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Congruence semimodular varieties II: Regular varieties 

P. AGLIANO AND K. A. KEARNES 

Dedicated to Bjarni Jrnsson on the occasion of  his 70th birthday 

1. Introduction 

In [8], P. Jones characterized the regular varieties of semigroups which are 
congruence semimodular and he partially solved the problem of characterizing the 
non-regular, congruence semimodular (CSM) varieties of semigroups. For  regular 
varieties his characterization was an equational one, so necessarily a part of  his 
argument was semigroup-theoretic. But some of his argument involved only con- 
gruence lattice manipulations and references to the two-element semilattice. It 
seemed plausible that one could give a universal algebraic characterization of  all 
regular, CSM varieties. 

Jones posed the problem of  characterizing regular, CSM varieties at the 
International Conference on Universal Algebra and Lattice Theory held at 
Molokai, Hawaii in 1987. The authors were students attending that conference and 
became familiar with the problem. Agliano began a general investigation of CSM 
varieties under the supervision of his doctoral advisor, J. B. Nation, at the 
University of Hawaii. In the fall of  1988, Agtiano filed his dissertation and Kearnes 
arrived at the University of  Hawaii. We began discussing whether or not tame 
congruence theory could be applied to solve Jones' problem, at least for locally 
finite varieties or pseudo-varieties of  finite algebras. This is the approach that had 
been suggested by Jones in 1987. We discovered a number of  interesting facts about 
CSM varieties using tame congruence theory, but we did not solve Jones' problem 
at that time. (These "interesting facts" have since been collected in, Congruence 
semimodular varieties I: locally finite varieties.) After about two months our 
collaboration ended when Agliano returned to Italy. 

For a while we felt compelled to publish some of our results on CSM varieties, 
but we were reluctant to do so without solving Jones' problem first. We renewed 
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our collaboration in the fall of  1989 and finally solved Jones' problem. The solution 
is Theorem 3.3. About half of  the argument was familiar to us from our 1988 
discussions. In particular, we'd known for a year how to prove the crucial 
implication Theorem 3.3 (1)--+(3). The turning point came when the reverse 
implication, Theorem 3.3 ( 3 ) ~  (1), was proved for finite algebras by using tame 
congruence theory. Then we made the exciting discovery that infinite algebras in 
regular, CSM varieties behave "as if they were finite." That is, we were able to 
extrapolate enough of the techniques of tame congruence theory to infinite algebras 
in regular, CSM varieties so that we could prove Theorem 3.3 (3)-- ,(1) for any 
regular, CSM variety. The fact that this is possible affirms Jones' original insight 
that tame congruence theory could be used to solve the problem. 

We feel that the solution to Jones' problem is the most important result in this 
paper. Its proof  necessitates an examination of  the one block property and urges 
further investigation of  polynomially orderable varieties. We give these topics brief 
attention. Our conventions follow those of  Congruence semimodular varieties I: 

locally finite varieties. Our reference for algebra is [10] and our reference for tame 
congruence theory (which we use very little of  in this paper) is [6]. 

2. The one block property 

We are interested in conditions strong enough to imply that an algebra, or every 
algebra in a variety, has a semimodular congruence lattice. We are interested mainly 
in algebras which are not congruence modular and our principal examples of  these 
are semilattices and sets. In this section we isolate a certain congruence property 
common to semilattices and sets which is strong enough to force semimodular 
congruences. 

D E F I N I T I O N  2.1. An algebra A is said to have the one block property (briefly 
OBP) if any atom 0 e Con(A) has exactly one nontrivial congruence class. A class 
of similar algebras has the OBP if every member does. 

T H E O R E M  2.2. Lek ~'~ be a class o f  similar algebras closed under homomorphic 
images. Then (1) --+(2) --+(3). 

(1) ~ has the OBP. 

(2) For any algebra A ~ ~ff, any atom a ~ Con(A) and any fl ~ Con(A), we have 
/~o~ o/~=~ v/~. 

(3) ~ is C S M .  

Proof. ( l )  ~ (2). Choose A ~ X and suppose that ~, fl 6 Con(A) and ~ >- 0A. If  
( a , b ) ~ v f l ,  then we can find a chain of elements a = x 0  . . . . .  x n = b  where 
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(xi, xi+ 1) e e u/3 for each i < n. If this chain has minimal length, then the fact that 
has only one nontrivial block implies that at most one nontrivial "e-l ink" is 

involved in this chain. From this it is clear that ~ v/3 =/3 o ~ o/3. 
(2) ~ (3 ) .  Suppose that congruence semimodularity fails in ~,ul. Then, there 

exists an algebra A ~ ~,~, an ~ >- 0A, a /3 ~ ~ and a 7 ~ Con(A) with ~ v/3 > 7 >/3. 
Pick (a, b) e 7 - /3 ;  we have (a, b) E e v/3 =/3 o e o/3 by hypothesis. Hence there are 
u, v e A  with a / 3 u ~ v / 3 b .  This means that u /3aTb /3v .  But /3<7,  so (u,v) E 

^ 7 = 0A. Therefore a/3 u 0a v/3 b and (a, b) ~/3 which is a contradiction. [] 

We leave it to the reader to show that neither implication in Theorem 2.2 can 
be reversed. 

THEOR EM 2.3. Let ~U be a nontrivial variety which has the OBP. ~U is not 

congruence modular. In fact, for every nontrivial A ~ ~ ,  either K or D2 occurs as a 

sublattice o f  Con(B) for some B < A 2. 

Proof Assume that A is a nontrivial member of ~ ,  0 e Con(A) is compact and 
6 ~ Con(A) is a lower cover of 0. Let B < A 2 be the subalgebra whose universe is 
0. For e e Con(A) let e0 denote the congruence on B consisting of all 
((a, b), (c, d)) e B 2 such that (a, c) s e and let el denote the congruence consisting of 
all ((a, b), (c, d)) e B 2 such that (b, d) e e. Let ~ denote ~0/x cq. From the definition 
of B we have 0o = 01 = 0 a n d  60, 61M 0. Now, 6 o M O, but 6 = 60/x 61 -g 6 A 61 = 61, 
since 61/gECon(B/S)  has more than one nontrivial equivalence class. Hence, 
Con(B) is not even dually semimodular. This proves the first statement. 

Since 6-K61, we can find 6~eCon(B)  such that 6 < 6 ~ < 6 1 .  Let 6 ; =  
{((a, b), (c, d)) ~ B2 ] ((b, a), (d, c)) ~ 6iX}. If  6; v 6~ < 0, then 6; v 6'1, 60 and 61 
generate a sublattice of Con(B) isomorphic to D2. Otherwise 6;,  6'1 and 6o generate 
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a pentagon in Con(B). By semimodularity, we cannot have S Mr~ ,  so we can find 

6'; such that ~-< 6 ]' < 3]. Construct 6~; from 6 ~' in the same way that we constructed 

3; from 6' 1 . Either 3~ v 3(, ~0 and 31 generate a copy of D 2 o r  else we can find a 
3';' and 6~;' with 6-< 6]" < 3'1' < 6'1 and 6-< 6~' < b~ < ~ as in our earlier argument. 
If  this process fails to ever produce a copy of  D 2 a s  a sublattice of Con(B), then we 
end up constructing a copy of  K. This proves the second statement. [] 

T H E O R E M  2.4. A has the OBP if  every finitely generated member of  HS(A) has 
the OBP. In particular, a locally finite variety ;t: has the OBP ~ and only i f  ~fin has 
the OBP. 

Proof Assume that A fails to have the OBP. There is an atom c~ e Con(A) such 
that c~ = Cg(a, b) = Cg(c, d) # Cg(a, c). Either Cg(a, c) c~ e = 0A or Cg(a, c) > e. We 
can find a finitely generated subalgebra B < A such that (a, b ) s  Cg~(c, d) and 
(c, d) s Cg~(a, b) and either CgB(a, c) c~ CgB(a, b) = 0B or CgB(a, c) > CgB(a, b). 

Since CgB(a, b) is compact in Con(B) there is a fl-< Cg~(a, b). Let C = B/ft. Of  
course, 0c ~ CgC(a/fl, b/B) = CgC(c/fl, d/B) # CgC(a/fl, c/fl) so C fails to have the 
OBP. C is a finitely generated member of  ~ ( A ) ,  so we're done. D 

For  each n < co, Example 7.1 of  [4] describes a locally finite variety ~: which 
fails to have the OBP although V(F : (n ) )  does have the OBP. 

T H E O R E M  2.5. ~ has the OBP if  and only t f  V(AIN) has the OBP for every 
A E ~ and every E-trace N ~ A. 

Proof One direction of this theorem is trivial. A itself is an E-trace of A and 

AIA is polynomially equivalent to A. Thus if AIA has the OBP for every A e ~/', then 
has the OBP. 

For  the other direction assume that ~: has the OBP and that N is an E-trace of  
A. By Theorem 6.17 of  [6], every B E ~/(AIN) is polynomially equivalent to CIB for 
some E-trace B _~ C where C is some member of  V(A) _~ ~':. Factoring by a con- 
gruence 0 ~ Con(C) maximal for 01B = 0B and changing notation, we may assume 
that no nonzero congruence of  C restricts trivially to B. The restriction map from 

Con(C) to Con(CIe)  is onto, so iff l  e Con(CIB) is an atom, then fl' = CgC(fl) is an 
atom of Con(C) which restricts to 3. Since C has the OBP/3 '  has only one block. 
This means that/~']B =/~ has only one block. Since/~ and B were arbitrary and CI B 

and B are polynomially equivalent, V(AIN) has the OBP. [] 

C OR OLLARY 2.6. I f  r is a locally finite variety with the OBP, then 
typ{~:} _c {0, 5}. 



