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Abstract

We prove that an inherently nonfinitely based algebra cannot gen-
erate an abelian variety. On the other hand, we show by example that
it is possible for an inherently nonfinitely based algebra to generate a
strongly solvable variety.

1 Introduction

Let A be an algebra with finitely many basic operations and let Σ(A) denote
the set of equations true in A. A is said to be finitely based if there is a finite
subset Σ0 ⊆ Σ(A) such that Σ0 and Σ have the same models. Otherwise,
A is said to be nonfinitely based. A variety of finite type is said to be
finitely based or nonfinitely based according to whether or not it is the
class of models of some finite set of equations. By a result of Birkhoff [3], A
is finitely based if and only if the variety it generates, V(A), is finitely based.

A is said to be inherently nonfinitely based if it is finite but is not a
member of any locally finite, finitely based variety. Since V(A) is locally finite
if A is finite, an inherently nonfinitely based algebra is always nonfinitely
based.

The property of being inherently nonfinitely based is more stable than the
property of being merely nonfinitely based. For example, suppose that A and
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strongly solvable.
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B are finite algebras with Σ(B) ⊆ Σ(A). If A is inherently nonfinitely based,
then B is, too. On the other hand, whether B is finitely based is independent
of whether A is finitely based. For another example of the relative stability
of the inherent nonfinite basis property we refer the reader to [4]. There it
is shown that even when A is finitely based, an expansion of A obtained by
adding one new constant to the language of A may be nonfinitely based. But
no such expansion can be inherently nonfinitely based.

An algebra A is said to be abelian if there exists an equivalence relation
on the set A×A which (i) is compatible with the fundamental operations of
A (applied coordinatewise), and (ii) has the set {(a, a) : a ∈ A} as a single
equivalence class. The results of this paper are motivated by Problem 3 of
[5] which asks whether there is a finite abelian algebra which is nonfinitely
based. We do not know the answer to this question. What we prove here
is that if every member of V(A) is abelian, then A cannot be inherently
nonfinitely based. On the other hand, we give an example of an inherently
nonfinitely based algebra, G∗3, such that V(G∗3) is 2-step strongly solvable.

2 Hamiltonian Varieties

An algebra A is said to be Hamiltonian if every nonempty subuniverse
of A is a class of some congruence of A. A variety is Hamiltonian if every
member is. If A×A is Hamiltonian, then clearly A is abelian; hence every
Hamiltonian variety is abelian. Conversely, Kiss and Valeriote [7] have proved
that if a variety is abelian and locally finite, then it is Hamiltonian.

Theorem 1 (Klukovits, [8]) A variety V is Hamiltonian if and only if, for
every term t(x, z̄) in the language of V, there is a ternary term gt such that
V satisfies the equation

gt(t(x, z̄), x, y) = t(y, z̄). 2

The term gt from the previous theorem is called a Klukovits term for
t (at x), and also a Klukovits term for V. Observe that if V is Hamiltonian,
t(x, y, z̄) is a term and gt is a Klukovits term for t at x, then t(x, y, z̄) =
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gt(t(y, y, z̄), y, x) is an equation of V. From this we get that if t depends
on both x and y, then t is V-equivalent to a term constructible from gt and
a term t(y, y, z̄) depending on fewer distinct variables than t depends on.
Thus, any term is V-equivalent to a term composed from a unary term and
Klukovits terms.

Lemma 2 If V is a Hamiltonian variety and |FV(3)| = n < ω, then for
each A ∈ V and each a, b ∈ A the integer n is a bound on the size of the
CgA(a, b)-blocks.

Proof: Quasi-order A by ≤ where x ≤ y if x ∈ SgA(a, b, y). Define an
equivalence relation θ = {(x, y) ∈ A× A|x ≤ y and y ≤ x}. For each y ∈ A
the set {x ∈ A|x ≤ y} has cardinality at most n, so the θ-equivalence classes
have at most n-elements each. We now proceed to show that CgA(a, b) ⊆ θ
which will finish the proof.

Choose (c, d) ∈ CgA(a, b). Since the universe of S = SgA(a, b, c) is a block
of a congruence γ on A and a, b ∈ S, it follows that (c, d) ∈ CgA(a, b) ⊆ γ.
Hence d belongs to the γ-class containing c and that class is just S. Therefore
d ∈ SgA(a, b, c) and d ≤ c. Similarly, c ≤ d and so (c, d) ∈ θ. Since
(c, d) ∈ CgA(a, b) was chosen arbitrarily, CgA(a, b) ⊆ θ. 2

Theorem 3 (Berman, [2]) A Hamiltonian variety whose 3-generated free
algebra is finite is locally finite.

