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Abstract. We prove that if A is a nonabelian strictly simple term minimal al-
gebra, then the variety V(A) is either residually large or has A as its unique sub-
directly irreducible member. We then show that it is possible to algorithmically
decide the residual character of V(A) if A has finitely many fundamental opera-
tions.

1. Introduction

An algebra is called strictly simple if it is finite, simple, and has no nontrivial
proper subalgebras. Strictly simple algebras are important because of the role they
play in understanding the structure of locally finite minimal varieties. Every locally
finite minimal variety contains a uniquely determined strictly simple algebra, and the
strictly simple algebras that generate minimal varieties are characterized in [6]. Thus
minimal locally finite varieties are parametrized by a recognizable family of strictly
simple algebras.

Our purpose in this paper is to investigate the residual character of locally finite
minimal varieties. If A is strictly simple and V(A) is minimal, then it is known that
V(A) is residually small whenever the tame congruence theoretic type of A is 1 or
2 . In fact, it is known that in these two cases A is the only subdirectly irreducible
algebra in V(A). (This is proved in [2], [10], and [11].) If the tame congruence
theoretic type of A is 3 or 4 , then it is shown in [3] that V(A) is residually small
if and only if it is congruence distributive. It is known that in the type 3 and 4
cases either A is the only subdirectly irreducible in V(A) or there is a proper class
of subdirectly irreducibles.

The remaining case where the type of A is 5 is much harder, and is still unresolved.
Examples show that V(A) can have one subdirectly irreducible, more than one but
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finitely many, or a proper class of them. We know of no examples where V(A)
has an infinite set of subdirectly irreducible algebras, but the possibility that this
can happen has not been eliminated. The fact that wild behavior occurs in type 5
is reminiscent of R. McKenzie’s result in [8] that it is algorithmically undecidable
whether a finite algebra of type 5 generates a residually small variety. However,
McKenzie’s construction involves algebras that do not generate minimal varieties.
In fact, his method of construction always produces a variety with infinitely many
subvarieties when his Turing machine fails to halt.

Is the residual character of a locally finite minimal variety decidable? This paper is
a partial affirmative answer to this question. As we have mentioned, only the type 5
case remains unresolved. In this paper we settle the term minimal subcase for type 5
algebras. To explain how this result fits into the general question, let A be a strictly
simple type 5 algebra. Let e(x) be a nonconstant unary term operation of minimal
range for which A |= e2(x) = e(x). There is a natural way to restrict the structure
of A to e(A) which results in a ‘local approximation’ e(A) of A. The algebra e(A) is
strictly simple and term minimal, and all strictly simple term minimal algebras arise
in this manner. The construction A 7→ e(A) determines a functor V(A) → V(e(A))
which preserves residual smallness. Deciding whether V(A) is residually small can
be reduced to:

(i) Deciding whether V(e(A)) is residually small. (If not, then we are done: V(A)
cannot be residually small.)

(ii) Deciding whether V(A) is residually small given the fact that V(e(A)) is.

We explain how to do (i) in this paper. We prove that V(e(A)) either has one
subdirectly irreducible or a proper class of subdirectly irreducibles, and we give an
algorithm for determining which is the case.

2. Term Minimal Strictly Simple Algebras of Type 5

Let G be a finite group with at least two elements. We extend the multiplication
of G to the set A = G ∪ {0} so that 0 acts as a zero element, and we define left
multiplication with an element g ∈ G as a mapping g· : A → A, x 7→ gx. Right
multiplication is defined analogously. We denote by LG the group of left multiplica-
tions by elements of G. We use RG for the right multiplications. Clearly, LG and RG

are permutation groups on A which act regularly on the set A − {0} = G. We also
define a binary operation ∧ on A by setting a ∧ a = a and a ∧ b = 0 for all a, b ∈ A
with a 6= b. By this definition (A;∧) is a height 1 semilattice with least element 0.
Moreover, it is straightforward to check that each right multiplication in RG is an
automorphism of the algebra (A;∧, LG, 0).

By a G0-algebra we mean an algebra A with base set A such that

(1) ∧ and the unary operations in LG ∪ {0} are term operations of A, moreover,
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(2) the only unary term operations of A are the members of LG ∪ {0}.
Using the fact that the transformations of A that commute with the operations in
LG ∪ {0} are those in RG ∪ {0}, and the fact that A is one-generated, one can show
that the endomorphisms of A are exactly the members of RG ∪ {0}. From this it
follows that in the definition of a G0-algebra we can replace (2) with

(2)′ RG ⊆ Aut A.

In particular, for every G0-algebra A we have Aut A = RG.
It is easy to check that every G0-algebra A is strictly simple of type 3 , 4 or 5 .

Furthermore, A is term minimal, which means that every unary term operation
e satisfying e2 = e is either constant or the identity. As the next theorem shows,
the only rich class of strictly simple term minimal algebras of type 5 is the class of
G0-algebras.

Theorem 2.1. [9] The strictly simple term minimal algebras of type 5 are

(1) the algebras term equivalent to (2;∧), (2;∧, 0), (2;∧, 1), or (2;∧, 0, 1); and
(2) the G0-algebras of type 5 .

The preceding theorem and the facts mentioned in the introduction show that the
collection of G0-algebras of type 5 is the only class of strictly simple term minimal
algebras for which the residual character of the generated (minimal) variety is un-
known. Therefore this paper will focus on these algebras. We will need a criterion
describing when a G0-algebra is of type 5 . Such conditions were given in [9]; in
Proposition 2.3 below we will recall these conditions, and will add a new one, which
will be more useful for the purposes of this paper.