274 P. A G L I A N O  A N D  K.  A.  K E A R N E S  A L G E B R A  U N I V .  

Proof. Since ~U has the OBP, it is CSM. By Theorem 2.6 of [4], 1 r typ{~U}. We 
only need to show that 2, 3 and 4 cannot occur in the type-set of a locally finite 
variety with the OBP. If some finite algebra A did have a minimal congruence/7 of 

type 2, 3 or 4, then for some (0A, /7 )-trace N the algebra AIN generates a nontrivial 
congruence modular variety which, by Theorem 2.5, has the OBP. This contradicts 

Theorem 2.3. [] 

3. Regular varieties and polynomially orderable algebras 

The following definition is due to J. Plonka in [12]. 

DEF INI TI ON 3.1. An equation s(2) ,~ t(s is regular if s(s and t(s have the 
same free variables. A variety ~ of algebras is regular if it can be axiomatized by 
regular equations. 

We will say that a variety of algebras is strongly irregular if it satisfies an 
equation of the form t(x, y) ~ x, where y is a free variable of t. 

For  any similarity type ~ we can define an algebra S~ in the following way. The 
universe of S~ is {0, 1} and, for any n-ary operation symbol f ,  fs~ is realized as 

fS ' lx  xn) ---~1 i f x i = l f ~  
1, �9 �9 �9 ' (u  otherwise. 

To make our discussion simpler, we will not deal with similarity types that have 

0-ary fundamental operations. Now observe that if r includes at least one operation 
symbol of arity > 2, then S~ is term-equivalent to the two-element semilattice. 
Henceforth we will call this algebra the T-semilattiee. (If  r has only unary opera- 

tions this name is a little misleading since in this case S~ is term-equivalent to the 

two-element set.) 
It is not hard to prove that a variety ~ of type ~ is regular if and only if St ~ ~ .  

This is because S, satisfies an equation c in the language of ~ if and only if e is 
regular. We define the regularization of ~/P (reg ~U) to be the variety generated by V 
and S~. Alternately, reg ~U is the variety axiomatized by the regular equations that 

hold in ~U. 

DEFINITION 3.2. If A ~ ~ and p is a unary polynomial of A, then p is 
permissible if there is an (n + 1)-ary term t which depends on all of its variables in 
V and an n-tuple ~ e A n such that p(x) = tA(x, gO" We define a quasi-order, ~A, on 
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A as follows: ~ a is the transitive closure of  

{(p(a), a ) ] a  c A  and p a permissible polynomial of  A}. 

Let ~A be the equivalence relation on A defined by 

a ~,~b~-+a ~ A b  and b ,~Aa.  

A is called polynomially orderable if ,~ A is a partial ordering of A. 3v" is called 
polynomiaUy orderable if every member is, If  a ~ Con(A) and 0 ~ A, then we wilt call 
0 a zero element for c~ if the congruence class 0/~ is nontrivial and (p(0), 0) e 
implies p(0) = 0 for any permissible polynomial p. I f  c~ = tA, we will call 0 a zero 
element for A. 

Observe that every nonconstant unary polynomial is permissible. Further, in a 
regular variety the permissible polynomials are closed under composition, so 
a ,~ A b if and only if there is a permissible polynomial p such that p(b) = a. I f  ~U 
is regular, then p is a permissible polynomial o f A  ~ ~" if and only if p(x) = tA(x, fi) 
where ~ E A", t is an (n + 1)-ary term of  f -  which satisfies the bi-implication 

tS~(x0 . . . . .  x , )  = 1 ~ xf = 1 for all i. 

The definition of  "'permissible" depends on ~r in that some terms may depend on 
more variables in an extension of  ;e- than they do in ~/z2 However, among regular 
varieties this notion does not depend on ~//'; for in a regular variety every term t 
depends on every variable that occurs as a free variable in t. I f  there is a possibility 
of  confusion we will specify the variety we are defining "permissible" relative to. 

A zero element for A is just an element of  A which is minimal under ~ A- I f  0 
is a zero element for A, then the equivalence class 0/~: A is equal to {0}. I f  A belongs 
to a regular variety, a zero element for A is just an element of  A which is an 
absorbing element for all the fundamental operations. 

EXERCISE I. Prove that if c~ eCon(A) ,  then e o "~A is aquas i -o rder  on A. 

Show that ~A:~ = (~ ~ ~A)/~- 

EXERCISE 2. Prove that if A is locally finite and e e Con(A), then 
v ~A = e ~ ~A ~ e. Here the join is formed in Eq(A), the lattice of equivalence 

relations on A. 

In these exercises the notion o f  permissible is defined relative to any variety 
containing A. The results of  these exercises are not used anywhere in this paper but 



276 P. AGLIANO AND K. A. KEARNES ALGEBRA UNIV. 

they serve to show that the relations '~A and ~ are fairly well-behaved. For  
example, Exercise 3 implies that ~A 4-permutes with every congruence on A. 

T H E O R E M  3.3. I f  ~e ~ is regular, the following are equivalent. 

(1) ~/~ is congruence semimodular. 

(2) ~U is congruence weakly semimodular. 

(3) For all A ~ ~ and all nonzero ~ ~ Con(A) one has ~ ~ ~A.  

(4) For all A E ~U and all a v~ b in A there is a unary polynomial p such that 

p(a) ~A p(b). 
(5) Every subdirectly irreducible algebra in ~ has the OBP and a zero element for  

the monolith. 

Proof  Actually we will show that conditions (3), (4) and (5) are equivalent for 
any ~U and that they imply ( I )  which obviously implies (2). We will use the 
regularity of  "U only to prove that (2) implies (3). 

The equivalence of (3) and (4) is immediate since (4) says precisely that for all 
a ~ b in A we have CgA(a, b) g; ~ A. Of  course, this holds for all nonzero principal 

congruences if and only if it holds for all nonzero congruences. 
To show that (3) is equivalent to (5) assume (3) and choose a subdirectly 

irreducible algebra B E ~ with monolith #. Since # ~ ~ B we can pick 0, 1 ~ B such 
that # = Cg(0, 1) where 1 is not "~B 0. I f  b ~ B is any element other than 0, then 
(0, 1)~ Cg(0, b). By Mal 'cev's  congruence generation theorem there is a unary 
polynomial p such that p(0) ~p(b)  and either p(0) = 1 or p(b) = 1. Thus, 1 "~B 0 or 
1 "~B b. The first case has been ruled out already, so 1 , ~  b. We cannot have 

1 , ~  b ,~ ~ 0, so b ~ ~ 0 is false for every b distinct from 0. This shows that 0 
cannot be moved by any permissible polynomial; i.e., 0 is a zero element for B. 
Since 0 belongs to a nontrivial/~-class it is a zero element for #. Now # is equal to 
the equivalence relation generated by {(p(0), p(1)) = (0, p(1)) [p permissible} and 
therefore the only nontrivial class of  # is the class containing 0. Hence (5) holds. 
Now assume that (5) holds and that (3) fails. First we will show that if ~ contains 
an algebra that fails condition (3), then we can find a subdirectly irreducible algebra 

in ~/" which fails this condition. We will need the following result. 

CLAIM. For any 0 e Con(A) the equivalence relation (0 v ~A)/0  is contained 

in ~ A/O. 

Proof  of  Claim. To see this, choose x, y e A such that (x/O, y/O) ~ (0 v ~ A)/O. 
The pair (x, y) must lie in the transitive closure of  0 o ~A which is contained in 
the transitive closure of  0 o "~A. Hence there is a chain of  elements of  A, x = 
x0 . . . . .  x,  = y such that for every i either (x i, x~ + ~) ~ 0 or there is a permissible 
polynomial pi such that p~ (xi + 1) = xi. Factoring by 0 this means that x0/0 . . . . .  x , /  
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0 is a chain o f  elements where for  each i either x~/O =x~+ ~/0 or  there is a per- 

missible polynomial  fig such that  13~(xe+ ~/0)=x~/O. That  is, x/O = xo/O ~A/oX,/ 
0 =y/O. By symmetry,  y/O "~/o x/O, so x/O ~A/oy/O. 

N o w  assume that  A ~ ~ has a nonzero  congruence a for which ~ _~ ~ a .  Since 

Con(A)  is weakly a tomic we can find 5 and 0 such that  0a -< 6 -< 0 < ~ ___ ~ A- In  

A/6 we have 0/6 ~_ (6 v ",,~)/6 and 0/5 is an a tom in Con(A/6) .  Replacing A by 

A/6 and ~ by 0/6 and changing nota t ion  we may  assume that  c~ is an a tom in 

Con(A).  N o w  let 8 be a congruence on A which is maximal  with respect to 

a ^ 8 = 0n. Since ~ is an atom, fl is completely meet-irreducible and has a unique 
upper  cover 8"-  In C o n ( B / f )  we have 

8*/8 =- (8 v =- (8 v =_ 

Replacing A by A/fl and changing nota t ion one more  time we may  assume that  A 
is subdirectly irreducible and that  ~ is the monoli th.  Thus if  (3) fails we can find a 

subdirectly irreducible algebra A with monol i th  c~ such that  0~ _.q ~A. But ~ has 

exactly one nontrivial block, by (5), and if 0 and 1 are elements such that  

0~ = C g ( 0 ,  1) and 0 is a zero element for  a, then 0 ~ A  1. This contradicts  our  

conclusion that  (0, 1) ~ a ~ ~A- Hence (3) and (5) are equivalent. 

