Finiteness Properties of Locally Finite Abelian Varieties

Keith A. Kearnes Ross D. Willard *

Abstract

We show that any locally finite abelian variety is generated by a finite algebra. We solve a problem posed by D. Hobby and R. McKenzie by exhibiting a nonfinitely based finite abelian algebra.

1 Introduction

A variety of algebras is an equationally definable class of algebras in a fixed language. A variety \mathcal{V} is said to be locally finite if its finitely generated algebras are finite. An algebra \mathbf{A} is abelian if it satisfies all sentences of the form

$$
\forall \mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{u}(t(\mathbf{x}, \mathbf{u})=t(\mathbf{x}, \mathbf{v}) \Longrightarrow t(\mathbf{y}, \mathbf{u})=t(\mathbf{y}, \mathbf{v}))
$$

where $t(\mathbf{x}, \mathbf{y})$ is an $(m+n)$-ary term in the language of \mathbf{A}. A variety of algebras is said to be abelian if all of its members are abelian.

For any ring \mathbf{R} the variety of left \mathbf{R}-modules is abelian. For any monoid \mathbf{M} the variety of left \mathbf{M}-sets is abelian. A variety of \mathbf{R}-modules is locally finite if and only if \mathbf{R} is finite while a variety of \mathbf{M}-sets is locally finite if and only if \mathbf{M} is finite. These two types of examples are fundamental, since it is shown in [1] that the polynomial structure of any finite abelian algebra is locally like that of an \mathbf{R}-module or an \mathbf{M}-set. Therefore it is natural to wonder if one can associate to each locally finite abelian variety \mathcal{V} a finite structure, of which a ring or a monoid is a special case, which acts on the members of \mathcal{V} and which 'determines' \mathcal{V} in some sense. If such were the case, then we would expect a locally finite abelian variety to share the finiteness properties of locally finite varieties of \mathbf{R}-modules and \mathbf{M}-sets. For example, since a subvariety of a variety of \mathbf{R}-modules (or \mathbf{M}-sets) may be identified with a variety of \mathbf{R}^{\prime}-modules (\mathbf{M}^{\prime}-sets) where $\mathbf{R}^{\prime}\left(\mathbf{M}^{\prime}\right)$ is a quotient of $\mathbf{R}(\mathbf{M})$, it follows that a variety of either type has finitely many subvarieties. This implies that either type of variety is finitely generated and, with a little extra argument, that either type of variety is finitely based. If to each locally finite abelian variety we could associate a finite structure which determined the variety, we would expect every locally finite abelian variety to be finitely generated, finitely based and to have a finite subvariety lattice.

[^0]In the first part of this paper we prove that any locally finite abelian variety is finitely generated. In the second part we then give an example to show that a locally finite abelian variety need not be finitely based (and therefore need not have a finite subvariety lattice). By the first part of the paper, the variety of the second part is generated by a finite abelian algebra. Therefore the results contained in this paper answer in the negative Problem 3 from the book [1] of D. Hobby and R. McKenzie which asks:

If \mathbf{A} is a finite abelian algebra of finite type, is $\mathcal{V}(\mathbf{A})$ finitely axiomatizable?
The nonfinitely based abelian algebra which we construct generates an abelian variety. By a result of [2] any such algebra fails to be inherently nonfinitely based. It remains open whether there is a finite abelian algebra which is inherently nonfinitely based.

2 Finite Generation

In this section we will prove that every locally finite abelian variety is generated by a finite algebra. We begin by making some general remarks about what it means for a variety to be generated by a finite algebra.

Let \mathcal{V} be a variety. Any equation in the language of \mathcal{V} may be written (after possibly renaming variables and adding 'fictitious variables') as $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ where s and t are $(n+1)$-ary term operations, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a sequence of distinct variables and y is a distinguished variable not in the sequence \mathbf{x}. We shall consider only equations of this form. The rank of the equation $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ is defined to be the length of the sequence \mathbf{x}. (Observe that by adding a fictitious variable to this equation we change its rank, so we consider the modified equation to be different from the original equation.) An equation $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ is falsifiable in \mathcal{V} if there is some $\mathbf{A} \in \mathcal{V}$ and a tuple $(\mathbf{a}, b) \in A^{n+1}$ such that $s(\mathbf{a}, b) \neq t(\mathbf{a}, b)$. That is, an equation is falsifiable if it is not an equation of \mathcal{V}. A minimal falsifiable equation is a falsifiable equation $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ which is no longer falsifiable if two variables are set equal.

LEMMA 2.1 A variety is finitely generated if and only if it is locally finite and there is a finite bound on the rank of any minimal falsifiable equation.

Proof. Assume that $\mathcal{V}=\mathcal{V}(\mathbf{A})$ where \mathbf{A} is finite. It is well known that the variety generated by a finite algebra is locally finite. Choose a minimal falsifiable equation $s=t$. Since \mathbf{A} generates \mathcal{V} and $s=t$ is a minimal falsifiable equation, we can falsify $s=t$ by a substitution of distinct elements of A into the distinct variables of the equation. This implies that the number of variables in the equation $s=t$ does not exceed $|A|$, and therefore the rank of $s=t$ is $<|A|$. Hence $|A|$ is a finite bound on the rank of any minimal falsifiable equation.