First, however, we need to introduce some terminology and notation. It follows
from the definition of a G0-algebra that an operation f is a term operation of some
G0-algebra if and only if

(2.1) RG ⊆ Aut (A; f).

Such an operation f will be called a G0-operation.
The natural order of the semilattice (A;∧) will be denoted by ≤, and the same

symbol will be used to denote the coordinatewise order on An for each n > 0. We
will say that a G0-operation f is monotone if it is monotone with respect to the
semilattice order ≤. If f, g are G0-operations of the same arity, then f ≤ g will mean
that f(a) ≤ g(a) for every tuple a in A.

The unit element of the group G will be denoted by 1. As a consequence of
property (2.1), every G0-operation f is uniquely determined by the set of tuples
where it assumes the value 1. This is because f(a) = g for some g ∈ G if and only
if f(ag−1) = 1, and f(a) = 0 if and only if f(ag−1) 6= 1 for all g ∈ G. Thus, for any
G0-operations f, g of the same arity we have
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• f = g if and only if f and g assume the value 1 for exactly the same tuples
from A, and
• f ≤ g if and only if g assumes the value 1 whenever f does.

Now let us consider the set of all tuples a in A such that f(a) = 1, and let Min(f)
denote the collection of all minimal elements of this set with respect to the order ≤.
The facts in the preceding paragraph immediately imply the following.

Lemma 2.2. For arbitrary monotone G0-operations f, g we have

(1) f(a) = 1 if and only if a ≥ c for some c ∈ Min(f),
(2) f = g if and only if Min(f) = Min(g), and
(3) f ≤ g if and only if g(c) = 1 for all c ∈ Min(f).

Let A be an arbitrary G0-algebra. By definition, ∧ and the unary operations in
LG ∪ {0} are term operations of A. Therefore for every integer k > 0, the meets of
the form

m(x) = c−1
i1
xi1 ∧ · · · ∧ c−1

is xis with ci1, . . . , cis ∈ G, 1 ≤ i1 < . . . < is ≤ k

are k-ary term operations of A. We introduce the following short notation for this
operation:

m(x) =
∧
c−1x where c = (c1, . . . , ck), ci =

{
cij if i = ij,
0 otherwise.

Observe that for a k-tuple a from Ak we have m(a) =
∧
c−1a = 1 if and only if

ai = ci whenever ci 6= 0, that is, if and only if a ≥ c. Therefore the k-tuple c is the
unique element of Min(m).

For arbitrary k-tuples c and d from Ak we will call the k-ary meets
∧
c−1x and∧

d−1x disjoint, if for every k-tuple a from Ak, at most one of the elements
∧
c−1a

and
∧
d−1a is nonzero.

Now we are in a position to state the characterizations of type 5 G0-algebras,
which we promised earlier.

Proposition 2.3. For any G0-algebra A the following conditions are equivalent:

(i) A is of type 5 ;
(ii) no binary polynomial operation of A restricts as join to the set {0, 1};

(iii) the set

M = {(0, 0, g, g), (0, g, 0, g), (g, g, g, g) : g ∈ A}
is a subuniverse of A4;

(iv) every fundamental operation (hence every term operation) f of A is mono-
tone, and has the property that the meets

∧
c−1x with c ∈ Min(f) are pairwise

disjoint.
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Proof. The equivalence of (i)–(iii) was proved in [9]. Since the conditions in (i)–(iii)
are invariant under term equivalence, it suffices to prove the equivalence of (iii) with
the version of (iv) which refers to fundamental operations only.

Suppose first that (iii) holds. By projecting M onto its first two coordinates we get
the relation ≤, therefore every fundamental operation of A is monotone. Assume, in
order to get a contradiction, that A has a fundamental operation f with two distinct
tuples c, d ∈ Min(f) such that the corresponding meets are not disjoint; say

∧
c−1a = g 6= 0 and

∧
d−1a = h 6= 0

for some a ∈ Ak. Using the automorphisms we see that these equalities are equivalent
to ag−1 ≥ c and ah−1 ≥ d. But then f(ag−1) = 1 = f(ah−1), whence it follows
that g = f(a) = h. Thus for the tuple b = ag−1 we have b ≥ c, d, implying that c
and d agree with b — and hence with each other, too — in every coordinate where
both are nonzero. This shows that the list x of variables of f can be partitioned into
three blocks as (x1, x2, x3) in such a way that for the corresponding partitions of c,
d, and b the following conditions hold: c1 = 0, c2 has no zero coordinate, d2 = 0,
d1 has no zero coordinate, and c3 = b3 = d3. Since c and d are incomparable, none
of the first two blocks of this partition are empty. The minimality of c and d ensures
also that f(0, 0, b3) 6= 1. So by monotonicity we get the first equality below:

(2.2)

f(0 , 0 , b3) = 0
f(0 , c2, b3) = 1
f(d1, 0 , b3) = 1
f(d1, c2, b3) = 1

The second and third equalities are true because the tuples c = (0, c2, b3) and
d = (d1, 0, b3) belong to Min(f), and the last equality follows from the preceding
two by monotonicity. Taken together, these four equalities say that computing the
value of f in A4 for some quadruples in M we get a quadruple which fails to belong
to M . Namely, the arguments of f are quadruples of the form (0, 0, d, d), (0, c, 0, c),
or (b, b, b, b) with b, c, d ∈ A in the first, second, or third block, respectively, and the
resulting quadruple is (0, 1, 1, 1). This proves the required contradiction, and hence
shows that (iii) ⇒ (iv).