In order  to prove that  (3) implies (1) we choose to first prove that  (2) and (3) 

jointly imply (1). Then  we will show that  (3) implies (2). For  the first step, assume 
(3) and deny (1) and we will argue that  (2) must  fail. 

I f  (1) fails we can find an algebra A ~ Y/~ with ~, 8, ~ e Con(A)  such that  

A 8 = 0A ~ ~ and 8 < ~ < ~ v 8, Observe that, since Con(A)  is upper  continuous,  
the set 

D ={6 [%, 8] 16-<  

is closed under  unions o f  chains. Fo r  suppose that  C ~_ D is a chain and that  

V~ ~ c 6 = 0 < ft. Suppose also that  0 -< r < c~ v 0 = V a  ~ c a v 5. Since ct ~ ~, for  
every 6 ~ C we must  have 6 -< (c~ v 6) A ~k < a V 6, SO fi = (~ V 5) /~. ~h. Thus,  

0-----~cV 6=~CV ((~ V(~) AI//) =(VC(~ V6))A ~/ =(~ V 0) A ~ / / = ~ / , 5  

so 0 < a v 0. Now,  since D is closed under  unions o f  chains we can use Zorn ' s  
Lemma to find an element v ~ [0~, fi] maximal  for  the proper ty  that v-< ~ v v. 

Replacing A by A/v, ~ by (a v v)/v and fi by  fl/v and relabeling we may  assume that  
for ever), nonzero  6 ~ [0A, fl] we have that  a A 6 = 0A < a and 6 ~ ~ v 5. 
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From here on our  a rgument  requires a good knowledge of  the structure o f  a 

nontrivial a-class. In several places in the following arguments  we will use the fact 

that  if (x, y) ~ Cg(w, z) - 0~, then x ~ A w or z and y ~ A W or z. The reason for this 

is that, by Mal 'cev 's  congruence generation theorem, when (x, y) ~ Cg(w, z) - 0  A 

there exists a unary polynomial  p such that  p(w) # p(z) and x = p(w) or p(z). The 

polynomial  p is permissible, so x ~ A z or w. Similarly, y ~ A Z or  w. Assume that  

a = Cg(0, 1) where 1 is not  ~A 0 (we can assume this since a ~ ~A)- Suppose that  

p is a unary polynomial  such that  p ( 0 ) # p ( 1 ) .  Then a = C g ( p ( 0 ) , p ( l ) )  and 

therefore (0, 1) ~ Cg(p(0),  p(1)). By the congruence generation theorem we can find 
a unary  polynomial  q such that  1 = qp(1) # qp(O). So far we have a = Cg(0, 1) = 

Cg(p(0),  p(1)) = Cg(qp(0), qp(1)) = Cg(qp(0), 1). Hence, 0A < Cg(qp(0), 0) -< a and 

0~ ~ a .  I f  0 # qp(O), then (0, 1) E a = Cg(0, qp(O)). But this leads either to 1 ~,~ 0 

or  1 ~A qp(O) ~A 0 which is false, so qp(O) = 0. This shows that  whenever p is a 

unary polynomial  such that  p(0) # p ( 1 ) ,  then we can find a q such that qp(O) = 0 
and qp(1) = 1. In particular, for any s u c h p  it must  be that  0 ~ A p ( 0 )  and 1 ~ A p ( 1 )  

since 0 = q p ( 0 ) ~ A p ( 0 ) ~ A 0  and 1 = q p ( 1 ) , ~ A p ( 1 ) ~ A  1. NOW suppose that  

(x,y) ~ Cg(0, 1) - 0  A. There is a unary  polynomial  p such that  p(0) # p ( 1 )  and 

x = p ( 0 )  or  p(1). This implies that  x ~,~ 0 or x ~A 1. Similarly, y ~A 0 or y ~A 1. 

Thus, any element o f  a nontrivial a-class is ~ A -related to either 0 or 1. I f  x and y 

are distinct a-related elements it is impossible for both x and y to be ,,~ A-related to 

0 since (0, 1) ~ a = Cg(x, y) and we run into the contradict ion that  1 ~A x ~A 0 or 

1 ~ A Y ~,4 0. In particular, the a-class containing 0 and 1 contains no element x 

distinct f rom 0 which satisfies x ~A 0. Thus, 0 is a zero element for a. Every 

element of  0/a - {0} must  be ~A-re la ted  to 1. I f  it turns out  that  0 and 1 are 

incomparable  under  ~ A, then by interchanging 0 and 1 and repeating the last few 

lines o f  the argument  it follows that  each nontrivial a-class contains exactly two 

elements; one ,~ A-related to 0 and one ~ ~-related to 1 and both  elements are zero 

elements for a. In the case where 0 and 1 are ~,~-comparable  we must  have 0 ~ A 1, 

since 1 is not  ~ A 0. This case must  occur if any a-class contains more  than two 

elements. Any  other nontrivial a-class contains a pair  (0',  1') o f  the form 

(p(0) ,p(1))  where 0' ~A 0 and 1" ~A 1. To summarize,  every nontrivial a-class is 

the union of  two disjoint (a c~ ,~ ) - c l a s ses  and at most  one o f  the (a c~ ~A)-classes 
is nontrivial. We will call {x, y} a (0A, a>-pseudotrace if (x, y) ~ a - ,~A- (We leave 

it to the interested reader to show that  if A is finite, then a <0A, a>-pseudotrace is 
actually a (0A, a>-trace in the sense o f  tame congruence theory. This fact is not  
impor tant  to us, but  it explains our  terminology.) F rom what  we have said, two 

a-related elements constitute a (0A, a>-pseudotrace if and only if one o f  them is a 

zero element for a. We have also shown that  if {x, y} is a <0A, a>-pseudotrace and 
the (a c~ ,~ ~)-class containing y is nontrivial, then x ~ ~ y and x is a zero element 
for a. Any  two (0A, ~>-pseudotraces are polynomial ly isomorphic;  therefore, if 



Vol. 32, 1994 Congruence semimodular varieties II: Regular varieties 279 

{x, y} and {x', y '} are (0A, e)-pseudotraces,  then either x ~A x '  and y ~A Y' or 
else x ~A Y' and y ~A X'. Each a-block of  more than two elements contains a 
unique zero element for e so any two a-related elements can be connected by a 
chain of  at most  two (0A, e)-pseudotraces.  Any element common to two distinct 
(0A, e)-pseudotraces must be a zero element for e and also must be "~A any 
a-related element. 

Figure 2 illustrates what we have discovered about  the a-classes and the 
A-classes of  A. Elements of  A are denoted by small circles in this figure. Line 

segments connecting elements indicate which two-element subsets are (0A, e ) -  

pseudotraces. The solid boxes indicate the partition of A induced by e and the 
dashed ovals indicate the partition of  A induced by ~A. The figure on the left 
illustrates the case where the two elements of  a (0A, e)-pseudotrace are comparable 
while the figure on the right illustrates the case where they are not. 

Now we return to the proof  that if (3) holds and Con(A) is not Semimodular, 

then Con(A) is not even weakly semimodular. Recall that fl < 7  < e v ft. I f  

~]/fl  C= (fl V "~A)/f l  ~ ~A/fl ,  then the algebra A/ f l  fails condition (3). Hence there 
is a pair of  elements ( u , v ) e 7 - ( f l  v ~A) and a chain of  elements u = 
Xo, Xl . . . .  , x.  = v with the property that, for each i < n, {xi, x;+ 1} is a (0A, e ) -  
pseudotrace or (xi, x~+ 1) e ft. We may assume that (u, v) and the chain connecting 
them have been chosen so that no other pair of  elements in 7 - ( f l v  ~ )  can be 

connected by a shorter chain of  the same type. I f  (Xo, X l ) e f t ,  then 
(xl, x . )  ~ 7 - ( f l v  ~ a )  and xl and xn are connected by a chain shorter than the one 
connecting Xo and x. ; this is impossible by our assumption. Therefore, {Xo, Xl } is 
a (0A, e)-pseudotrace.  Similarly {x._ 1, x . } ,  is a (0A, e)-pseudotrace.  We have 

X o = U  ~ A v  = x . ,  so {x0, xl} is a (0A, e)-pseudotrace which has an element 
~A-related to u and { x . _  1, x.  } is a (0A, e)-pseudotrace  which has an element 
~A-related to v. It  follows that every (0A, e)-pseudotrace contains exactly one 
element ~A-related to u and exactly one element ~A-related to v. Since (Xo, xl),  
( x . _ l , x . ) E e  and ( u , v ) r  there is a value of  i, l < i < n - 2 ,  such that 

(xi ,  x i+ 1 ) E  ft. Both x~ and x,.+l belong to (0A, e)-pseudotraces,  so x i ~ A  U or v 
and xi  + 1 ,'~ ~ u or v. We cannot have u ~ ~ X i f l X i  q_ 1 "~ A l) or u ~" A X i  + l f l X i  "~ A 1) for 
these contradict the fact that ( u , v )  ef t  v , ~ .  Thus, x; ~AU ~ X i + l  or 

,gS-o" - - 6 -  -~-6,  
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x~ ~ v ~A X~+ 1. Our  a rgument  has been symmetric in u and v up to this point,  so 
we may  assume that  v is not  ,~a u. We have shown that  there exists a pair 

(x~, x~ + t ) e/3 - 0A where x~ ~ k xg + ~ ~ k U or  v. I f  there exist a pair (x, y) e/3 - 0k 
with x ~A U ~ y, then let (a, b ) =  (x, y). I f  there is no such pair, then we must  
have x + ~ x ~ + ~  ~ v  and in this case we let (a,b)=(x~,x~+~). Choose  

(c, d)  e Cg(a, b) - ~ and let fi ' = Cg(c, d). 