Proof: A Hamiltonian variety is equivalent to a variety whose basic
operations have arity≤ 3 since the clone of a Hamiltonian variety is generated
by its unary terms and its 3-variable Klukovits terms. Therefore, without
loss of generality, we may assume that our variety has finitely many basic
operations.

Assume now that V is a 3-finite, Hamiltonian variety with finitely many
basic operations which is not locally finite. We will show that this assumption
leads to a contradiction. V contains a finitely generated, infinite algebra B.
Any congruence on B of finite index is compact, because it is the kernel of a
homomorphism from a finitely generated algebra onto a finitely presentable
algebra. Hence the set of congruences on B of infinite index is closed under
unions of chains. Now we use Zorn’s Lemma to find a maximal congruence
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θ ∈ Con B of infinite index. Then A = B/θ is a finitely generated, infinite
member of V with the property that A/α is finite whenever α > 0. Choose
distinct a, b ∈ A. Since A/CgA(a, b) is finite, CgA(a, b) has only finitely many
congruence classes. Each class has ≤ |FV(3)| elements. But this is impossible
if A is infinite. The assumption on which the construction of A was based
was the assumption that V is not locally finite and so we have proved the
theorem. 2

Remark: In fact, Berman shows that |FV(n)| ≤ (|FV(3)|)n−2 for n ≥ 3.

Lemma 4 A Hamiltonian variety of finite type with definable principal con-
gruences is contained in a finitely based Hamiltonian variety.

Proof: Let V be a Hamiltonian variety with definable principal congru-
ences. This means there is a finite set of formulas Π = {πi(x, y; u, v)|i ∈ I}
each of the form

∃z̄

(x = p1(r1, z̄)) ∧



n−1∧

j=1

(pj(r
′
j, z̄) = pj+1(rj+1, z̄))


 ∧ (pn(r′n, z̄) = y)




where {rj, r′j} = {u, v} for all j, such that for each A ∈ V we have (a, b) ∈
CgA(c, d) iff πi(a, b; c, d) for some i ∈ I. Define φ to be the formula

∨
i∈I πi.

Let Ψ be a sentence asserting that for all c and d, {(a, b)|φ(a, b; c, d)} is a
congruence containing (c, d). (There is such a sentence since V is of finite
type.) By compactness, there is a finitely based supervariety W ⊇ V where
Ψ holds. W has definable principal congruences and, in fact, φ is a formula
which defines principal congruences in W.

For each i ∈ I and each pj occuring in πi there is a Klukovits term gij for
pj. V satisfies the equation

gij(pi(x, z̄), x, y) = pi(y, z̄).

Let U be the subvariety ofW which is axiomatized by these equations and the
equations ofW. U is finitely based, has φ as a formula which defines principal
congruences and contains V. We proceed to show that U is Hamiltonian.

Suppose that A ∈ U and that B is a nonempty subuniverse of A. Let β =
CgA(B×B). If B is the union of all the CgA(c, d)-blocks for c, d ∈ B, then B
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is a β-block. Therefore, if B is not a β-block, then we can find c, d ∈ B and
(a, b) ∈ CgA(c, d) with a ∈ B and b ∈ A − B. Since φ(a, b; c, d) holds there
must exist an i ∈ I, a pj occurring in πi and a z̄ ∈ Am such that pj(c, z̄) ∈ B
and pj(d, z̄) 6∈ B (or else the same condition with c and d switched). But
pj(d, z̄) = gij(pj(c, z̄), c, d), which is in B since B is a subuniverse containing
pj(c, z̄), c and d. This contradiction shows that B is a congruence block and,
since A and B were arbitrary, that U is Hamiltonian. 2

Theorem 5 Every locally finite, abelian variety with finitely many basic op-
erations is contained in a finitely based, locally finite, abelian variety.

Proof: If V is locally finite and abelian, then it is Hamiltonian by the
principal result of [7]. [6] proves that V has the congruence extension prop-
erty. Therefore, by the results in [1], V has definable principal congruences.
Now we are in a position to apply Lemma 4. We may conclude that V is
contained in a finitely based Hamiltonian variety U . U has a finitely based
subvariety, W, containing V and such that FW(3) is finite. W is finitely
based, Hamiltonian (therefore abelian), and locally finite by Theorem 3. 2

Corollary 6 An abelian variety contains no inherently nonfinitely based mem-
bers. 2

3 An Inherently Nonfinitely Based Strongly

Solvable Algebra

If A is an algebra with congruences α, β satisfying α < β, then β is said to
be strongly abelian over α if for all (n + 1)-ary polynomial operations p

of A and all a
β≡ b and ci

β≡ di
β≡ ei, 1 ≤ i ≤ n,

p(a, c̄)
α≡ p(b, d̄) implies p(a, ē)

α≡ p(b, ē).