Conversely, assume that (iv) holds for A, and consider the subuniverse M ′ of
A4 generated by M . Notice that for every quadruple (u1, u2, u3, u4) ∈ M we have
u1 ≤ ul ≤ u4 for l = 2, 3, so the same will hold for all quadruples in M ′. Thus the
elements of the difference M ′ −M must be of the form (0, g, g, g) for some nonzero
g ∈ A. Our goal is to verify that M ′ = M . We will prove this by assuming that
M ′ −M 6= ∅ and deriving a contradiction.

If M ′ − M 6= ∅ then A has a fundamental operation f such that substituting
appropriate quadruples from M in the arguments of f the resulting quadruple is
of the form (0, g, g, g) for some nonzero g ∈ A. Since M is invariant under the
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coordinatewise action of RG, we may assume that the arguments of f are chosen so
that the result is the quadruple (0, 1, 1, 1). Now let us partition the list x of variables
of f into three blocks as (x1, x2, x3) so that x1 consists of those variables where the
argument of f is of the form (0, 0, d, d) for some nonzero d ∈ A, x 2 consists of those
variables where the argument of f is of the form (0, c, 0, c) for some nonzero c ∈ A,
and x3 consists of the remaining variables where the argument of f is of the form
(b, b, b, b) for some b ∈ A. Writing out coordinatewise what it means that the result
of f for these arguments is (0, 1, 1, 1) we get four equalities of the form (2.2). The
first three equalities imply that there exist elements c, d ∈ Min(f) such that

(0, 0, b3) < c ≤ (0, c2, b3) and (0, 0, b3) < d ≤ (d1, 0, b3).

Here c and d must be distinct, because

c ∧ d ≤ (0, c2, b3) ∧ (d1, 0, b3) = (0, 0, b3) < c, d.

Now the fourth equality in (2.2) shows that for a = (d1, c2, b3) we have a ≥ c and
a ≥ d. Thus

∧
c−1a = 1 =

∧
d−1a , which contradicts the assumption that the

meets
∧
c−1x and

∧
d−1x are disjoint. This completes the proof of the implication

(iv) ⇒ (iii). �

If
∧
c−1
i x (1 ≤ i ≤ m) is a family of pairwise disjoint k-ary meets, then for any

a ∈ Ak at most one of the meets
∧
c−1
i a is distinct from 0. Hence we can define a

k-ary operation
m∨

i=1

(
∧
c−1
i x) on A as follows: for any a ∈ Ak let

m∨

i=1

(
∧
c−1
i a) = max{∧c−1

i a : 1 ≤ i ≤ m}.

Lemma 2.4. If
∧
c−1
i x (1 ≤ i ≤ m) is a family of pairwise disjoint k-ary meets,

then the operation

m∨

i=1

(
∧
c−1
i x) is a monotone G0-operation, and we have

Min

(
m∨

i=1

(
∧
c−1
i x)

)
= {c i : 1 ≤ i ≤ m}.

Proof. Let h(x) =

m∨

i=1

(
∧
c−1
i x). It is straightforward to check that h is a G0-

operation. Furthermore, we have

h(a) = 1 ⇐⇒ a ≥ c i for some i.

Therefore h is monotone. The k-tuples c i must be pairwise incomparable, because
otherwise the joinands in h would not be disjoint. Thus the property of h displayed
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above implies also that Min(h) consists exactly of the tuples c i (1 ≤ i ≤ m), as
stated. �

Proposition 2.3, combined with this lemma yields the following corollary.

Corollary 2.5. Let A be a G0-algebra of type 5 . Every term operation f of A can
be represented as a join of pairwise disjoint meets, and this representation is unique;
explicitly, this representation is

(2.3) f(x) =
∨

c∈Min(f)

(
∧
c−1x).

For every term operation f of a G0-algebra of type 5 the join representation of f
described in Corollary 2.5 will be called the canonical form of f .

Note that a further consequence of Proposition 2.3 and Lemma 2.4 is that every
G0-algebra whose fundamental operations can be represented as joins of pairwise
disjoint meets is of type 5 .

3. Two Extremes

Our purpose in this section is to prove the following theorem.

Theorem 3.1. For every G0-algebra A of type 5 either V(A) is residually large or
A is the only subdirectly irreducible algebra in V(A).

The argument will begin by analyzing the structure of a typical finite subdirectly
irreducible algebra S ∈ V(A). In particular, we will show that S has a representation
where a certain ‘condition (R)’ holds. (See Lemma 3.5.) Once we have acquired
enough data about S we will be able to show that if V(A) is residually small then
‘condition (R)’ can be strengthened to ‘condition (S)’. (See Lemma 3.7.) From
condition (S) we will be able to deduce that S ∼= A.

We begin now with the first step of the project, which is to collect data about a
typical subdirectly irreducible S ∈ V(A).