C L A I M .  0A -</3' < ft. 

Proof of  Claim. Pick ( e , f )  E 3' - OA and let/3" = C g ( e , f )  </3 ' .  We can estab- 
lish the claim by showing that /3"  =/3 ' .  Since every nonzero  congruence contains a 
pair  o f  ~k- inequiva len t  elements we may  assume that  e ~ , ~ f  Now,  there is a 

~" ~ Con(A)  such that  r" < ~l" < a v fl". Choose  (u", v") E 7" - (/3" v ~A)  and a 
chain u" =  Yo . . . . .  y,~ = v" in which each link is either a (0A, a ) -pseudot race  or  a 

pair o f  fl"-related elements. We may  assume that  u", v" and the chain are chosen so 
that  the chain is o f  minimal length for all such chains connect ing pairs in 

1 / ' - ( f i " v  ~k ) .  As in our  earlier argument ,  u" and v" represent the two dis- 
tinct ~k-c lasses  found in any (0A, ~)-pseudotrace.  We can assume that  u ~A U" 
and v ~A v". Also, as the earlier argument  showed, we can find a j such 

that  (y / , y j+l )  e(/3"c~ ~ k )  and y j ~ A u  ~ k Y / + l  or y j . ~ A v  "~kY/+l. N o w  
(Yj, Y/+l) e C g ( a , b ) ,  so y y , . ~ y j + l  ~ k a " ~ A b -  It  is impossible for v .~A 
Yi ~ k a  ~AU, since v is not  ~ A u .  Hence i f a  ~ k u ,  t h e n y j . ~ A u .  On the other  

hand, if a ..~ A v ~ A b, then there is no pair  (x, y) E fi - 0A for which x ~ k u ~ k Y, 

so in this case yg ..~ A v ~ A Yj + 1. This shows that  y/ ~ k a ~ ~ b ~ ~ )~ + 1- Since 
Cg(yj ,  yj+ l) <- C g ( e , f )  <-- Cg(c, d) - Cg(a, b), we get that  y/ -~AYy+ 1 ~A C or  d, 
Ys ~AY/+I  ~ k e  o f f  and c , d , e , f ~ A a  ~ b .  At least one o f c  or d a n d  one o r e  
o f f  must  be ~ - r e l a t e d  to y/ ~ a ;  say c . ~ e  ~ A a  ~ a  y).. Then, since c ~ d  
and d ~ a ~ e, we get that  d is strictly ~ c. Similarly, f i s  strictly "~k e. (Since 

the pair ( e , f )  was an arbitrary member  o f  fl ' - ~ we have shown that  one o f  the 
coordinates  o f  any (r, s ) e / 3 ' - ~ k - r e l a t e d  to a ~ y ~ .  This fact will be used 
shortly.) We can find a unary  polynomial  p that is a composi t ion o f  permissible 

polynomials  such that  p(e) = c since c ~ k  e. I f  p ( f )  = d, then / 3 ' =  Cg(c, d ) =  
Cg(p(e), p ( f ) )  <- C g ( e , f )  = fi" and we are done. In  the alternate case we have that  

(c, d), ( e , f )  ~/3' - Ok, p(e) = c and p ( f )  ~ d, so ( p ( f ) ,  d) e/3" - Ok and both  d 
and p ( f )  ( . ~ a f )  are strictly ~ k p ( e ) = c  . ~ a  ~Ay / .  But now if (g ,h )~  
C g ( p ( f ) ,  d) - ~ ,  then each of  g and h is ~ a  d or  p ( f ) .  This shows that both  g 
and h are both  strictly ~ k a ~ A y:. This contradicts  our  last parenthetical remark;  
one of  the coordinates must  be ~ ~ -related to a and to yj. This contradict ion proves 

that  p ( f )  --- d and hence that  r"  = fl". 
Since/3 '  ~ [0A, /3] we must  have ~ A fl '  = 0~ -< a a n d / 3 '  -~ a v fl'. Replace/3  by 

fi' and change nota t ion so that now 0k "< a,/3 and /3  < y < a v/3. This is a failure 
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of  weak semimodularity in Con(A). Thus we have proved that (2) and (3) joint ly  
imply (1) as we promised. Now we show that (3) implies (2) which simultaneously 
establishes that (3) implies (1). Recall that our deductions about  the structure of  a 
nontrivial a-class were only based on the facts that ~ >-0A and a ~ gA.  Since we 
are now assuming that fl >- 0A and fl ~ ~A the same conclusions are true for the 
structure of  a nontrivial fl-class. For  the rest of  the proof  we will use these facts and 
also the term (0A, fl)-pseuflotraee without comment.  

Choose (0, 1) ~ ~ - (fl v ~ A) and a chain of  elements 0 = x0, Xl . . . . .  xn = 1 
with the property that, for each i < n, {xi, xi+l} is a (0A, ~)-pseudotrace or a 
(0A, fl)-pseudotrace. With a now-familiar argument, we may assume that (0, 1) 
and the chain connecting them have been chosen so that no other pair of  elements 
in 7 - ( f l v  ~A) can be connected by a shorter chain of  the same type. As before, 
{Xo, Xl} and { X . _ l ,  x. } must be (0A, ~)-pseudotraces. Xo = 0 ~ a  1 =  x .  so each 
(0A, a)-pseudotrace  contains one element ~ A-related to 0 and one element ~ A-re- 
lated to 1. In particular, since Xo = 0 and {Xo, xl } is a (0A, a)-pseudotrace we must 
have Xl~A 1. Similarly, x . _  l "~A O. NOW, if {x, y} is a (0A, fl)-pseudotrace and 
0 ~ A x and 1 ~A Y, then 0 ~ a  x f ly  ~ A 1, a contradiction. Thus we can assume 
that, say, 0 is not ~A-related to any element in any (0A, fl)-pseudotrace. It  follows 
that x . _  1 lies in no (0A, fl)-pseudotrace, so the second to last link in the chain 
must also be a (0A, ~)-pseudotrace. But now {x._2, x ._  l} and {x._ 1, x.} are 
overlapping (0a ,  ~)-pseudotraces so, recalling the structure of  a nontrivial a-class, 
Xn  1 ~ A Xn  -- 2 ' ~  A Xn = 1. The third to last link cannot also be a (0~, a) -pseudo-  
trace, for then our chain would end with three consecutive (0A, ~)-pseudotraces. 
The minimality of  our chain forbids three consecutive (0~, a)-pseudotraces because 
every pair of  a-related elements can be connected by a chain of  most two 
<0A, ~)-pseudotraces.  Thus {x._ 3, x . _ 2 }  is a <0A, fl)-pseudotrace with x . _ 2  ~ A  

1. This shows that x ._3  ~A 1 and of course x . _ 3  ~ a  0 since no member  of  a 
(0A,/3)-pseudotrace is ~A-related to 0. From this we get that x ._  3 is not 
~a - r e l a t ed  to any member  of  any (0A, o~)-pseudotrace. The fourth to last link in 
our chain must be a (0A,fl)-pseudotrace.  Now x ._3  belongs to overlapping 
(0A, fl)-pseudotraces, so x . _ 3  " ~  x . _ 4  . ~  x . _ 2 .  Combining this with our earlier 
deduction yields x .  _ 3 ~ x .  _ 2 ~ x,, _ 1 and x .  _ 3, x .  _ 1 ~ A x . _  2. See Figure 3. 

We can find a polynomial p which is a composition of permissible polynomials 
such that p ( x . _ 2 )  = X . _ l .  I f  p ( x .  2) # p ( x . _ 3 ) ,  then x . _ 2  ~ A p ( x . _ 2 )  = x . _ l  

which we know to be false ( { x . _ 2 , x . _ l }  is a pseudotrace). Thus, p (x ._2)  = 

p ( x .  3 ) = x . _ z  and x . _ ~  ~ a x . _ 3 .  By a symmetric argument we can find a 
composition of  permissible polynomials, q, such that q ( x , , _ 2 ) = x . _ 3  and get 

q ( x .  _ 1 ) = Xn  - -  3 implying that x,, _ 3 <~ A Xn - -  1" Thus, x. _ 3 ~ A x .  _ 1 ~ A O. This is a 
contradiction to our earlier conclusion that x ._  3 is not ..~ ~-related to any member  
of  a (OA,  ~)-pseudotrace.  This contradiction finishes the proof  that (3) implies (2) 
and also the proof  that (3) implies (1). 



282 P. AGL1ANO AND K. A. KEARNES ALGEBRA UNIV. 
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Figure 3 

To prove that (2) implies (3) for regular varieties let's assume that (3) fails and 
prov e that (2) must also fail. As we have already seen, since ~ fails (3) we can find 
a subdirectly irreducible algebra A e ~ with monolith e such that e _ ~A. Let 

denote the type of ~U and let S = S~ be the v-semilattice. We will prove that the 
congruence lattice of  A x S is not weakly semimodular. For this argument we will 
write as instead of (a, s) to denote a member of  A x S. Choose (a, b) e ~ - 0A and 
let 4 = Cg A • S(a 1, a0), 2 = Cg A • S(a0, b0) and ~ = Cg A • S((a0, b0), (a 1, b 1)). We 

will show that the sublattice of Con(A x S) generated by 4, 2 and ~ is the lattice in 
Figure 4. 