Conversely, assume that \mathcal{V} is a locally finite variety and that N is a finite bound on the rank of any minimal falsifiable equation. Then $\mathbf{F}_{\mathcal{V}}(N)$ is a finite algebra which satisfies all the equations of \mathcal{V} and fails all the equations that can be falsified in \mathcal{V}. Thus, $\mathcal{V}=\mathcal{V}\left(\mathbf{F}_{\mathcal{V}}(N)\right)$.

From now on \mathcal{A} will denote a fixed but arbitrarily chosen locally finite abelian variety. It is our goal to prove that there is a finite bound on the rank of any minimal falsifiable equation in the language of \mathcal{A}. First we explain a reduction. Let δ be a unary term in the language of \mathcal{A} and let \mathcal{E}_{δ} denote the set of equations $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ in the language of \mathcal{A} for which

$$
\mathcal{A} \models s(y, y, \ldots, y)=\delta(y)=t(y, y, \ldots, y) .
$$

Clearly, if $\mathcal{A} \models \delta(y)=\delta^{\prime}(y)$, then $\mathcal{E}_{\delta}=\mathcal{E}_{\delta^{\prime}}$. Therefore, since \mathcal{A} has only finitely many unary terms up to equivalence, there are only finitely many different sets of the form \mathcal{E}_{δ}. Furthermore, if $s(\mathbf{x}, y)=t(\mathbf{x}, y)$ is any minimal falsifiable equation of rank greater than zero, then $\mathcal{A} \models s(y, \ldots, y)=t(y, \ldots, y)$; thus $s=t$ belongs to \mathcal{E}_{δ} for $\delta(y):=s(y, y, \ldots, y)$. It follows that there is a finite bound on the rank of all minimal falsifiable equations if and only if there is a finite bound on the rank of the minimal falsifiable equations in \mathcal{E}_{δ} for each δ. Henceforth it will be our goal to show that there is a finite bound on the rank of any minimal falsifiable equation in a fixed but arbitrarily chosen \mathcal{E}_{δ}.

To accomplish our goal we need to understand the structure the minimal falsifiable equations in \mathcal{E}_{δ}. Our analysis depends in an essential way on the theorem of E. W. Kiss and M. A. Valeriote which connects abelian varieties to Hamiltonian varieties.

Definition 2.2 A variety \mathcal{V} is said to be Hamiltonian provided that whenever $\mathbf{A} \in \mathcal{V}$ and S is a subuniverse of \mathbf{A}, then S is a congruence block of \mathbf{A}.

The theorem of Kiss and Valeriote which is crucial for us is the following.
THEOREM 2.3 [3] A locally finite abelian variety is Hamiltonian.
A characterization of Hamiltonian varieties is given by L. Klukovits in [4]. Klukovits showed that a variety \mathcal{V} is Hamiltonian if and only if for each term $t(\mathbf{x})$ and each choice of a variable of this term, say the i-th variable, there is a ternary term $k(u, y, z)$ such that

$$
\mathcal{V} \models k\left(t\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right), y, z\right)=t\left(x_{1}, \ldots, x_{i-1}, z, x_{i+1}, \ldots, x_{n}\right) .
$$

We call the term k a Klukovits term for t in its i-th variable. For example, if \mathcal{V} is a variety of left $\mathbf{R}-$ modules and $t(\mathbf{x})=r_{1} x_{1}+\cdots+r_{n} x_{n}$, then a Klukovits term for t in its i-th variable is $k(u, y, z)=u-r_{i} y+r_{i} z$. If \mathcal{V} is a variety of \mathbf{M}-sets and $t(\mathbf{x})=m x_{i}$, then a Klukovits term for t in its i-th variable is $k(u, y, z)=m z$; a Klukovits term for t in its j-th variable, $j \neq i$, is $k(u, y, z)=u$. The phrase "Klukovits term" will mean any ternary term k which is a Klukovits term for t in its i-th variable for some t and i.

Let K be a complete set of \mathcal{A}-inequivalent Klukovits terms. Note that K is finite since Klukovits terms are ternary and \mathcal{A} is locally finite. Let ω denote the set of natural numbers with the usual ordering, and let $\omega^{K \times K}$ denote the set of functions from $K \times K$ to ω ordered pointwise. Define a binary relation \triangleright from \mathcal{E}_{δ} to $\omega^{K \times K}$ by the rule that

$$
(s=t) \triangleright f
$$

if and only if $f: K \times K \rightarrow \omega$ has the property that there exists a sequence

$$
\Sigma=\left\langle\left(j_{1}, k_{1}\right),\left(j_{2}, k_{2}\right), \ldots,\left(j_{n}, k_{n}\right)\right\rangle,
$$

where n is the rank of the equation $s=t$, such that
(1) j_{i} is a Klukovits term for s in its i th variable and k_{i} is a Klukovits term for t in its i-th variable, and
(2) for any $(j, k) \in K \times K, f(j, k)=$ the number of times (j, k) occurs in the sequence Σ.