Lemma 3.2. Let A be a G0-algebra of type 5 and let S be a finite subdirectly ir-
reducible algebra in V(A). Represent S as B/δ for some subalgebra B of An and
some congruence δ of B. Let θ be the unique congruence of B which covers δ, and
for 1 ≤ i ≤ n let ηi denote the i-th projection kernel on B. Assume that none of the
congruences ηi = η1 ∩ · · · ∩ ηi−1 ∩ ηi+1 ∩ · · · ∩ ηn (1 ≤ i ≤ n) is contained in δ. If u
is an element of B such that (u, v) ∈ θ − δ and v < u hold for some v ∈ B, and u is
minimal with respect to this property, then

(a) u has no zero coordinate, and
(b) B contains elements c1, . . . , cn such that ci < u and (ci, u) ∈ ηi for each

1 ≤ i ≤ n.
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Proof. The proof follows an argument of R. McKenzie in [7] with a slight modification.
Throughout the proof v will be a fixed element in B with the properties that (u, v) ∈
θ − δ and v < u.

Claim 3.3. For any element b ∈ B with b < u we have (b, u) /∈ δ.

Indeed, otherwise b
δ≡ u implies that

u
δ≡ b = b ∧ u θ≡ b ∧ v δ≡ u ∧ v = v.

However, since b < u, the minimality property of u ensures that the pair (b, b ∧ v),

which was shown above to belong to θ, cannot lie in θ− δ. Thus b
δ≡ b∧ v. Hence by

the displayed relations we conclude that u
δ≡ v, which contradicts the choice of the

pair (u, v). This finishes the proof of the claim.

Claim 3.4. For any distinct elements b, b′ ∈ B with (b, b′) /∈ δ there exist a polynomial
p ∈ Pol 1B and an element c ∈ B such that

{p(b), p(b′)} = {u, c} and c < u.

We have θ ⊆ δ ∨ CgB(b, b′) and (u, v) ∈ θ, therefore (u, v) ∈ δ ∨ CgB(b, b′). Hence
there exists a sequence u = b0, b1, . . . , bs−1, bs = v in B such that any two consecutive
elements are either δ-related or are of the form p(b), p(b′) or p(b′), p(b) for some unary
polynomial operation p of B. Taking bi ∧ u instead of bi throughout the sequence we
may assume that bi ≤ u for all i. We may also assume that b1 6= u. Then b1 < u, so
by Claim 3.3 b1 is not δ-related to u. Hence we must have {p(b), p(b′)} = {u, b1} for
some p ∈ Pol 1B. The proof of the claim is complete.

Now we are in a position to prove the claims (a)–(b). Let 1 ≤ i ≤ n. By assumption
B contains elements b, b′ such that (b, b′) ∈ ηi − δ. Now we apply Claim 3.4. The
element c = ci that we get has the properties ci < u and (ci, u) ∈ ηi, because
(b, b′) ∈ ηi implies (p(b), p(b′)) ∈ ηi. Thus ci and u differ in their ith coordinates
only. As ci < u, we conclude that the ith coordinate of u is nonzero, while the
ith coordinate of ci is zero. This implies that all coordinates of u are distinct from
zero. �

We investigate the relationship between a G0-algebra A and a typical subdirectly
irreducible S ∈ V(A) as mediated by an algebra B ≤ An in the manner described
in the previous lemma. We will use the following conventions in our investigation.
For a ∈ A the constant tuple (a, . . . , a) ∈ An will be denoted by â. An element of
An will be called diagonal if it is of the form â for some a ∈ A; otherwise it will
be called nondiagonal. For each i (1 ≤ i ≤ n), oi will stand for the n-tuple with
all coordinates 1 except the ith one which is 0. A subalgebra B of An will be called
diagonal if â ∈ B for all a ∈ A, and rich if {0, a}n ⊆ B for all a ∈ A. Clearly, every
rich subalgebra of An is diagonal. Because of the unary term operations in LG, it
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follows that B is a diagonal subalgebra of An if and only if 1̂ ∈ B, and B is rich if
and only if {0, 1}n ⊆ B. Since any tuple in {0, 1}n ⊆ B which is distinct from 1̂ is a

meet of some oi-s, therefore B is rich if and only if 1̂, o1, o2, . . . , on ∈ B. If p is any
polynomial operation of A and B is a diagonal subalgebra of An, then p̂ will stand
for the polynomial operation of B which is p acting coordinatewise. Throughout the
paper we will use the symbol e to denote the polynomial operation e(x) = x ∧ 1 of
A. Hence, according to the convention just described, ê is the polynomial operation
ê(x) = x ∧ 1̂ in each diagonal subalgebra B of An.

Lemma 3.5. Let A be a G0-algebra of type 5 and let S ∈ V(A) be a finite subdirectly
irreducible algebra. There exists a subalgebra B of An for some n > 0, and a meet
irreducible congruence δ ∈ Con B with unique cover θ such that

(1) B is rich;

(2) δ = {(b, b′) ∈ B2 : êp(b) = 1̂ ⇐⇒ êp(b′) = 1̂ for all p ∈ Pol 1B}.
(3) S ∼= B/δ;

(4) (o1, 1̂) ∈ θ − δ; and
(5) the following condition holds:

(R) êp(1̂) = 1̂ & êp(o1) = o1 =⇒ êp(0̂) = 0̂ for all p ∈ Pol 1B.

Conversely, let B be any rich subalgebra of An for which (R) holds. If δ is defined
as in (2), then B/δ is a finite subdirectly irreducible algebra in V(A) with monolith

θ/δ where θ is defined to be CgB(o1, 1̂) ∨ δ.