Notice that if x ~A Y then, since there is a term t depending on all of  its 
variables such that x = tA(y,  ~), we get that (x 1, x0) ~ Cg A• S(y 1, y0) because for 

s = 0 or 1 we have xs  = tA(ys,  Uo 1, Ul 1 , . . . ,  U, 1). In particular, since (a, b) 

- ~A we get b ~ A a  and so (bl ,  b0) e Cg(al ,  a0) =4 -  I f  1r~ and 7r s denote the 
kernels of  the coordinate projections, then ~ <re A and 2 <~,-<re  s, so 
0 A •  ^ 2 = ~ , x ~ k .  Also, (a l ,  b l ) ~ 4  ~ 1 7 6  so ~ - < 4  v 4 .  The congruence 2 

equals {(x0, y0) I (x, y) e c~} w0~ • s which covers 0A • s. I f  0A • s = ~ ^ 2 -< 4, then 
since 2 < 0 < ~- v 4 we have a failure of  weak semimodularity in Con(A x S). In 

0 

\ / ~  
O 

OAxS 

r = Cg((aO, bO), ( a l ,  bl))  

A --  Cg(aO, bO) 

Figure 4 
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this case we would be finished. Thus,  assume for now that  0A • s "g ( and choose a 

(principal) congruence 0 such that  0A • s < 0 < 4. Necessarily 0 is o f  the form 
Cg(c 1, cO). Since (c 1, c0) ~ ~ we can use Mal 'cev 's  congruence generation theorem 
to find that  there is a noncons tan t  unary  polynomial  p o f  A x S such that  
p(a 1) = c 1 or p(aO) = c 1. Examining first coordinates shows that  there is a permis- 
sible polynomial /5 o f  A such that  c =/5(a). Hence, c ~ A a. It is not  true that  a ~ c 
or  else we get that  a ~A c and (a l ,  a0) ~ Cg(c l ,  cO) < Cg(a l ,  a0). I f  d i s  any other 
element for which d ~A a but d ~A a, then a/CgA(c, d) = {a}, since no noncon-  
stant (or  even permissible) polynomial  can map  either c or  d to a. But the subdirect 

irreducibility o f  A implies that  c = d, since {a, b} ~_a/7 whenever 7 E Con(A)  is 
nonzero.  Thus, c is the unique element o f  A which is strictly ~ A a. It is therefore 
impossible to move  c with a permissible polynomial ,  for p(c) ~.4 c when p is 
permissible; i.e. c is a zero element for A. F r o m  the uniqueness o f  c it follows that  
0 = Cg(c l ,  cO) is the unique nonzero  congruence below 4, so 0A • s < 0  < 4, and 
that  0 collapses only two distinct elements; 0 is equal to the equivalence rela- 

tion generated by (el ,  cO). Let 2 ' =  2 v 0 and i f ' =  ~ v 0. Since 0 A •  we 
must  have 0 < 2 v 0 = 2 '  or else we have found a failure o f  weak semimodulari ty 
and we are done. Thus, assume that  0 < 2 ' .  Notice that  (al, b l ) r  
Cg((c 1, cO), (a0, b0)) since no noncons tan t  unary  polynomial  can map  any element 
with first coordinate  c to any element with first coordinate  a nor  any element with 
second coordinate  0 to any element with second coordinate  1. We have 
2 ' < 2 ' v C g ( a l , b l ) = ~ '  and ~ 2 2  This gives us that  0 = ~ ^ 2 ' - < ~  and 

2 '  < i f '  < ~ v 2' .  See Figure 5. 
I f  we can show that ~ '  ~ ~ v 2 ' ,  then we will have 0 < ~, 2 '  but  2 '  -g ~ v 2 '  and 

we will have found a failure o f  weak semimodulari ty in C o n ( A  x S). 

We need to show that 

~ '  = Cg((a0, b0), (a l ,  bl) ,  (cl ,  c0)) r Cg((a l ,  a0), (a0, b0), (el ,  c0)) = 4 v 2' .  

o 

\o/\I \ /  
Figure 5 
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This is equivalent to showing that (a l ,  a0) r ~k'. Since e c_ ~ a  and c is a zero 
element, c/e c_ C/~A = {e}. Now, for any polynomial p we have ( p ( a ) , p ( b ) ) s e  
since (a, b ) e  e, so if p(a )=  c, then p(b)E e/e = {e}. Similarly, if p(b)= c, then 
p(a) = c. It follows that for any polynomial of A x S we have p(as) = et if and 
only if p(bs)= et when s, t E S. By Mal'cev's congruence generation theorem we 
find that ~ = Cg((a0, b0), (a l ,  bl) ,  (el ,  cO)) = Cg((a0, b0), (al ,  bl))  uCg( (c l ,  cO)) 
= 0 w 0. Since (a 1, a0) r ~, and (a 1, a0) r 0 we obtain the desired conclusion that 
(al ,  a0) r ~ ' .  This shows that i f e  _ ~A, then A x S is not CWSM and finishes the 
proof  of the theorem. [] 

Before leaving this proof, let us make a few remarks about the concept of  a 
permissible polynomial. Early in our investigations we thought it natural to deal 
only with nonconstant unary polynomials in our arguments, but we ran into 
problems. Compositions of nonconstant polynomials may be constant; unary 
polynomials may be nonconstant on A, but constant on a subalgebra or homomor- 
phic image of A. It was clear to us that we needed to permit some constant 
polynomials in our definitions of ~A and ~A. This led us to the definition of 
permissible polynomials. With hindsight, we now see that when working with 
regular varieties this definition is not necessary. The polynomial p ( x ) =  
tA(x, a l , . . . ,  an) is permissible for A if and only if the polynomial p ' ( x ) =  
t A x S(xy ' al 1 . . . . .  an 1) is nonconstant on A x St. We could replace all occurrences 
of A in our argument with A x St and argue with nonconstant unary polynomials 
in place of permissible polynomials. To do this, however, would be to complicate a 
proof  that is complicated enough. Therefore, we decided to retain the notion of 
permissible polynomial. 

Several interesting points about regular, CSM varieties follow from Theorem 
3.3. We separate these points out in the following corollaries. 

COROLLARY 3.4. I f  V is a regular, C S M  variety, then typ{~/-} _ {0, 5}. 

Proof. If A ~ V is finite, e e Con(A) is an atom and N is any (0a, e) - t race  of 
type different than 0 or 5, then from the nonconstant unary and binary polynomials 
of AI N one can derive permissible polynomials which act transitively on N. Hence 
N 2 - "~ a. Each nontrivial a-class is connected by (0A, e)-traces, so e c_ ~ a, which 
contradicts Theorem 3.3. [] 

Since typ{Y/~} _~ typ{reg ~ } ,  it follows that if typ{~V} ~ {0, 5}, then "V is 
contained in no regular, CSM variety. 

COROLLARY 3.5. I f  ~ is a regular, CS M variety, then ~U contains no 
nontrivial strongly irregular subvarieties. 
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Proof. Suppose that A e ~ _~ ~ where ~r is strongly irregular and IAI > 1. Let 

t(x, y) be the binary term witnessing strong irregularity for ~/r Then, for any 

a, b E A, set pa(x) = tA(a, x). Then we have pa(b) = tA(a, b) = a and po(x) is permis- 

sible relative to ~ ,  so a ~Ab-  Since a and b were arbitrary, ~A = 1A. This 

contradicts Theorem 3.3. [] 

D E F I N I T I O N  3.6. A dimension function for a complete lattice L is a function 

6: L ~ ~o + 1 defined as follows: for x ~ L, 6(x)= n if every maximal chain in 
I = [0L, x] has length n. We define 6(x) = ~o if I has no finite maximal chain. 

I f  L has an element x such that [0L, x] has finite maximal chains, but not all 

maximal chains have the same length, then L does not have a dimension function. 

C O R O L L A R Y  3.7. I f  ~ is a regular variety, then ~/- is CSM if  and only i f  for 
all A E ~U Con(A) has a dimension function. 

Proof Every complete, semimodular lattice has a dimension function satisfying 

very special properties (see Theorem 3.10 of  [5], for example). Therefore, the 
forward implication of  the corollary is true. The argument for the reverse implica- 

tion can be copied from our proof  that (2) implies (3) in Theorem 3.3. We leave this 

chore to the reader. The idea is to assume that (3) fails and then argue just as we 

did in Theorem 3.3 except where we used weak semimodularity show that the 
existence of a dimension function suffices. [] 

E X A M P L E  3.8. We will show that regular, CSM varieties are not characterized 

by their type-set, thus proving that the converse of  Corollary 3.4 fails. First, we give 

an example of  a regular, unary variety with type-set {0}. Let ~ be the unary variety 

with two fundamental operations f and g satisfying the following identities: 

fe(x)  ~ f ( x )  g2(x) ~ g(x) fgfg(x) ~ fg(x) gfgf(x) ~ gf(x). 

is regular and the reader can easily check that every unary polynomial on A ~ 
is idempotent. This implies that typ{~/:} = {0}. On the other hand, if B =  

({0, 1};f, g )  where fB(x) = 0 and gB(x) = 1, then B is a simple member  of  ~/- for 
which ~B = 18 (we are using the fact that fB and gB are permissible polynomials). 
Theorem 3.3 proves that "U is not CSM. 