If the implication is replaced by p(a, c̄)
α≡ p(a, d̄) implying p(b, c̄)

α≡ p(b, d̄),
then β is said to be abelian over α. It is known that the strongly abelian
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property implies the abelian property but not conversely, and that A is
abelian (as defined in the Introduction) if and only if 1A is abelian over 0A
(for more details, see [5]).

A is said to be m-step strongly solvable if there exist congruences
0A = α0 < α1 < · · · < αm = 1A with αi+1 strongly abelian over αi for all
i < m. By a groupoid we mean an algebra consisting of a set with one
binary operation. In this section we shall construct a finite 2-step strongly
solvable groupoid which is inherently nonfinitely based.

Lemma 7 Any groupoid satisfying (xy)z = (uv)w is 2-step strongly solvable.

Proof: Let A be a groupoid satisfying (xy)z = (uv)w. Let C = {ab :
a, b ∈ A} and µ = C2∪0A. Clearly µ is a congruence of A and 1A is strongly
abelian over µ, because multiplication in A is constant modulo µ.

Next, suppose that s(x̄, ȳ) and t(x̄, ȳ) are (n+m)-ary groupoid terms and
ā ∈ Am. Let f(x̄) and g(x̄) denote the restrictions to Cn of the polynomial
operations sA(x̄, ā) and tA(x̄, ā) respectively, and let h(x̄) = f(x̄) · g(x̄).
Observe that if h is nonconstant (as a function Cn → C), then necessarily g
is also nonconstant, s is a variable yi, and ai ∈ A \ C. Therefore, an n-ary
polynomial operation of A whose restriction to Cn is nonconstant must have
the form a1(a2(· · ·ar−1(arxj) · · ·)) with ai ∈ A \ C.

We now prove that µ is strongly abelian over 0A. Suppose p is an (n+1)-

ary polynomial operation of A, that a
µ≡ b and ci

µ≡ di
µ≡ ei for 1 ≤ i ≤ n,

and that p(a, c̄) = p(b, d̄) while p(a, ē) 6= p(b, ē). Obviously a 6= b and hence

a, b ∈ C (as a
µ≡ b). Since we are allowing p to be a polynomial operation, we

can assume that |{ci, di, ei}| ≥ 2 and hence ci, di, ei ∈ C for each i. Therefore,
the restriction of p to Cn+1 is nonconstant. But then p can depend on only
one variable, contradicting the above assumptions. 2

We next define a nice class of groupoids satisfying (xy)z = (uv)w. Sup-
pose V is a nonempty set, S is a set of partial maps V → V , W ∗ is a set
disjoint from V , and f : W ∗ → S is a surjective map, written x 7→ fx.
Choose ∞ 6∈ V ∪W ∗. Define a groupoid A = 〈A, ·〉 as follows.

A = V ∪W ∗ ∪ {∞}

x · y =

{
fx(y) if x ∈ W ∗ and y ∈ dom(fx)
∞ otherwise.
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Clearly A |= (xy)z = (uv)w. Moreover, the equational theory of A is tractable.
Let us say that a groupoid term is nontrivial if it is a variable or a right-
associated product of variables in which the right-most variable occurs only
once, and is trivial otherwise. If x1, x2, . . . , xn (n ≥ 1) are (not necessarily
distinct) variables, w is the semigroup word x1x2 · · ·xn, and y is a variable
not occurring in w, then we use [w, y] to denote the nontrivial groupoid term
x1(x2(· · · (xny) · · ·)). The proof of the next lemma is straightforward.

Lemma 8 Suppose A is the groupoid defined above from the data V, S,W, f .
Suppose further that some σ ∈ S has a fixed point. Let Partial(V ) be the
semigroup of all partial maps V → V under composition. Then for any
groupoid terms s and t, A |= s = t if and only if one of the following is true:

(1) s and t are both trivial;

(2) s and t are the same variable;

(3) s = [w, y] and t = [w′, y] where w and w′ are nonempty semigroup
words in n variables, y is a variable not occurring in w or w′, and
Partial(V ) |= w(σ̄) = w′(σ̄) for all σ̄ ∈ Sn.

Now we come to our construction, which is a simple variation of a con-
struction due to Shallon [9]. By a graph we mean a pair G = (V,E) where V
is a nonempty set and E is a symmetric binary relation on V . If G = (V,E)
is a graph, let V ∗ = {v∗ : v ∈ V } be a set disjoint from V and in bijective
correspondence with V via v 7→ v∗, and let G∗ be a groupoid with universe

G∗ = V ∪ V ∗ ∪ {∞}

(where ∞ 6∈ V ∪ V ∗), in which multiplication is given by

a∗ · b = a if a, b ∈ V and aEb

x · y = ∞ in all other cases.