Proof. Let S be a finite subdirectly irreducible algebra in V(A). Some finite power
An (n > 0) of A has a subalgebra B which has a meet irreducible congruence δ such
that (3) holds. Were one of the congruences ηi = η1 ∩ · · · ∩ ηi−1 ∩ ηi+1 ∩ · · · ∩ ηn
(1 ≤ i ≤ n) contained in δ, we could reduce the exponent n by projecting onto n− 1
factors. Therefore we will suppose without loss of generality that n, B and δ are
selected so that ηi 6⊆ δ for all i (1 ≤ i ≤ n).

Let θ denote the unique cover of δ. Consider all pairs (u, v) ∈ θ−δ such that u > v,
and fix such a pair so that u is minimal. By Lemma 3.2 u has no zero coordinates,
and B contains elements c1, . . . , cn such that ci and u differ in their ith coordinates
only, and since ci < u, the ith coordinate of ci is zero.

Let u = (u1, . . . , un). As Aut A = RG, the following mapping is an automorphism
of An:

An → An, (a1, . . . , an) 7→ (a1u
−1
1 , . . . , anu

−1
n ).

Replacing B, δ, θ, and u, v by their images under this automorphism, but retaining
the same notation, we get that u = 1̂ and ci is the n-tuple oi with all coordinates 1
except the ith one which is 0. Since any n-tuple in {0, 1}n which is distinct from 1̂
is a meet of oi-s, it follows that {0, 1}n ⊆ B. Hence we have established that B is a
rich subalgebra of An, so (1) holds. Clearly (3) holds by construction.



10 KEITH A. KEARNES AND ÁGNES SZENDREI

We now prove (4). We have (1̂, v) = (u, v) ∈ θ − δ and v < 1̂, therefore v has
at least one zero coordinate. Permuting the coordinates of B if necessary we may
assume that the first coordinate of v is zero. Then for o1 ∈ B we have

o1 = o1 ∧ 1̂
θ≡ o1 ∧ v = v and o1 = o1 ∧ 1̂ ≥ o1 ∧ v = v.

It is impossible that (o1, v) ∈ θ−δ because that together with o1 < 1̂ would contradict

the minimality property of the element u = 1̂. Thus (o1, v) ∈ δ, and hence (o1, 1̂) ∈
θ − δ, as claimed in (4).

To show (2) notice first that 1̂/δ = {1̂}. In fact, if b
δ≡ 1̂ for some b ∈ B then

b ∧ 1̂
δ≡ 1̂ and b ∧ 1̂ ≤ 1̂. Applying Claim 3.3 for u = 1̂ we get that b ∧ 1̂ = 1̂, that is,

b = 1̂.
Now let b, b′ be arbitrary elements from B. Since {1̂} is a singleton δ-class, the

condition

(3.1) êp(b) = 1̂ ⇐⇒ êp(b′) = 1̂ for all p ∈ Pol 1B

obviously holds whenever b
δ≡ b′. Suppose that (b, b′) /∈ δ. Then by Claim 3.4

of Lemma 3.2 there exists a polynomial p ∈ Pol 1B such that one of the elements
p(b), p(b′) is 1̂ and the other one is smaller than 1̂. Clearly, in this case p(b) = êp(b)
and p(b′) = êp(b′). So this shows that condition (3.1) fails.

To prove (5), let p ∈ Pol 1B be such that êp(1̂) = 1̂ and êp(o1) = o1. For every i

(2 ≤ i ≤ n) we have oi > o1 ∧ oi and oi = 1̂∧ oi
θ≡ o1 ∧ oi, so the minimality property

of 1̂ implies that oi
δ≡ o1 ∧ oi. Thus

êp(oi)
δ≡ êp(o1 ∧ oi) ≤ êp(o1) = o1.

We must have êp(oi) 6= 1̂, since 1̂/δ = {1̂} implies that 1̂ is not δ-related to any

element ≤ o1. But êp(oi) (≤ 1̂) differs from êp(1̂) = 1̂ in its ith coordinate only,

therefore êp(oi) = oi. By assumption this equality holds for i = 1, too. Since êp(0̂)
has the same ith coordinate as êp(oi), namely 0, for every i (1 ≤ i ≤ n), we conclude

that êp(0̂) = 0̂, as required.
Finally, we prove that if B is a rich subalgebra of An, (R) holds, and δ is defined

as in (2), then B/δ is a finite subdirectly irreducible algebra in V(A).

Claim 3.6. If w ∈ B and w < 1̂, then w
δ≡ o1 ∧ w.

Suppose that p is an arbitrary unary polynomial operation of B such that êp(w) =

1̂. Since w < 1̂, w has a 0 coordinate. In that coordinate êp(w) and êp(0̂) have

the same value. Thus êp(0̂) 6= 0̂. We have êp(1̂) ≥ êp(w) = 1̂, so êp(1̂) = 1̂.