LEMMA 2.4 The following statements hold for the equations in \mathcal{E}_{δ}.
(1) If $(s=t) \triangleright f$, then the height of f in $\omega^{K \times K}$ equals the rank of the equation $s=t$.
(2) If $(s=t) \triangleright f$, and $g<f$ in $\omega^{K \times K}$, then $s=t$ has a specialization $\left(s^{\prime}=t^{\prime}\right) \in \mathcal{E}_{\delta}$ such that $\left(s^{\prime}=t^{\prime}\right) \triangleright g$.
(3) If $p=q$ and $s=t$ are both $\triangleright-$ related to the element $f \in \omega^{K \times K}$, then $p=q$ is equivalent to $s=t$ modulo the equations of \mathcal{A}. (I.e., $\operatorname{Eq}(\mathcal{A}) \models(p=q) \Leftrightarrow(s=t)$.)

Proof. The height of a function f in $\omega^{K \times K}$ is the sum of the values of f. Now if $(s=t) \triangleright f$ where $s=t$ is an equation of rank n, then recall that $f(j, k)$ is defined to be the number of times (j, k) occurs in some sequence $\left\langle\left(j_{1}, k_{1}\right),\left(j_{2}, k_{2}\right), \ldots,\left(j_{n}, k_{n}\right)\right\rangle$ where this sequence is a sequence of pairs of Klukovits terms for the first n-variables of the equation $s=t$. It follows that $\Sigma_{(j, k) \in K \times K} f(j, k)=n$, which shows that the height of f is n whenever the rank of $s=t$ is n and $(s=t) \triangleright f$. This proves (1).

For (2), assume that $s=t$ is the equation $s\left(x_{1}, \ldots, x_{n}, y\right)=t\left(x_{1}, \ldots, x_{n}, y\right)$ where (by part (1)) the height of f is n. From the definitions, there exist a sequence $\left\langle\left(j_{1}, k_{1}\right), \ldots,\left(j_{n}, k_{n}\right)\right\rangle$ of pairs of Klukovits terms for the first n variables of $s=t$ such that, for any $(j, k) \in K \times K$, the number of times (j, k) occurs in this sequence is $f(j, k) \geq g(j, k)$. Therefore it is possible to select a subset $\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, n\}$ such that $\left\langle\left(j_{i_{1}}, k_{i_{1}}\right), \ldots,\left(j_{i_{m}}, k_{i_{m}}\right)\right\rangle$ has precisely $g(j, k)$ occurrences of (j, k) for each $(j, k) \in K \times K$. Then define $s^{\prime}\left(x_{1}, \ldots, x_{m}, y\right)=$ $t^{\prime}\left(x_{1}, \ldots, x_{m}, y\right)$ to be the equation obtained from $s\left(x_{1}, \ldots, x_{n}, y\right)=t\left(x_{1}, \ldots, x_{n}, y\right)$ by substituting y for x_{h} whenever $h \notin\left\{i_{1}, \ldots, i_{m}\right\}$ and substituting x_{g} for $x_{i_{g}} i_{g} \in\left\{i_{1}, \ldots, i_{m}\right\}$. The equation $s^{\prime}=t^{\prime}$ is in \mathcal{E}_{δ} since it is obtained from $s=t$ by substituting new variables for old. Moreover, a sequence of Klukovits terms for the first m variables of $s^{\prime}\left(x_{1}, \ldots, x_{m}, y\right)=$ $t^{\prime}\left(x_{1}, \ldots, x_{m}, y\right)$ is $\left\langle\left(j_{i_{1}}, k_{i_{1}}\right), \ldots,\left(j_{i_{m}}, k_{i_{m}}\right)\right\rangle$. It follows that $\left(s^{\prime}=t^{\prime}\right) \triangleright g$.

Finally we prove (3). To do this, we first define an action of pairs of Klukovits terms on equations. If $u=v$ is an equation of rank ℓ, then the pair (j, k) of Klukovits terms acts on $u=v$ (on the right) to produce a new equation of rank $\ell+1$ as follows:

$$
(u=v) \circ(j, k):=j\left(u\left(x_{1}, \ldots, x_{\ell}, y\right), y, x_{\ell+1}\right)=k\left(v\left(x_{1}, \ldots, x_{\ell}, y\right), y, x_{\ell+1}\right)
$$

To start the proof of (3) assume that $p=q$ and $s=t$ are both \triangleright related to f. This implies that there are sequences of pairs $\left\langle\left(j_{1}, k_{1}\right), \ldots,\left(j_{n}, k_{n}\right)\right\rangle$ and $\left\langle\left(J_{1}, K_{1}\right), \ldots,\left(J_{n}, K_{n}\right)\right\rangle$ where
(a) the first sequence is a sequence of pairs of Klukovits terms for $p=q$,
(b) the second sequence is a sequence of pairs of Klukovits terms for $s=t$ and
(c) the second sequence is a permutation of the first sequence.

We must use this information to prove that $p=q$ and $s=t$ are equivalent modulo the equations of \mathcal{A}.
Claim. Let π be a permutation of $\{1, \ldots, n\}$. Modulo the equations of \mathcal{A}, the equation $p=q$ is equivalent to

$$
\left[\cdots\left[(\delta(y)=\delta(y)) \circ\left(j_{\pi(1)}, k_{\pi(1)}\right)\right] \circ \cdots\right] \circ\left(j_{\pi(n)}, k_{\pi(n)}\right)
$$

The proof of this claim establishes part (3) of this lemma. To see this, note that we can apply the claim once with π chosen so that $\left(j_{\pi(i)}, k_{\pi(i)}\right)=\left(J_{i}, K_{i}\right)$ to get an expression equivalent to $p=q$ which, by a second application of the claim to the equation $s=t$ and the permutation $\pi=\mathrm{id}$, is equivalent to $s=t$ modulo the equations of \mathcal{A}. Thus we get that $p=q$ is equivalent to $s=t$ modulo the equations of \mathcal{A}.