We call G∗ a graph ∗-algebra. We say that G and G∗ are looped if E is
reflexive. Observe that every looped graph ∗-algebra is of the kind described
in Lemma 8.
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If w is any nonempty semigroup word built from variables, define

V (w) = the set of variables occurring in w

E(w) = { (x, x′) : x, x′ ∈ V (w), x 6= x′, and xx′ or x′x is a subword of w}
L(w) = the left-most variable in w

R(w) = the right-most variable in w

Data(w) = 〈V (w), E(w), L(w), R(w)〉

Also let G3 = (V,E) be the graph with V = {0, 1, 2} and E = V 2 \
{(0, 2), (2, 0)}. The proof of the next lemma is straightforward, and is similar
to the proofs of Theorems 1(i) and 2′ in [9].

Lemma 9 Suppose G is a looped graph.

(1) If G∗ |= s = t, then either s, t are both trivial or s, t are the same
variable or s = [w, y] and t = [w′, y] for some w,w′, y.

(2) Suppose w,w′ are words and y is a variable occurring in neither w nor
w′. If Data(w) = Data(w′) then G∗ |= [w, y] = [w′, y].

(3) If G = G3 then the converse to item (2) is true.

(4) If G is connected, has more than one vertex, and no two vertices of
G have the same neighborhood, then G∗ is subdirectly irreducible with
monolith µ defined in Lemma 7.

The following corollary may be of independent interest (cf. [5], Problem
5).

Corollary 10 V(G∗3) is 2-step strongly solvable, contains all looped graph ∗-
algebras, and is residually large. There is no cardinal upper bound to the sizes
of the blocks of the monoliths of subdirectly irreducible members of V(G∗3).

Finally, following [9] we prove
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Theorem 11 G∗3 is inherently nonfinitely based.

Proof: We shall display, for each n > 0, a nonlocally finite groupoid Bn

which satisfies all of the n-variable equations true in G∗3. (This will suffice,
since if W is a finitely based variety which contains G∗3, then W will also
contain Bn for sufficiently large n, so W will not be locally finite.) Let

W = {0, 1, 2, . . . , n}
W ∗ = {0∗, 1∗, . . . , n∗}
E = {(a, b) ∈ W 2 : a− b ≡ −1, 0 or +1 (mod n+ 1)}
G = (W,E).

Thus G is a looped (n+1)-cycle. Define Bn to be the groupoid whose universe
is Z∪W ∗∪{∞} and in which multiplication is given by: if a ∈ W and b ∈ Z,
then

a∗ · b =





b− 1 if a ≡ b− 1 (mod n + 1)
b if a ≡ b (mod n + 1)
b + 1 if a ≡ b + 1 (mod n + 1)

while x · y =∞ in all other cases.
Clearly Bn is infinite but is generated by the finite subset W ∗ ∪ {0}, and

hence is not locally finite. Note that Bn is a groupoid of the kind described
in Lemma 8. Suppose that s(x1, . . . , xn) and t(x1, . . . , xn) are two groupoid
terms in the specified variables such that G∗3 |= s = t. We wish to show
that Bn |= s = t. By Lemmas 8 and 9, it suffices to consider the case
when s = [w, y] and t = [w′, y] where y = xn and w,w′ are nonempty words
satisfying Data(w) = Data(w′) and V (w) = {x1, . . . , xn−1}. Let L(w) = xl
and R(w) = xr. Let α1, . . . , αn ∈ Bn be given. If αi 6∈ W ∗ for some
i = 1, . . . , n − 1, or if αn 6∈ Z, then sBn(ᾱ) = ∞ = tBn(ᾱ). Suppose
αi = a∗i ∈ W ∗ for 1 ≤ i < n and αn = c ∈ Z. Choose an ∈ W so that c ≡ an
(mod n + 1). If for some (xi, xj) ∈ E(w) it happens that (ai, aj) 6∈ E, or if
(ar, an) 6∈ E, then again sBn(ᾱ) =∞ = tBn(ᾱ).

Finally, suppose that (ai, aj) ∈ E whenever (xi, xj) ∈ E(w), and that
(ar, an) ∈ E. We argue as in [9]. Since |W | = n+ 1, there exists b ∈ W such
that b 6∈ {a1, . . . , an}; say 0 6∈ {a1, . . . , an}. The word wxn (read right-to-left)
together with the assignment xi 7→ ai describe a path in G from an to al.
This path never passes through the vertex 0, that is, it is restricted to the
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looped n-chain which is obtained from G be deleting 0. It follows that

sBn(a∗1, . . . , a
∗
n−1, c) = al + (c− an).

Since Data(w) = Data(w′) the same argument shows that

tBn(a∗1, . . . , a
∗
n−1, c) = al + (c− an).

Thus Bn |= s = t as desired. 2
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