Hence, using the assumption (R), we conclude that êp(o1) 6= o1. But 1̂ and o1

differ in their first coordinates only and êp(o1) ≤ 1̂, so we must have êp(o1) = 1̂.
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We claim that êp(o1 ∧ w) = 1̂. Indeed, in the first coordinate we get 1 because in
that coordinate o1 ∧ w agrees with o1, while in the remaining coordinates we get 1
because in those coordinates o1 ∧ w agrees with w. This proves the implication that
êp(w) = 1̂ ⇒ êp(o1 ∧ w) = 1̂. The reverse implication is obvious since o1 ∧ w ≤ w

and the polynomial operations of B are monotone. Thus w
δ≡ o1 ∧ w, finishing the

proof of Claim 3.6.
Now we prove that B/δ is subdirectly irreducible with monolith θ/δ where θ =

CgB(o1, 1̂) ∨ δ. By the definition of δ we have (o1, 1̂) /∈ δ, since ê(1̂) = 1̂ but ê(o1) =

o1 6= 1̂. Therefore it suffices to verify that (o1, 1̂) ∈ δ ∨ CgB(b, b′) for any pair
(b, b′) ∈ B2 − δ. Choose any (b, b′) ∈ B2 − δ. By the definition of δ there exists a

unary polynomial operation p of B such that êp(b) = 1̂ and êp(b′) 6= 1̂, or the same
with the roles of b, b′ switched. Assume the former possibility is the case, and let
w = êp(b′). Clearly, (1̂, w) ∈ CgB(b, b′) and w 6= 1̂. As 1̂ is an upper bound for the

elements in the range of ê, we must have w < 1̂. By Claim 3.6 o1 ∧w
δ≡ w, therefore

o1 = o1 ∧ 1̂
CgB(b,b′)≡ o1 ∧ w

δ≡ w
CgB(b,b′)≡ 1̂,

concluding the proof. �
Lemma 3.7. Let A be a G0-algebra of type 5 and let B be a rich subalgebra of An

for which (R) holds. If V(A) is residually small, then B satisfies

(S) êp(b) = 1̂ & b nondiagonal =⇒ êp(0̂) = 1̂ for all b ∈ B and p ∈ Pol 1B.

Proof. Assume that B is a rich subalgebra of An which satisfies (R), but which fails
to satisfy (S). Using a construction from [4] we can show that these assumptions
imply that V(A) is residually large.

Let η1 denote the kernel of the first projection on B ≤ An.

Claim 3.8. Let p(x, y ) be a polynomial of B and u, v be tuples of elements of B
which are η1-related coordinatewise. If

[
p(1̂, u) p(1̂, v )
p(o1, u) p(o1, v )

]
=

[
1̂ s

r 1̂

]
,

then r = s = 1̂.

Recall that η1 denotes the congruence on B which is the kernel of the projection

onto all coordinates but the first. Since (o1, 1̂) ∈ η1, we deduce from the columns of

the given matrix that (1̂, r), (s, 1̂) ∈ η1. Since u and v are η1-related coordinatewise,

we get from the rows of the matrix that (1̂, s), (r, 1̂) ∈ η1. Thus (1̂, r), (1̂, s) ∈ η1∧η1 =
0.

Claim 3.9. If δ is defined as in the statement of Lemma 3.5 (2), then in B we have
â/δ = {â} for every nonzero element a ∈ A.
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Because the operations in LG are term operations, it suffices to establish that

1̂/δ = {1̂}. If b ∈ B is an element such that b
δ≡ 1̂, then, since ê(1̂) = 1̂, we must

have ê(b) = 1̂, that is, b ∧ 1̂ = 1̂. Since 1̂ is maximal, we get b = 1̂. This completes
the proof of the claim.

Claim 3.10. There is a polynomial q(x, y ) of B, a pair (a, b) ∈ η1, and tuples c, d
which are η1-related coordinatewise, such that

[
q(a, c) q(a, d)
q(b, c) q(b, d)

]
=

[
1̂ w

∗ 1̂

]
,

where w < 1̂.

We show how to construct the matrix from a failure of (S). Choose a nondiagonal

b ∈ B and a polynomial p of B for which êp(b) = 1̂ while êp(0̂) 6= 1̂. Let t be a
term and b2, . . . , bk ∈ B be elements for which êp(x) = t(x, b2, . . . , bk). Denote the
first coordinate of b by a and the first coordinate of every other bj by aj. Since

êt(â, â2, . . . , âk) is a diagonal element which agrees with êt(b, b2, . . . , bk) = 1̂ in the

first coordinate, we have êt(â, â2, . . . , âk) = 1̂. Setting w = êt(â∧ b, b2, . . . , bk) we get
a matrix of the form:[

êt(â ∧ â, â2, . . . , âk) êt(â ∧ b, b2, . . . , bk)
êt(b ∧ â, â2, . . . , âk) êt(b ∧ b, b2, . . . , bk)

]
=

[
1̂ w

∗ 1̂

]
.

Here each pair (â, b) or (âj, bj) is in η1, and w ≤ 1̂ since w is in the range of ê. If w 6= 1̂,
then this matrix establishes the claim. (Here we take q(x, y) = êt(x∧y1, y2, . . . , yk).)

We show that w 6= 1̂ must hold in the situation where a = 0. In fact, in this case
â = 0̂, and so w = êt(â∧b, b2, . . . , bk) = êp(0̂) 6= 1̂. Hence the above argument always
produces a suitable matrix if a (the first coordinate of b) equals 0.

Now suppose that the matrix we produced above is not of the form required by
the claim; i.e., we have êt(â∧ b, b2, . . . , bk) = w = 1̂. This forces a 6= 0. Furthermore,

for the element b′ = â ∧ b we have b′ < â and êp(b′) = 1̂. Recall also that êp(0̂) 6= 1̂.
Therefore we can modify p(x) to p′(x) = p(ax) and b′ to b′′ = a−1b′, yielding:

(1) b′′ < 1̂,

(2) êp′(b′′) = 1̂, and

(3) êp′(0̂) 6= 1̂.

From item (1) above and Claim 3.6 of Lemma 3.5 we have b′′
δ≡ b′′ ∧ o1. Thus

êp′(b′′ ∧o1)
δ≡ êp′(b′′) = 1̂ by item (2) above. Also from Claim 3.9 we have 1̂/δ = {1̂}.