To prove the claim, first note that since $(p=q) \in \mathcal{E}$, we have that $\mathcal{A} \models p(y, y, \ldots, y)=$ $\delta(y)=q(y, y, \ldots, y)$. Therefore we are trying to show that $p=q$ is equivalent to

$$
j_{\pi(n)}\left(\cdots j_{\pi(1)}\left(p(y, \ldots, y), y, x_{1}\right) \cdots, y, x_{n}\right)=k_{\pi(n)}\left(\cdots k_{\pi(1)}\left(q(y, \ldots, y), y, x_{1}\right) \cdots, y, x_{n}\right)
$$

Using the Klukovits equations, which are equations of \mathcal{A}, this equation can be greatly simplified. We simplify it in n steps, working our way through this nested composition from the innermost part outwards. At the first step we have $j_{\pi(1)}\left(p(y, y, \ldots, y), y, x_{1}\right)$ on the lefthand side, and the Klukovits equations reduce this to $p\left(y, y, \ldots, x_{1}, \ldots, y\right)$ with x_{1} in the $\pi(1)-$ rst position. At the innermost part on the righthand side we have $k_{\pi(1)}\left(q(y, y, \ldots, y), y, x_{1}\right)$ which simplifies to $q\left(y, y, \ldots, x_{1}, \ldots, y\right)$ with x_{1} in the $\pi(1)$-rst position. Similarly, as we work our way through each step of the composition we simply replace the y in position $\pi(i)$ on both sides of the equation with the variable x_{i} during the i-th step. The result is that the previously displayed equation is equivalent modulo the equations of \mathcal{A} to

$$
p\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}, y\right)=q\left(x_{\pi^{-1}(1)}, \ldots, x_{\pi^{-1}(n)}, y\right)
$$

which differs from the equation $p=q$ only by a permutation of variables. Thus the claim is proved.

THEOREM 2.5 \mathcal{A} is finitely generated.

Proof. Define an order filter in $\omega^{K \times K}$ as follows:

$$
F=\left\{x \in \omega^{K \times K} \mid(\exists g) x \geq g \text { where }(p=q) \triangleright g \text { for some falsifiable equation } p=q\right\} .
$$

We claim that if $(s=t) \in \mathcal{E}_{\delta}$ is a minimal falsifiable equation and $(s=t) \triangleright f$, then f is a minimal member of F. To see this, assume that $s=t$ is falsifiable and that f is not minimal in F; we will prove that $s=t$ is not a minimal falsifiable equation. Since f is not minimal in F there is a falsifiable equation $p=q$ such that $(p=q) \triangleright g$ and $g<f$. From Lemma 2.4 we deduce that the equation $s=t$ has a specialization $\left(s^{\prime}=t^{\prime}\right) \in \mathcal{E}_{\delta}$ such that $\left(s^{\prime}=t^{\prime}\right) \triangleright g$ and $s^{\prime}=t^{\prime}$ is equivalent to $p=q$ modulo the equations of \mathcal{A}. The equivalence of $s^{\prime}=t^{\prime}$ with the falsifiable equation $p=q$ implies that $s^{\prime}=t^{\prime}$ is falsifiable, which proves that $s=t$ has a falsifiable specialization of smaller rank. This establishes our claim.

Since K is finite, the ordered set $\omega^{K \times K}$ has the property that its order filters are finitely generated (see [5]). So, there is a natural number N such that every minimal element of F has height $\leq N$. It follows from the previous paragraph and Lemma 2.4 (1) that N is a bound on the rank of any minimal falsifiable equation in \mathcal{E}_{δ}. As we observed earlier, the fact that this is true for an arbitrarily chosen δ implies the existence of a finite bound on the rank of all minimal falsifiable equations. Lemma 2.1 can now be invoked to deduce that \mathcal{A} is finitely generated.

3 A Nonfinitely Based Abelian Algebra

In this section we describe a finite algebra which generates a nonfinitely based abelian variety. This provides a strong negative answer to Problem 3 of [1], and complements the result in [2] that states that no finite algebra can generate an inherently nonfinitely based abelian variety.

The idea behind our example is extremely simple, so we give a rough description now before facing the details. We plan to construct a variety \mathcal{P} of algebras whose models are (essentially) pairs of isomorphic Boolean groups ${ }^{1} \mathbf{B}$ and \mathbf{C} glued together at a subset containing the common identity element, 0 . We try to show that the subvariety of algebras where $B \cap C$ is a subgroup is not finitely based relative to \mathcal{P}. That is, we try to show that it is impossible to express the idea that $B \cap C$ is closed under sums without looking at a large number of elements of $B \cap C$ simultaneously.

Our idea does not work in the form just explained, because it is not hard to express the fact that $B \cap C$ is closed under sums: one can check elements of $B \cap C$ two at a time to see if their sum is in $B \cap C$. Therefore, to make this idea work, we need a subset Q disjoint from $B \cup C$ and an operation $s: Q \rightarrow B \cap C$ whose duty is to 'select' a subset of $B \cap C$. What we actually show is that it is hard to express the fact that the subgroup generated by $s(Q)$ lies in $B \cap C$. Here it may be that all sums of few elements of $s(Q)$ lie in $B \cap C$, but some sum of many elements lies outside $B \cap C$.

