogether this shows that
the congruences of A are those of the form CgB(0, d), d ∈ D. Since D is a sublattice,
Cg(0, x)∨Cg(0, y) = Cg(0, x∨ y) and Cg(0, x)∧Cg(0, y) = Cg(0, x∧ y). This proves
that ϕ : D→ Con(A) : x 7→ Cg(0, x) is an isomorphism.
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