Thus êp′(b′′ ∧ o1) = 1̂ 6= êp′(0̂) by item (3). We must have 0̂ 6= b′′ ∧ o1 < 1̂, so b′′ ∧ o1

is nondiagonal. Hence we have the same starting assumptions for b′′ ∧ o1 and p′ that
we had for b and p. However now we have in addition that the first coordinate of
b′′ ∧ o1 is 0. Therefore, as we observed in the preceding paragraph, the argument we
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gave in the first paragraph of the proof of this claim produces a matrix of the desired
type. The proof of Claim 3.10 is complete.

Let κ be any infinite cardinal. We explain now how to construct a subdirectly
irreducible algebra in V(A) whose cardinality is at least κ.

Let C be the subalgebra of Bκ that consists of all tuples of the form (b0, b1, b2, . . .)
where for each i, j < κ we have (bi, bj) ∈ η1. We name some special elements of C

that play a role in the following argument. For each b ∈ B we let b̂ denote the tuple

(b, b, b, . . .), which is an element of C. In particular, we will write
̂̂
1 for (1̂, 1̂, 1̂, . . .).

For 0 < i < j < κ we define Wij to be the tuple whose k-th coordinate is the value

w (from Claim 3.10) if i ≤ k < j, and which is 1̂ otherwise:

Wij = (1̂, 1̂, . . . , w
i

, w, . . . , 1̂
j

, 1̂, . . .).

Note that each Wij is a member of C since (w, 1̂) ∈ η1. We define W ′
ij to be Wij ∧ ô1:

W ′
ij = (o1, o1, . . . , w ∧ o1

i

, w ∧ o1, . . . , o1

j

, o1, . . .).

Let γ be the congruence on C which is generated by all pairs of the form (Wij,W
′
ij).

Claim 3.11. (ô1,
̂̂
1) 6∈ γ.

Let E(x) = x ∧ ̂̂1. Since ô1,
̂̂
1 ∈ E(C), to prove the claim it suffices to show that

(ô1,
̂̂
1) 6∈ γ|E(C). In fact, we will show that

̂̂
1/γ|E(C) = {̂̂1}. If this were not the case,

then there would be a polynomial P of C such that EP (W ) =
̂̂
1 6= EP (W ′), where

{W,W ′} = {Wij,W
′
ij} for some 0 < i < j < κ. Since

̂̂
1 is the largest element in E(C)

under the semilattice order, andWij > W ′
ij, it must be that EP (Wij) =

̂̂
1 > EP (W ′

ij).

The polynomial EP may be expressed as Et(x, U) where t is a term and each Ui ∈ C.
Since EP (Wij) > EP (W ′

ij), there is a coordinate k where these tuples disagree.
Randomly select a coordinate ` with i ≤ ` < j. Now we focus on the k-th and `-th
coordinates of EP (Wij) and EP (W ′

ij): In the k-th coordinate we have

1̂ = (EP (Wij))k = êt((Wij)k, Uk) = êt((Wij)k ∧ 1̂, Uk)

while for some r 6= 1̂ we have

r = (EP (W ′
ij))k = êt((W ′

ij)k, Uk) = êt((Wij)k ∧ ô1, Uk).

In the `-th coordinate we have

1̂ = (EP (Wij))` = êt(w,U `) = êt(w ∧ 1̂, U `)
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while
(EP (W ′

ij))` = êt(w ∧ o1, U `).

Since w < 1̂ we have that w
δ≡ w∧o1, according to Claim 3.6 of Lemma 3.5. Moreover,

1̂/δ = {1̂}, so 1̂ = êt(w,U `)
δ≡ êt(w ∧ o1, U `) implies that êt(w ∧ o1, U `) = 1̂. We can

build a matrix from this data:[
êt((Wij)k ∧ 1̂, U k) êt(w ∧ 1̂, U `)
êt((Wij)k ∧ ô1, Uk) êt(w ∧ o1, U `)

]
=

[
1̂ 1̂

r 1̂

]
.

The assumption that EP (Wij) > EP (W ′
ij) yielded r 6= 1̂, so the existence of this

matrix contradicts Claim 3.8. Thus we have
̂̂
1/γ|E(C) = {̂̂1}, and the claim is proved.

Claim 3.12. If ψ ≥ γ is a congruence on C for which |C/ψ| < κ, then (ô1,
̂̂
1) ∈ ψ.

Recall from Claim 3.10 that we have a polynomial q(x, y ) of B, a pair (a, b) ∈ η1,
and η1-related tuples c = (c1, . . . , ck), d = (d1, . . . , dk) such that

[
q(a, c) q(a, d)
q(b, c) q(b, d)

]
=

[
1̂ w

∗ 1̂

]
.

For each i < κ and 1 ≤ j ≤ k the algebra C contains the elements

ai = (a, a, a, . . . , b
i

, b, b, . . .) and cij = (cj, cj, cj, . . . , dj
i

, dj, dj, . . .).