We will get a properly decreasing sequence of varieties $\mathcal{P}=\mathcal{V}_{1} \supset \mathcal{V}_{2} \supset \mathcal{V}_{3} \supset \cdots$, where \mathcal{V}_{n} is the collection of algebras where all sums of $\leq n$ elements of $s(Q)$ are in $B \cap C$. The intersection $\mathcal{V}_{\infty}=\bigcap_{n<\omega} \mathcal{V}_{n}$ is the nonfinitely based variety of algebras in \mathcal{P} where $s(Q)$ generates a subgroup of $B \cap C$. Since \mathcal{V}_{∞} is locally finite and abelian, the result of the last section proves that \mathcal{V}_{∞} is generated by a (nonfinitely based) finite algebra. We produce a concrete 6 -element generating algebra for \mathcal{V}_{∞} at the end of this section.

Our nonfinitely based algebra is of type $\langle 0,1,1,1,2,2\rangle$ and the corresponding operation symbols are $\langle 0, e, f, s,+, \oplus\rangle$. Our algebra will be a member of the (abelian) variety \mathcal{P} whose defining equations assert that in each $\mathbf{A} \in \mathcal{P}$:

[^1](A) $\{0\}$ is a subuniverse.
(B) $e e(x)=e(x), f f(x)=f(x), s s(x)=0$,
$e f(x)=e(x), f e(x)=f(x)$,
$e s(x)=f s(x)=s(x)$,
$s e(x)=s f(x)=0$.
(C)
\[

$$
\begin{aligned}
& x+y=e(x)+e(y)=e(x+y)=e(x \oplus y) \\
& x \oplus y=f(x) \oplus f(y)=f(x \oplus y)=f(x+y)
\end{aligned}
$$
\]

(D) $\langle e(A) ;+, 0\rangle$ and $\langle f(A) ; \oplus, 0\rangle$ are Boolean groups.

We will soon see that \mathcal{P} is a locally finite abelian variety which contains a nonfinitely based algebra. First we describe how to construct models of these equations.

We refine our earlier discussion of the models of \mathcal{P} by discussing a class of three-sorted structures of the form

$$
\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota ; e_{Q}, s_{Q}\right\rangle .
$$

Here $\mathbf{B}=\langle B ; *, 0\rangle$ and $\mathbf{C}=\langle C ; \circ, 0\rangle$ are Boolean groups which have a common identity element. Q is a set which is disjoint from $B \cup C$. The unary function ι is an isomorphism $\iota: \mathbf{C} \rightarrow \mathbf{B}$ for which $\iota(x)=x$ for all $x \in B \cap C$. Both $e_{Q}: Q \rightarrow B$ and $s_{Q}: Q \rightarrow(B \cap C)$ are functions. There is no restriction on them other than that they have the correct domain and range.

From such a three-sorted structure $\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota ; e_{Q}, s_{Q}\right\rangle$ we can construct a member of \mathcal{P}. Our algebra will have universe $A=B \cup C \cup Q$. We interpret the operations $\langle 0, e, f, s,+, \oplus\rangle$ as follows. We interpret 0 as the element already named $0 \in A$. We define e and f by

$$
e(x)=\left\{\begin{array}{ll}
x & \text { if } x \in B, \\
\iota(x) & \text { if } x \in C, \\
e_{Q}(x) & \text { if } x \in Q,
\end{array} \quad \quad f(x)= \begin{cases}x & \text { if } x \in C, \\
\iota^{-1}(x) & \text { if } x \in B, \\
\iota^{-1} e_{Q}(x) & \text { if } x \in Q .\end{cases}\right.
$$

We define s so that $s(B \cup C)=\{0\}$ while $\left.s\right|_{Q}=s_{Q}$. Next we define $x+y$ to be $e(x) * e(y)$, where $*$ is the group operation of \mathbf{B}. Similarly, $x \oplus y=f(x) \circ f(y)$ where \circ is the group operation of \mathbf{C}.

LEMMA 3.1 The algebra A constructed as in the previous paragraph belongs to \mathcal{P}. Conversely, any member of \mathcal{P} is isomorphic to such an algebra.

Sketch of Proof. The first statement requires only the straightforward verification that the equations defining \mathcal{P} hold in \mathbf{A}.

For the second statement, choose any $\mathbf{D} \in \mathcal{P}$. Let $B=e(D), C=f(D)$ and $Q=$ $D-(B \cup C)$. The equations of \mathcal{P} of types $(\mathrm{A}),(\mathrm{B})$ and (D) ensure that B is closed under + and $0, C$ is closed under \oplus and 0 , and that $\mathbf{B}:=\left\langle B ;+^{\prime}, 0\right\rangle$ and $\mathbf{C}:=\left\langle C ; \oplus^{\prime}, 0\right\rangle$ are Boolean groups. Here the prime on $+^{\prime}$ and \oplus^{\prime} indicates that we are using the restrictions of the corresponding operations of \mathbf{D}. If we let $\iota=\left.e\right|_{C}$, then the equations of type (C) guarantee that $\iota: \mathbf{C} \rightarrow \mathbf{B}$ is an isomorphism of groups which is the identity on $B \cap C$. Let $e_{Q}=\left.e\right|_{Q}$ and $s_{Q}=\left.s\right|_{Q}$. Of course, $e_{Q}(Q) \subseteq e(D)=B$. The equations of type (B) involving s ensure that $s_{Q}(Q) \subseteq e(D) \cap f(D)=B \cap C$. Thus, \mathbf{D} yields a three-sorted structure $\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota ; f_{Q}, s_{Q}\right\rangle$.

