SHORT NOTE The Class of Prime Semilattices is Not Finitely Axiomatizable

Keith A. Kearnes

Communicated by Boris M. Schein

In [2], R. Balbes defined a prime semilattice to be a meet semilattice with the property that whenever $x \not\leq y$ there is a prime filter containing x and not y. Balbes showed that a semilattice is prime if and only if the meet operation distributes over all existing finite joins. B. M. Schein stated in [4] that the class of prime semilattices is not finitely axiomatizable, but gave no proof. In [3], a problem (due to a referee of that paper) was posed which suggested a possible finite axiomatization of the class of prime semilattices. This suggestion was followed up in [5]; here Schein's statement was labeled a conjecture and an attempt was made to disprove it. The authors of [5] showed that the class of *finite* prime semilattices is finitely axiomatizable relative to the class of *finite* semilattices, but they add that "we are unable to prove [that the class of all prime semilattices is finitely axiomatizable], although we suspect that this may be so, in contrast to Schein's conjecture." Later, in [1], it was shown that the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable relative to the class of *well founded* prime semilattices is finitely axiomatizable.

Let D_n denote a first-order sentence which asserts that meet distributes over all existing *n*-ary joins. That is, if $y_1 \vee \cdots \vee y_n$ exists, then for each x the join $(x \wedge y_1) \vee \cdots \vee (x \wedge y_n)$ exists and equals $x \wedge (y_1 \vee \cdots \vee y_n)$. A meet semilattice is prime if and only if it satisfies D_n for all finite $n \geq 1$. The class of prime semilattices is finitely axiomatizable if and only if it is axiomatizable by the laws for meet semilattices together with finitely many of the D_n 's. Since the D_n 's get stronger as n increases, it suffices for us to prove that $D_n \not\Rightarrow D_{n+1}$ for any n.

Theorem 1. There is a meet semilattice which satisfies D_n but not D_{n+1} .

Proof. Let [0,1] denote the unit interval of the real numbers considered as a meet semilattice. We define two subsemilattices of $[0,1]^{n+1}$. The "top" part will be T, the subsemilattice $(0,1]^{n+1}$. The "bottom" will be the subsemilattice

$$B = \{ (x_1, ..., x_{n+1}) \in [0, 1]^{n+1} | \text{ at most one } x_i \text{ is nonzero} \}.$$

Our semilattice will be $E = T \cup B \cup \{s\}$ where s is an additional element. The order is as follows: $T \cup B$ has the order it inherits as a subsemilattice of $[0,1]^{n+1}$. We define s to be below every element of T and incomparable with every element of B except that $(0, \ldots, 0) < s$. This order is a meet semilattice order. We let z_i denote the element (of B) which has a 1 in the *i*-th position and zeros elsewhere.

The following claims can be easily checked and they establish what is needed.

Kearnes

- (i) $T \cup B$ is a subsemilattice of E and of $[0,1]^{n+1}$, and any join in E of elements from $T \cup B$ agrees with the join in $[0,1]^{n+1}$. (Hence $T \cup B$ satisfies all D_k .)
- (ii) Any "nontrivial" join in E of elements from $B \cup \{s\}$ requires at least n + 1 joinands from B. (Here a join of elements is "trivial" if the elements form a chain and "nontrivial" otherwise.)
- (iii) Any "nontrivial" join in E is unchanged when s is deleted as a joinand.
- (iv) $\bigvee_{i=1}^{n+1} z_i$ exists, but $s \land (\bigvee z_i) = s \neq (0, \dots, 0) = \bigvee (s \land z_i).$

Item (iv) shows that E fails D_{n+1} . Assume that E fails D_n . Then there is a join $y_1 \vee \cdots \vee y_n$ and an element x such that $\bigvee(x \wedge y_i)$ fails to equal $x \wedge (\bigvee y_i)$. Replacing n by some m with $1 < m \leq n$ if necessary we may assume that $\bigvee y_i$ is a "nontrivial" irredundant join. In particular, by item (iii), we may assume that $s \notin \{y_1, \ldots, y_m\}$. Since $\{x, y_1, \ldots, y_m\}$ produces a failure of D_n , $E - \{s\} = T \cup B$ satisfies all D_k , and $s \notin \{y_1, \ldots, y_m\}$, we are forced to have x = s. We cannot have $\{y_1, \ldots, y_m\} \subseteq B \cup \{s\}$ since $\bigvee y_i$ must be "nontrivial" in order to produce a failure of the distributive law, but according to item (ii) the number of joinands is too few to be a "nontrivial" join when all joinands come from $B \cup \{s\}$. Therefore some y_i , say y_1 , is in T. Since s is below all elements in T we have $s < y_1 \leq \bigvee y_i$, so $s \wedge (y_1 \vee \cdots \vee y_m) = s$. Furthermore, $s \wedge y_i \leq s$ and $s \wedge y_1 = s$. This proves that $\bigvee(s \wedge y_i)$ (= s) exists and equals $s \wedge (\bigvee y_i)$. Our purported failure of D_n is not a failure after all. Thus E satisfies D_n and fails D_{n+1} .

References

- C. S. Alves, Distributivity and wellfounded semilattices, Portugaliae Mathematica 52 (1995), 25-27.
- [2] R. Balbes, A representation theorem for prime and implicative semilattices, Trans. Amer. Math. Soc. **136** (1969), 261–267.
- [3] Y. S. Pawar and N. K. Thakare, On prime semilattices, Can. Math. Bull. 23 (1980), 291–298.
- [4] B. M. Schein, On the definition of distributive semilattices, Algebra Universalis 2 (1972), 1–2.
- [5] K. P. Shum, M. W. Chan, C. K. Lai and K. Y. So, *Characterizations for prime semilattices*, Can. J. Math **37** (1985), 1059–1073.

Department of Mathematical Sciences University of Arkansas Fayetteville, AR 72701

Received February 5, 1996 in final form