For  a non-unary example, let ~ be a variety of  semilattices with one operator, 
g, axiomatized by the equations for semilattices and: 

g(x /x y) ~ g(x) /x g(y) g2(x) ~ g(x) g(x) A X ~ X. 
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~/~ is a regular variety. I f  C = ({0, 1}; A, g} is the algebra for which gO(x) = 1 and 

0 A 0 = 0/x 1 = 1 tx 0 = 0 and 1 /x 1 = 1, then C e f and ~ c = lc .  As above, 
Theorem 3.3 proves that ~ is not CSM. We claim that typ{~}  = {5}. To prove 
this, let A be any finite member of ~'.  A has a semilattice reduct, so typ{A} ___ 
{3, 4, 5}. We will be done if we show that 3, 4 r typ{A}. If this is not so, then we 
can find a two-element subset {0, 1 } ~_ A and a polynomial re(x, y,  z) such that, on 

{0, 1}, m satisfies re(x, x ,  y)  = re(x, y,  x)  = re(y ,  x ,  x)  = x.  We may even choose m 
to be commutative by forming the meet ( /x)  of all polynomials obtained by 
permuting the variables of m. The equations of ~ imply that there must be a 
suitable re(x, y ,  z) of the form x ^ y /x  z A a or g(x)  ^ g ( y )  ^ g(z) ^ a for some 
a e A. But this implies that b(x, y ) =  re(x, x , y )  is commutative, thus forcing 
0 = b(0, 1) = b(1, 0) = 1. This is a contradiction. 

Every regular variety of semigroups which contains no nontrivial strongly 
irregular subvariety is CSM as is proved in [8]. This is the converse of Corollary 3.5 
for varieties of semigroups. In general, though, a regular variety that has no 
strongly irregular subvarieties need not be CSM. The following counterexample is 
due to J. B. Nation and we reproduce it here with his kind permission, 

EXAMPLE 3.9. Let ,r be the variety of groupoids axiomatized by the follow- 

ing equations: 

x y  ~ y x  x x  ~ x x ( x y )  "~ xy .  

V is regular and it is easily seen that F~(x,  y ) =  {x,  y,  x y } ,  so the only possible 
equations witnessing strong irregularity are equivalent to xy ~ x .  But then 
x .~ x y  ~ y x  "~ y,  so x g y and the only possible strongly irregular subvariety is the 
trivial one. Hence ~ is a regular variety with no strongly irregular subvarieties. ~/" 
is not CSM though, as the following algebra shows. Let A be the algebra whose 
universe is {a, b, c} and whose operation is realized as 

a b c  

a a a c 

b a b b 

c c b c 

The reader can check that A e f - ,  but that A is simple of  type 3. Hence ~e ~ is not 
CSM by Corollary 3.4. It is also true that 1A = ~A, so Theorem 3.3 gives an 
alternate proof  that ~ is not CSM. 
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We have seen in the foregoing examples that Theorem 3.3 is quite a handy way 
of  showing that a regular variety is not congruence semimodular. In the other 
direction, using Theorem 3.3 to establish that a regular variety is CSM requires a 
fair bit of  knowledge about the subdirectly irreducible algebras and their polynomi- 
als. If  we strengthen 3.3 (3) to the condition that ~A = 0A for all A in the variety 
we obtain a condition that is very easy to deal with. The varieties satisfying this 
condition are precisely the polynomially orderable varieties. Polynomially orderable 
varieties are relatively easy to understand both structurally and equationally and yet 
they seem to nearly capture what it means for a regular variety to be CSM. We will 
find that these varieties satisfy the following version of the one block property. 

D E F I N I T I O N  3.10. An algebra A has the strong one block property (or strong 
OBP) if it has the OBP and the unique nontrivial equivalence class of  any atom of  
Con(A) contains exactly two elements. A class of similar algebras has the strong OBP 
if every member does. 

H(A) has the strong OBP if and only if the inclusion map of Con(A) into the 
lattice Eq(A) of  equivalence relations on A preserves covers, i.e. if Con(A) is an iso- 
metric sublattice of Eq(A). The strong OBP is more restrictive than the OBP for sin- 
gle algebras; any simple algebra with more than two elements shows this. However, 
we don' t  know if the strong OBP is more restrictive for varieties. Hence we ask: 

PROBLEM. Is there a variety with the OBP which does not have the strong 
OBP? 

There is no such regular variety, as the next result shows. 

T H E O R E M  3.11. Let 7U be a regular variety. The following conditions are 
equivalent. 

(1) Y/" is polynomially orderable. 
(2) "/f has the strong OBP. 
(3) 3r r has the OBP. 
(4) U is CSM and every subdireetly irreducible algebra in ~ has the strong OBP. 
(5) Every subdirectly irreducible algebra in ~ has the strong OBP and a zero 

element for the monolith. 

Proof. Actually (5) ~-> (1) --+(2) --+(3) and (2) --+(4) for any variety. We will use 
regularity only to prove that (4) implies (5) and (3) implies (5). First, we assume (1) 
and deduce (2). Choose A ~ 3r ~ and an atom ~ ~ Con(A). Our goal is to show that 
{a, b} = {c, d} whenever ~ = Cg(a, b) = Cg(c, d). Since (c, d) ~ Cg(a, b), it follows 
from Mal'cev's congruence generation theorem that e =p(a)  or p(b) for some 
nonconstant unary polynomial p(x), so c ~ A a or b. Similarly, d ~ A a or b, a ~ A c 
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or d and b ~ A c or d. Let M be the set of  maximal elements of the partially ordered 
set ((a,  b, c, d}; ~ A). Our conclusions show that {a, b } n M = (c, d} ~ M = M, so 
M ~ {a, b} n {c, d}. If {a, b} ~ (c, d}, then we must have a --~b =~c ~-~d and that 
there exists u ~ {a, b) - M and v ~ {c, d) - M with u ~ v. The partially ordered set 
({a, b, u, v); ~A)  has the same set M of maximal elements. But we also have 
Cg(u, v) = ~ = Cg(a, b). Repeating the above argument with (u, v) in place of (c, d) 
yields the contradiction that 

M =  { a , b } n M =  { u , v } c ~ M = O  

We conclude that (a, b} = (c, d}. This shows that (1) implies (2). (This result and 
Theorem 3.3 (3)-*(5) ,  which did not require the hypothesis of regularity, imply 
that in this theorem the implication ( 1 ) ~ ( 5 )  holds for any variety.) That  (2) 
implies (3) is obvious while the fact that (2) implies (4) follows from Theorem 2.2. 
That (4) implies (5) follows from Theorem 3.3. We can finish the proof  by showing 
that (3) implies (5) when ~ is regular and that (5) implies (1). 

First, assume that ~ is a regular variety of type ~ which has the OBP. ~U is CSM, 
so every subdirectly irreducible algebra in "U has a zero element for the monolith. 
We only need to prove that each subdirectly irreducible algebra B ~ ~ has the strong 
OBP. We will assume otherwise and argue to a contradiction. Let # ~ Con(B) be the 
monolith of B and let z ~ B be the zero element for #. Since B does not have the 
strong OBP we can find a ~ b ~ B such that m = Cg(a, z) = Cg(b, z). From what we 
know of the structure of a minimal congruence in a regular, CSM variety, we must 
have z ~ B a  ~ B b  ~ B c  for any c ~ B - - { z } .  Consider C = ( B  x SO/Cg(zO, z l  ). 
Since a ~ b we have CgC(a0, a l ) =  CgC(b0, b l )> -0c .  Using the OBP in C, we 
get that (a0, b0) e CgC({a0, b0, a l ,  bl}) = CgC(a0, a l ) .  But (xy, uv) E CgC(a0, a l )  
implies that x = u. This forces a = b which is false. Thus, (3) implies (5). 

Now, assume that (5) holds and that (1) fails. Choose D e V which has elements 
u, v and unary polynomials p and q, each a composition of permissible polynomials, 
such that p(u) = v and q(v) = u. Factoring out by a congruence which is maximal with 
respect to the property of not containing (u, v) we obtain a subdirectly irreducible 
algebra E with elements ~ and .7 such that Cg(~, ~) is the monolith of E. Further, 
E has polynomials ~ and ~ which are compositions of permissible polynomials such 
that/~(zT) = ~ and q(g) = ~, so ~ ~ e ,7. But condition (5) implies that the monolith 
of E is just the equivalence relation generated by (tT, ~). The unique nontrivial block 
of the monolith can only be {zT, f}. It is impossible for this block to have a zero 
element if fi ~ E *7, so we have a contradiction. [] 

Polynomially orderable varieties seem to be the simplest kind of regular, CSM 
variety, so we will examine them a little closer. The next two theorems provide some 
extra information about regular, polynomially orderable varieties. 
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T H E O R E M  3.12. Assume that ~/" is a nontrivial, regular, polynomially orderable 
variety whose set o f  fundamental operations has eardinality r~ and whose subset o f  
unary fundamental operations has eardinality 2. The following are true. 

(1) ~U has <2 ~ non-isomorphic simple algebras, each of  cardinality 2 and each 
generating distinct minimal subvarieties of  "U. There are <<- 2 ~ non-isomorphic 
abelian simple algebras and each one is essentially unary. 

(2) Every finite A ~ ~ has a two-element subuniverse equal to a congruence 
block. 

(3) V is preeomplete (i.e. has exactly one minimal subvariety) i f  and only i f  ~ is 
idempotent. 

(4) typ{U, : }  = {0) / f  and only i f  ~ is unary, typ{Y:} = {5} i f  and only i f  
7r ~ f ( x ,  x . . . . .  x) ~ x for some fundamental operation f or arity >- 2. 