We can apply the procedure outlined before the proof of this lemma to the three-sorted structure derived from \mathbf{D}. By doing so we reconstruct an algebra in \mathcal{P} which has the same universe as \mathbf{D}. One can check that each operation of the constructed algebra coincides with the corresponding operation in \mathbf{D}. Thus, \mathbf{D} is reconstructible from $\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota ; e_{Q}, s_{Q}\right\rangle$.

Now we analyze the term operations of \mathcal{P}. In the next lemma we let $E(x)=e(x)+s(x)$ and $F(x)=f(x) \oplus s(x)$.

LEMMA 3.2 Any term of \mathcal{P} is \mathcal{P}-equivalent either to a variable or to a term of the form

$$
u_{1}\left(x_{1}\right)+u_{2}\left(x_{2}\right)+\cdots+u_{n}\left(x_{n}\right)
$$

where each $u_{i} \in\{0, e, s, E\}$ or to

$$
v_{1}\left(x_{1}\right) \oplus v_{2}\left(x_{2}\right) \oplus \cdots \oplus v_{n}\left(x_{n}\right)
$$

where each $v_{i} \in\{0, f, s, F\}$.
Sketch of Proof. The proof is a straightforward induction argument using the equations for \mathcal{P}.

COROLLARY 3.3 \mathcal{P} is a locally finite abelian variety.
Proof. To see that \mathcal{P} is abelian, choose $\mathbf{A} \in \mathcal{P}$ and a term $t(x, \mathbf{y})$. Without loss of generality we may assume that $t(x, \mathbf{y})=u_{0}(x)+u_{1}\left(y_{1}\right)+\cdots+u_{n}\left(y_{n}\right)$. To check that the term condition holds for t we must show that for all $a, b \in A$ and $\mathbf{c}, \mathbf{d} \in A^{n}$

$$
u_{0}(a)+u_{1}\left(c_{1}\right)+\cdots+u_{n}\left(c_{n}\right)=u_{0}(a)+u_{1}\left(d_{1}\right)+\cdots+u_{n}\left(d_{n}\right)
$$

implies

$$
u_{0}(b)+u_{1}\left(c_{1}\right)+\cdots+u_{n}\left(c_{n}\right)=u_{0}(b)+u_{1}\left(d_{1}\right)+\cdots+u_{n}\left(d_{n}\right) .
$$

The second equality follows from the first by adding $u_{0}(a)+u_{0}(b)$ to both sides of the first equality. This shows that \mathcal{P} is abelian.

It follows immediately from the previous lemma that \mathcal{P} has only finitely many n-ary terms up to equivalence for any finite n. Thus \mathcal{P} is locally finite.

Next we consider equations of the form

$$
\left(\mathrm{E}_{n}\right): \quad s\left(x_{1}\right)+s\left(x_{2}\right)+\cdots+s\left(x_{n}\right)=s\left(x_{1}\right) \oplus s\left(x_{2}\right) \oplus \cdots \oplus s\left(x_{n}\right) .
$$

Notice that by substituting 0 in for x_{n} in E_{n} we obtain E_{n-1}. Thus $\mathrm{E}_{n} \Rightarrow \mathrm{E}_{n-1}$. The next lemma proves that the reverse implication does not hold.

LEMMA 3.4 For each $n>1$ there is an algebra in \mathcal{P} which satisfies E_{n-1}, but which fails E_{n}.

Proof. Let $\mathbf{B}=\mathbf{Z}_{2}^{n}$ where $\mathbf{Z}_{2}=\langle\{0,1\} ; *, 0\rangle$ is the two-element group. Let $b_{i} \in B$ denote the element which has a one in the i-th position and zeros elsewhere. Let $\mathbf{0} \in B$ denote the element which has zeros in every position and let $\mathbf{1} \in B$ be the element with ones in every position. Let \mathbf{C} be a Boolean group obtained from \mathbf{B} by replacing the element $\mathbf{1}$ with a new element $\mathbf{1}^{\prime}$ and naming the resulting group operation \circ. Observe that $B \cap C=B-\{\mathbf{1}\}$.

Let $Q=\{1,2, \ldots, n\}$. Let $\iota: \mathbf{C} \rightarrow \mathbf{B}$ be the isomorphism which fixes $B \cap C$ and maps $\mathbf{1}^{\prime}$ to $\mathbf{1}$. Define e_{Q} arbitrarily and for each $i \in Q$ let $s_{Q}(i)=b_{i}$. We now have a three-sorted structure $\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota, e_{Q}, s_{Q}\right\rangle$. Satisfaction of E_{k} in the associated algebra $\mathbf{A} \in \mathcal{P}$ is equivalent to the satisfaction of

$$
s_{Q}\left(x_{1}\right) * \cdots * s_{Q}\left(x_{k}\right)=s_{Q}\left(x_{1}\right) \circ \cdots \circ s_{Q}\left(x_{k}\right)
$$

in $\left\langle\mathbf{B}, \mathbf{C}, Q ; \iota, e_{Q}, s_{Q}\right\rangle$. The only way for this equation to fail is for the left hand side to equal $\mathbf{1}$ and (therefore) for the right hand side to equal $\mathbf{1}^{\prime}$. If $k<n$ there are too few summands for this to happen, but when $k=n$ we may take $x_{i}=i$ and we get a failure of this equation. Hence the algebra \mathbf{A} fails E_{n} but satisfies all E_{k} for $k<n$.