Proof. If  S is a simple algebra in ~:, then [S t = 2 since $~ has the strong 
OBP. By changing to an isomorphic algebra we may assume that S = {0, 1 } where 
1 is not "~s 0. I f  h is an n-ary fundamental operation, then the polynomial 
hS(so . . . .  , si_ 1, x, si_~ . . . . .  s~__ 1), s: ~ S, is permissible and cannot map 0 to 1. It 
follows that either (I) hS(S n) = {0} or else (II): 

hS(x t . . . . .  x~)=~l^ i f x i = l  f o r a l l i  

to otherwise. 

If  0 is an absorbing element for one fundamental operation, then it must be a zero 
element for S or else we contradict the fact that 1 is not ~ a 0. Hence each simple 

algebra is determined up to isomorphism by specifying the subset of the fundamen- 
tal operations which depend on at least one variable. This shows that there are < 2 ~ 
non-isomorphic simple algebras in ~t:. I f  a fundamental operation of  arity n > 1 

depends on a variable, then it realizes the essentially n-ary semilattice operation on 
S. This forces S to be nonabelian. Hence, if S is abelian, every fundamental 
operation of  arity > 1 must be independent of  all variables. Such an operation falls 
under case (I) from above. The unary operations of  S may be of  the type described 
in case (I) or case (II), so there can be at most 2 x such algebras and each is 
essentially unary. 

To show that every simple algebra generates a minimal subvariety notice that 
each simple algebra which has a nonconstant fundamental operation of  arity > 1 
generates a variety equivalent to the variety of  semilattices or to the variety of  
semilattices with a zero element; such varieties have no nontrivial subvarieties. In 
the case that every nonconstant operation is unary, every simple algebra generates 
a variety equivalent to the variety of  sets or the variety of  pointed sets; again these 
are minimal varieties. I f  A and B are non-isomorphic simple algebras in ~//, then 
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there is a fundamental operation which depends on a variable in one of these 
algebras but does not depend on any variable in the other. This can be expressed 
equationally, so V(A) r V(B). This establishes (1). 

To prove (2), choose an element 0 ~ A which is minimal under the partial 
ordering ~A. ( I f  ~U is not unary, then we can find a binary polynomial p(x , y )  = 
tA(x, y, ~) where t(x, y, ~) depends on all of its variables in "U. Then for all a, b e A 
we get p(a, b) ~ a a, b. Hence the poset (A; ~ A ) is downward-directed. In this case 
the choice of 0 is unique.) Obviously 0 is a zero element for A. Now let c be any 
element which is minimal in A - {0}. The set {0, e} is preserved by all permissible 
polynomials, so it is the unique congruence class of a (minimal) congruence on A. 
It is also the subuniverse of  a simple subalgebra of A. 

To prove (3), assume that V has only one minimal subvariety. Since ~ is 
regular the minimal subvariety can only be V(S~). Thus every subvariety of ~ is 
regular. We need to show that every term operation (equivalently, every fundamen- 
tal operation) is idempotent. If ~U is not idempotent, then we can find a B ~ ~K, an 
element b s B and a fundamental operation g such that g B ( b , . . . ,  b) r b. Factoring 
by a congruence maximal with respect to not containing (g~(b . . . . .  b), b) if 
necessary, we may assume that B is subdirectly irreducible algebra and that the 
equivalence relation v generated by (gB(b . . . . .  b), b) is the monolith of B. From 
Theorem 3.3 it follows that the nontrivial v-class contains a zero element which 
can't be b so g B ( b , . . . ,  b) is a zero element of B. In particular, gB(b . . . . .  b) is a 
one-element subuniverse of B. Therefore, the congruence class {gS(b . . . .  , b), b} is 
also a subuniverse; call the corresponding two-element subalgebra C. Since gC is 
constant the variety generated by C satisfies an (irregular) equation of the form 
g ( x o , . . .  , x m ) ~ g ( Y o  . . . . .  Ym) where the xi's are distinct from the yj's. This 
contradicts our earlier observation that every subvariety of ~U is regular. This 
proves that every fundamental operation is idempotent. Conversely, assume that ~/~ 
is idempotent. No term operation is constant on any member of ~V. A quick 
examination of the simple algebras described in the proof  of part (1) shows that "U 
contains exactly one nontrivial simple algebra: St where z is the type of ~U. Every 
minimal subvariety of ~K is generated by a nontrivial simple algebra, so V(S~) is the 
unique minimal subvariety of ~ .  

For  the first part of (4), notice that if ~ is unary, then "U is strongly abelian 
and CSM. It follows that typ{~}  = {0}. Conversely, if V is not unary, then 
5 = typ{S~ } ~ typ{~V}. For the second part of (4), we clearly have typ{~}  = {5} if 
and only if 0 ql typ{~} .  If a finite subdirectly irreducible algebra has a monolith # 
of type 0, then the unique nontrivial #-class is the universe of a two-element 
subalgebra which is essentially unary. Conversely, any essentially unary simple 
algebra in ~U witnesses the fact that 0 ~ typ{~}.  Hence typ{V} = {5} if and only 
if ~ contains no essentially unary simple algebra. If  ~ r f ( x ,  x . . . . .  x) ~ x for 
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some fundamental operation f of arity 2 2, then f depends on all variables in every 
algebra in ~//'. This condition is sufficient to prove that ~/r contains no essentially 
unary simple algebras. Conversely, suppose that ~e" satisfies no such equation. That 
is, assume that for each fundamental operation f of arity -> 2 we can find a D ~ ~e" 

and an element d ~ D such that f ~  d) ~ d. As the argument of  the previous 
paragraph shows we can assume that D is simple. If  F is the set of  operation 
symbols, then for each f E F  of arity n-> 2 we can find a simple algebra 
Df = ({0, 1}; F )  such tha t f~  ) = {0}. In each such algebra gO:(0) = 0 for any 

unary fundamental operation, g. Let E = H f ~  F Df. For  any f ~ F of arity > 2 the 
range o f f  ~ is contained in the set X =  E -  {(1, 1 . . . .  , 1)}. Further, X is closed 
under all the unary fundamental operations. Hence X is a block of  a congruence 0 
on E and E/0 is a simple algebra for which every basic operation of  arity > 2 
depends on no variables. E is essentially unary, so 0 e typ{~/:}. This establishes 
(4). [] 

The next theorem characterizes generator classes for locally finite, polynomially 
orderable varieties. Later, in Theorems 3.17 and 3.18, we characterize certain 
polynomially orderable varieties equationally. 

T H E O R E M  3.13. I f  ~r = V(~r) is a locally finite variety of  type z, then ~e ~ is a 

regular, polynomially orderable variety i f  and only i f  
(1) Each algebra in J l  can be partially ordered in such a way that for each 

fundamental operation f we have 

X ~ f ( x o  . . . . .  x . )  <- Xo . . . . .  x . .  

(2) s~ ~ ~ (~ ) .  

Proof. Assume that Y: is a regular, polynomially orderable variety. For  each 

A E s (  choose _< = '~A and observe that pi(x) =fn(a0 . . . . .  ai_ 1, x, ai+ 1, �9 � 9  an) 

is permissible. Thus, pi(ai) <- a~ and so condition (1) holds. To prove condition (2), 
let F be the 2-generated, relatively free algebra in ~/'. There is an onto homomor- 
phism 46: F ~ S ~ .  Let 1' be an element of  ~b-I(1) which is minimal under '~F and 
let 0' be an element of q$ 1(0) which is minimal under "~F. It is straightforward to 
show that {0', 1'} ___ F is a subuniverse for an algebra isomorphic to S~. Since S~ 
embeds into F e ~lP(o~ff) and S~ is simple, it must be that S~ ~ ~ ( ~ ) .  

Now assume (1) and (2). ~r is regular by (2). To finish this proof  we will show 
that ~ has the OBP and then invoke Theorem 3.11. By Theorem 2.4, it suffices to 
prove that the finite algebras in Y: have the OBP. Let B be a finite algebra in Y: and 
assume that OB ~( f l in  Con(B). We want to prove that fl has exactly one nontrivial 
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block. Choose a finite, relatively free algebra G in ~ which has a homomorphism 
onto B. Suppose that ~ <~ ~ in Con(G), G/~ _~ B and ~/~ corresponds t o / / u n d e r  this 
isomorphism. We must show that exactly one 7-class is different from an a-class. 
Now G inherits an ordering from the orderings of each member of  Jcl: as G is 
embeddable into a product of members of S ,  one can restrict this product ordering 
to G. We will use the same symbol, <,  to denote this ordering on G. Now let u ~ G 
be an element which is minimal under < for the property that there exists a w ~ G 
such that (u, w) ~ 7 - ~. Let v e G be an element which is minimal under < for the 
property that (u, v)~  7 -  ~. Clearly, for each fundamental operation f we have 
G ~ f C ( g o  . . . .  , g n )  < - g o , . . .  , g n .  Using this and induction on the complexity 
of a polynomial one can prove that if p is any unary polynomial of G and 
p ( u )  # u or p ( v ) #  v, then ( p ( u ) , p ( v ) ) ~  ~. This means that ;~ = e v Cg(u, v) is 
equal to the equivalence relation generated by ~ u {u, v}. We find that the only class 
of 7 that differs from an e-class is the class containing u and v. This finishes the 
proof. [] 

Condition (2) of Theorem 3.13 is only necessary to ensure that the generated 
variety is regular. In fact, if off satisfies 3.13 (1), then reg~U is a regular, 
polynomially orderable variety as one sees by applying the theorem to 

}). 