Let \mathcal{V}_{n} denote the subvariety of \mathcal{P} axiomatized by E_{n} and the equations of \mathcal{P}. Let $\mathcal{V}_{\infty}=\bigcap_{n<\omega} \mathcal{V}_{n}$. The previous lemma shows that \mathcal{V}_{∞} is not finitely based. Since \mathcal{V}_{∞} is a locally finite abelian variety it is generated by a finite algebra. We shall produce a finite generating algebra shortly, but first we describe the subvariety lattice of \mathcal{P}.

THEOREM 3.5 The subvarieties of \mathcal{P} are: $\mathcal{P}=\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{\infty}$ and the six proper subvarieties of \mathcal{V}_{∞}.

Proof. We begin by considering the situation where \mathcal{U} and \mathcal{W} are subvarieties of \mathcal{P}, $\mathcal{U} \subset \mathcal{W} \subseteq \mathcal{P}$ and \mathcal{U} and \mathcal{W} satisfy the same one-variable equations. Let $p=q$ be an equation that holds in \mathcal{U} but fails in \mathcal{W}. We shall argue that $p=q$ is \mathcal{P}-equivalent to some E_{n}. The purpose of this is to show that every subvariety of \mathcal{P} is axiomatizable relative to \mathcal{P} by a set of one-variable equations together with some of the E_{n} 's.

If both p and q are \mathcal{P}-equivalent to variables, then $p=q$ is \mathcal{P}-equivalent to $x=x$ or to $x=y$. Since $p=q$ fails in \mathcal{W} it cannot be equivalent to $x=x$. The equation $x=y$ is \mathcal{P}-equivalent to $x=0$, which is a one-variable equation. Since $p=q$ holds in \mathcal{U} but not in \mathcal{W}, and \mathcal{U} and \mathcal{W} satisfy the same one-variable equations, we conclude that $p=q$ is not equivalent to $x=y$, either. Henceforth we assume that p is not \mathcal{P}-equivalent to a variable.

Now, according to Lemma 3.2, $p(\mathbf{x})$ is \mathcal{P}-equivalent to $p_{1}\left(x_{1}\right)+\cdots+p_{n}\left(x_{n}\right)$ or the same with + replaced by \oplus. According to which case we are in (+ or \oplus), this implies that either $e p=p$ or $f p=p$ is an equation of \mathcal{P}. If q is \mathcal{P}-equivalent to a variable then $p=q$ has the consequence $e(x)=x$, since $e q=e p=p=q$, or else the consequence $f(x)=x$. But $e(x)=x$ and $f(x)=x$ are equivalent modulo the equations of \mathcal{P}, so if q is \mathcal{P}-equivalent to a variable then \mathcal{U} satisfies the one-variable equation $e(x)=x$. \mathcal{W} must also satisfy this equation. However, the equations of \mathcal{P} together with $e(x)=x$ imply that $e=f=E=F$, $s=0$ and $x+y=x \oplus y . \mathcal{W}$ must now satisfy all of these equations and this is enough to imply that \mathcal{W} is a definitionally equivalent to a variety of Boolean groups. Since the variety of all Boolean groups is a minimal variety and \mathcal{U} is a proper subvariety of \mathcal{W}, therefore we must have that \mathcal{U} is the trivial variety. But this contradicts the assumption that \mathcal{U} and
\mathcal{W} satisfy the same one-variable equations, since now \mathcal{U} satisfies $x=0$ and \mathcal{W} does not. We conclude that q is not \mathcal{P}-equivalent to a variable. Therefore $q(\mathbf{x})$ is \mathcal{P}-equivalent to $q_{1}\left(x_{1}\right)+\cdots+q_{n}\left(x_{n}\right)$ or the same with + replaced by \oplus.

By substituting zeros into the equation $p=q$ we can see that for each i

$$
p_{i}\left(x_{i}\right):=p\left(0,0, \ldots, x_{i}, \ldots, 0\right)=q\left(0,0, \ldots, x_{i}, \ldots, 0\right)=: q_{i}\left(x_{i}\right)
$$

is a one-variable equation of \mathcal{U} and therefore of \mathcal{W}. It follows that each of p and q is \mathcal{P} equivalent to either $p_{1}\left(x_{1}\right)+\cdots+p_{n}\left(x_{n}\right)$ or $p_{1}\left(x_{1}\right) \oplus \cdots \oplus p_{n}\left(x_{n}\right)$. Since $p=q$ fails to hold in \mathcal{W}, it must be that $p=q$ is \mathcal{P}-equivalent to

$$
p_{1}\left(x_{1}\right)+\cdots+p_{n}\left(x_{n}\right)=p_{1}\left(x_{1}\right) \oplus \cdots \oplus p_{n}\left(x_{n}\right) .
$$

Because $x+y=e(x)+e(y)$ and $x \oplus y=f(x) \oplus f(y)$ hold in \mathcal{P}, it follows that $e p_{i}\left(x_{i}\right)=f p_{i}\left(x_{i}\right)$ is a one-variable equation of \mathcal{U}, therefore of \mathcal{W}. The only way for this to be true is if $p_{i} \in\left\{0, s\left(x_{i}\right)\right\}$ for all i. Since we may assume that each $p_{i}\left(x_{i}\right)$ depends on its variable, we may conclude that $p_{i}\left(x_{i}\right)=s\left(x_{i}\right)$ for all i. Thus, $p=q$ is \mathcal{P}-equivalent to E_{n}. We have shown that if $\mathcal{U} \subset \mathcal{W} \subseteq \mathcal{P}$ and \mathcal{U} and \mathcal{W} satisfy the same one-variable equations, then \mathcal{U} is axiomatized relative to \mathcal{W} by a collection of the E_{n} 's. Thus every subvariety of \mathcal{P} is axiomatizable relative to \mathcal{P} by one-variable equations and some of the E_{n} 's.

The one-variable equations which fail to hold in \mathcal{P} are easy to locate since there are only seven \mathcal{P}-inequivalent unary terms: $\{0, x, e(x), f(x), s(x), E(x), F(x)\}$. It is a simple matter to show that each one-variable equation which fails in \mathcal{P} has either $s(x)=0$ or $e(x)=f(x)$ as a consequence. The first clearly entails all E_{n} while the second entails $x+y=x \oplus y$ which clearly entails all E_{n}. Therefore, every one-variable equation which fails in \mathcal{P} entails all E_{n}. Combining this fact with what we have previously established, we obtain that any subvariety of \mathcal{P} which is not one of $\mathcal{P}=\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots$ or \mathcal{V}_{∞} must be a subvariety of \mathcal{V}_{∞}. Moreover, any subvariety of \mathcal{V}_{∞} must be axiomatizable relative to \mathcal{P} by one-variable equations. Since there are so few nontrivial one-variable equations it is easy to determine that the subvarieties of \mathcal{V}_{∞} are: $\mathcal{V}_{s=0}, \mathcal{V}_{e=f}, \mathcal{V}_{e=F}, \mathcal{V}_{e=x}, \mathcal{V}_{e=0}$, and $\mathcal{V}_{x=0}$. The notation $\mathcal{V}_{p=q}$ means that $\mathcal{V}_{p=q}$ is axiomatized by $p(x)=q(x)$ and the equations of \mathcal{P}. See Figure 1 .

LEMMA 3.6 \mathcal{V}_{∞} has a six-element generator.
Proof. Borrowing notation from the previous proof, we must show that there is a sixelement algebra in \mathcal{V}_{∞} which is not in $\mathcal{V}_{s=0}$ or $\mathcal{V}_{e=f}$. That is, we must produce a six-element algebra \mathbf{A} for which
(1) $\mathbf{A} \in \mathcal{P}$,
(2) $\mathbf{A} \not \vDash s(x)=0$,
(3) $\mathbf{A} \not \models e(x)=f(x)$, and
(4) $\mathbf{A} \models \mathrm{E}_{n}$ for all n.

Figure 1: Subvariety Lattice of \mathcal{P}

Observe that condition (4) says precisely that $s(A)$ generates a subgroup which is contained in $e(A) \cap f(A)$.

Let $\mathbf{B}=\mathbf{Z}_{2}^{2}$ and let $\mathbf{1}=(1,1) \in B$. Let \mathbf{C} be the group obtained from \mathbf{B} by replacing the element $\mathbf{1}$ with a new element $\mathbf{1}^{\prime}$. Let $Q=\{q\}$. Let $\iota: \mathbf{C} \rightarrow \mathbf{B}$ be the isomorphism which fixes $B \cap C$ and maps $\mathbf{1}^{\prime}$ to $\mathbf{1}$. Define $e_{Q}(q)=s_{Q}(q)=(0,1) \in B$. This yields a three-sorted structure which is associated to the algebra \mathbf{A} which has six-element universe $B \cup\left\{\mathbf{1}^{\prime}\right\} \cup\{q\}$. Note that the subgroup generated by $s(A)$ is just $\{(0,0),(0,1)\} \subseteq e(A) \cap f(A)$. We have that $s(q) \neq 0$ and $e(\mathbf{1})=\mathbf{1} \neq \mathbf{1}^{\prime}=f(\mathbf{1})$ so the conditions listed above are met.

References

[1] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics v. 76, American Mathematical Society, 1988.
[2] K. Kearnes and R. Willard, Inherently nonfinitely based solvable algebras, Canad. Math. Bull. 37 (1994), 514-521.
[3] E. W. Kiss and M. Valeriote, Abelian algebras and the Hamiltonian property, J. Pure Appl. Algebra 87 (1993), 37-49.
[4] L. Klukovits, Hamiltonian varieties of universal algebras, Acta Sci. Math. 37 (1975), 11-15.
[5] E. C. Milner, Basic wqo and bqo theory, in Graphs and Order, I. Rival (ed.), D. Reidel Publishing Company, 1985, 487-502.

Department of Mathematics
University of Louisville
Louisville, Ky 40292
USA
Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

[^0]: *Research supported by NSERC.

[^1]: ${ }^{1} \mathrm{~A}$ Boolean group is a group of exponent 2.