EXAMPLE 3.14. The variety of sets and the variety of semilattices are exam- 
ples of regular, polynomially orderable varieties. Another example is the variety of 
direetoids introduced in [7]. The variety of directoids is the variety of type <2> 
which is axiomatized by the equations 

x " x ,.~ x ,  ( x  " y )  " x "~ x " y ,  y " ( x  " y )  ~ x " y ,  

x " ( ( x  " y ) " z ) ~ ( x ' y ) ' z .  

Je2ek and Quackenbush prove that a groupoid A is a directoid if and only if A can 
be partially ordered, say by <,  such that (i) x, y < x �9 y holds for all x, y ~ A and 
(ii) whenever x < y one has x - y = y �9 x = y. Any two comparable elements of a 
directoid form a subuniverse isomorphic to S<2>, so the variety of directoids is 
regular. By reversing the order suggested in [7] to correspond to the downward- 
directed ordering that we have been considering, it becomes clear that the variety of 
directoids is polynomially orderable. This variety is idempotent, so it has exactly 
one minimal subvariety, V(S<2>). (This is proved in [7]. In [7] it is further shown 
that in the lattice of varieties of directoids V(S<2>) has exactly one cover and that 
this cover has exactly four covers.) 
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EXAMPLE 3.15. A variety of combinatorial inverse semigroups is any variety 
of type (2, 1 ) which, for some n, satisfies the equations 

(x . y ) . z ~ x . ( y  .z), x " + l ~ x  ", x . x ' . x ~ x ,  

(x ' ) '  = x, (x . y ) ' ~ y ' . x ' ,  x . x ' . y  . y ' ~ y  . y ' . x  "x'.  

In [8], P. Jones proved that any variety of combinatorial inverse semigroups is 
CSM. When n = 1 these equations imply x ' ~  x and the variety defined, 5 ~, is 
equivalent to the variety of semilattices as one can see by setting y = x '  in the last 
equation. This variety is polynomially orderable and it is known that 5 p is the only 
equationally complete variety of  combinatorial inverse semigroups. In Corollary 
XII.4.14 of  [ 11], it is shown that the variety ~ defined by the above equations with 
n = 2 and also the equation (y �9 x �9 y,)2 ~ y .  x �9 y '  is a (necessarily join irreducible) 
cover of 5 ~. ~ has no bound on the size of its simple algebras. To see this, let I be 
any set and let A = I x l w { O } .  Define 0 ' = 0  and (x, y)" = (y, x). Define 
(x, y) . (u, v) = (x, v) if y = u  and define (x, y) - (u, v) = 0 if y ~ u .  Define 
0- (x, y) = (x, y) �9 0 = 0. Then A = (A; -, ' )  E ~ and it is a rather easy exercise to 
prove that A is simple. This proves our claim. Each simple algebra of  more than 2 
elements is not a member of 5 ~ and so must generate the non-minimal variety ~ .  
Neither basic operation is idempotent in ~ even though ~ is precomplete and 
typ{~} = {5}. Thus, ~ is a regular, CSM variety which is not polynomially 
orderable and, in fact, fails every conclusion of Theorem 3.12. 

From Theorem 3.3 we see that every subdirectly irreducible algebra in a regular, 
CSM variety has the OBP. If, moreover, each subdirectly irreducible algebra has the 
strong OPB, then the variety is polynomially orderable. For  semigroups, the 
regular, CSM varieties and polynomially orderable varieties seem to be close 
equationally as well. For  example, compare the equational characterization of 
regular, CSM varieties of semigroups given in [8] with the characterization of  
regular, polynomially orderable varieties of  semigroups given in [3]: 

T H E O R E M  3.16. [8] A regular variety of  semigroups is C S M  if  and only i f  for 
some n the variety satisfies: 

x n ~ x  n+l and ( xnyn)"~(y"x" )  ~. [] 

T H E O R E M  3.17. [3] A regular variety of  semigroups consists of  J-trivial semi- 
groups i f  and only i f  for some n the variety satisfies: 

x ~ ,.~ x ~ + 1 and (xy) ~ ,~, (yx)  ~. [] 
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To make the comparison we mentioned it is necessary to prove that a regular 

variety of semigroups consists of  J-trivial semigroups if and only if it is polynomi- 
ally orderable. (The J-relation on a semigroup S is the set of pairs (a, b) ~ S 2 where 

a and b generate the same 2-sided ideal. S is J-trivial if J = 0A. See Section 1.6 of  

[11] for more details.) Notice that the image of  a s S under any permissible 

polynomial is a member of  the 2-sided ideal, Ia, which is generated by a. The set of  

all such images is all of  I , .  (This is the only place where we use regularity; we use 

the fact that multiplication is permissible.) Now, a ,~ s b if and only if Ia = Ib, so 

~ s  = 0s if and only if S is J-trivial. 
The next result examines regular, polynomially orderable, unary varieties. For  

this result, an element p of a monoid M has finite order if there exists a positive 
integer n such that p" =p2n. I f  every element of  M has finite order, then we will 
write this as M ~ x ~ g x 2c~ to mean that for each p e M there is some n < co, 

possibly depending on p, such that p"  =p2". 

T H E O R E M  3.18. Suppose that ql is a regular, unary variety and that M is the 

monoid o f  unary term operations. The following conditions are equivalent: 

(1) q / i s  polynomially orderable and every element o f  M has finite order. 
(2) M ~ x ~ ~  ~+1 and ( x y ) ~ y ( x y )  ~~ 

If, in (1), M ~ x ~ ~ x 2" then, in (2), M ~ x n ~ x ~ + 1 and (xy) ~ ..~ y ( xy )L  

Proo f  In a regular, unary variety the permissible polynomials of  any algebra 
are precisely the interpretations of  the unary terms. Choose p ~ M and n such that 
M ~ p ~ p 2 , .  I f  A ~ q/ and a ~A let b =pn(a).  

b = p"(a) = p2"(a) = p"(b) = p" - l(p(b)), 

so b ~ a P ( b )  and, of  course, p(b) ~ A b ,  so b ~Ap(b ) .  I f  q/ is polynomially 
orderable, then p n ( a ) = b  = p ( b ) = p n + l ( a ) .  Since a was arbitrary A ~ p " ~ p " + ~  

and therefore M ~ x ' ~  ~ Now suppose that p, q ~M.  From what we've 
shown there is an m such that M ~ (pq)m ~ (pq), ,+ 1. I f c  ~ A, then let d = (pq)m(c). 
We have p(q(d)) = d and this give us d ~ a q(d) while we clearly have q(d) ~ A d. As 
before, this yields d = q(d) or (pq)m(c) = q(pq)m(c). The choice of  e was arbitrary, 

so A ~ ( p q ) m ~  q(pq)m. Since p and q were arbitrary M ~ (xy) '~ "~y(xy)  ~. This 

shows that (1) implies (2). 
The fact that M ~ x ~ g x ~~ l implies that every element of  M is finite order. To 

show that (2) implies (1) we only need to show that ~ is polynomially orderable. 

Assume that B ~  and e , f ~ B  satisfy e ~Bf .  This means that we can find 

permissible polynomials r, s E M such that r(e) = f a n d  s ( f )  = e. Now there is some 
k such that (rs) k = s(rs) k. Thus, f = ( r s ) k ( f )  = s ( r s ) k ( f )  = e. That  is, e ~ B f i m p l i e s  
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e = f  whenever e, f E B  and B ~ .  This is just what it means for ~// to be 
polynomially orderable. 

It is clear that if there is a uniform bound on the order of  the elements in M, 
say M ~ x ~ ~ x 2~, then the same arguments we have used lead to M g x" ~ x" + 
and (xy)  ~ ~ y(xy)~.  [] 

Every locally finite, unary variety has a finite monoid of  unary term operations. 
Every finite monoid satisfies an equation of  the form x"  ~ x  2" for some n, so 
Theorem 3.18 contains a characterization of  all locally finite, regular, unary, 
polynomially orderable varieties. A locally finite, regular, unary variety is a 
polynomially orderable variety if and only if it satisfies hyper-identities of  the form 
x n ~ x n +  1 and (xy)  ~ ~ y ( x y )  ~ for some n (see [13] for the definition of  hyper-iden- 
tity). Perhaps this should be phrased as: A locally finite, regular, unary variety is a 
polynomially orderable variety if and only if it satisfies the hyper-pseudoidentities 
x,O ~ x,O+ l and (xy)  ~ , ~ y ( x y )  '~ (See [13] for the definition of pseudoidentlty.) 

It is nearly true that hyper-pseudoidentities similar to Theorem 3.18 characterize 
all locally finite, regular, polynomially orderable varieties. For  example, we might 
write t~(x) for t (x ,  ~) and juxtaposition, st, for s~(ty(x)). Then the arguments of  
Theorem 3.18 almost show that any locally finite, regular, polynomially orderable 
variety satisfies t ~ ~ t ~ + ~ and (st) c~ ~ t(st)  ~ and that, conversely, any locally finite, 
regular variety satisfying these hyper-pseudoidentities is polynomially orderahle. 
The difficulty is this: some n-variable terms do not involve all n variables. For  
example, the ith projection, t i ( X o , . . .  , xn) ~ xi ,  involves only x;. Hence, if A e Y/-, 
the polynomial p(x )  = t~ (x, a~, . . . ,  a , )  where each aj E A is not permissible when 
i > 0. The sentences t ~ ~ t ~ +i and (st) ~ ~ t(st) ~ characterize locally finite, regular, 
polynomiatly orderable varieties only if these sentences are quantified over the 
terms that involve the first variable. 
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