Moreover, the polynomial q̂(x, y), which is q acting coordinatewise, is a polynomial
of C. If ψ is a congruence on C for which |C/ψ| < κ, then there exist 0 < i < j < κ

such that ai
ψ≡ aj. Therefore

̂̂
1 = q̂(ai, ci1, c

i
2, . . . , c

i
k)

ψ≡ q̂(aj, ci1, c
i
2, . . . , c

i
k) = Wij. This

proves that (
̂̂
1,Wij) ∈ ψ for some 0 < i < j < κ whenever ψ has index < κ. But

when (
̂̂
1,Wij) ∈ ψ, then we also have

(ô1,W
′
ij) = (

̂̂
1 ∧ ô1,Wij ∧ ô1) ∈ ψ,

and consequently
̂̂
1
ψ≡ Wij

γ≡ W ′
ij

ψ≡ ô1. Thus if ψ ≥ γ and |C/ψ| < κ, then (
̂̂
1, ô1) ∈ ψ.

To finish the proof, recall that by Claim 3.11 we have (ô1,
̂̂
1) 6∈ γ. If we extend

γ to a congruence ψ which is maximal for (ô1,
̂̂
1) 6∈ ψ, then the quotient C/ψ will

be subdirectly irreducible by construction and it will have cardinality at least κ by
Claim 3.12. Thus V(A) has a subdirectly irreducible algebra of cardinality ≥ κ for
every κ. This finishes the proof. �
Lemma 3.13. Let A be a G0-algebra of type 5 . The following conditions are equiv-
alent.
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(i) V(A) is residually small.
(ii) Every rich subalgebra B of An which satisfies (R) also satisfies (S).
(iii) Up to isomorphism, A is the only subdirectly irreducible algebra in V(A).

Proof. The implication (iii)⇒(i) is trivial, and the implication (i)⇒(ii) is proved in
Lemma 3.7. Therefore we only have to prove that (ii)⇒(iii).

Assume that (ii) holds. To prove that A is the only subdirectly irreducible algebra
in V(A) it suffices to prove that there are no other finite subdirectly irreducible
algebras in V(A). If S is any finite subdirectly irreducible algebra in V(A), then
according to Lemma 3.5 we can represent S as B/δ for some rich subalgebra B of
An in such a way that (R) holds and δ is defined as in Lemma 3.5. By (ii) we have
that (S) holds for B.

By Claim 3.9 of Lemma 3.7, which holds for any diagonal subalgebra B of An, to
prove that B/δ ∼= A it suffices to show that every nondiagonal b ∈ B is δ-related

to 0̂. Choose a nondiagonal b ∈ B. By (S), for any unary polynomial p we have

êp(b) = 1̂ =⇒ êp(0̂) = 1̂. Conversely, êp(0̂) = 1̂ =⇒ êp(b) = 1̂ by the monotonicity of

the operations of B. Hence b
δ≡ 0̂ for any nondiagonal b, and we are done. �

Theorem 3.1 is a direct corollary of Lemma 3.13.
The result that we have just proved, that the variety V(A) is residually small if

and only if A is the only subdirectly irreducible in V(A), depends essentially on the
assumption that A is term minimal. To see this, we describe now an example of a
strictly simple algebra A of type 5 which generates a residually small minimal variety
with more than one subdirectly irreducible member.

Example 3.14. Our algebra will be an expansion of the three-element linearly-
ordered meet semilattice ({0, 1, 2};∧) with 0 < 1 < 2. To this we add binary opera-
tion ∗ defined by

x ∗ y =

{
x if x, y ∈ {1, 2}
0 otherwise.

Finally we add unary operations s and t defined by s(0) = 0, s(1) = s(2) = 2 and
t(0) = t(1) = 0 and t(2) = 1. The algebra is A = ({0, 1, 2};∧, ∗, s, t). The following
claims about A can be easily verified by hand:

(1) A is strictly simple.
(2) The semilattice operation on A commutes with all other operations.
(3) s is an idempotent unary term of A which has minimal range, and A satisfies

x = x ∗ s(x), x ∗ st(x) = s(x) ∗ st(x), s(x) ∗ s(x) = s(x).

Properties (1) and (2) imply that A is of type 5 . Property (2) implies that V(A) has
a finite bound on the sizes of its subdirectly irreducible members, by Theorem 5.1 of
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[5]. Property (3) implies that V(A) is a minimal variety, according to Theorem 3.3
of [6].

What remains to show is that V(A) contains a subdirectly irreducible algebra that
is not isomorphic to A. A four-element subdirectly irreducible can be constructed
in V(A) by these steps: Let B be the subalgebra of A2 that consists of all (a, b)
with a ≤ b in the semilattice order. Let δ denote the congruence on B generated by
〈(0, 0), (0, 2)〉. Then δ partitions B into four blocks:

(0, 0)(0, 1)(0, 2) / (1, 1) / (1, 2) / (2, 2).

The quotient algebra is subdirectly irreducible with monolith 〈(1, 1)/δ, (1, 2)/δ〉.

4. Characterization

The theorem in [4] which characterizes those finite algebras A for which there is a
bound on the sizes of the subdirectly irreducible algebras with nonabelian monoliths
in V(A) involves all finite subdirectly irreducible algebras in V(A). In fact, as it
was shown by R. McKenzie in [8], there is no algorithm which, for a finite algebra
A with finitely many fundamental operations, decides whether the variety V(A) is
residually small. We will find in this section that G0-algebras of type 5 are much more
tractable: among G0-algebras of type 5 those generating residually small varieties are
characterized by a condition on (k+1)-ary term operations for each k-ary fundamental
operation of A. Thus it will follow that for algebras with finitely many fundamental
operations, there is an algorithm which decides whether the generated variety is
residually small.

If f(x) is a k-ary term operation of a G0-algebra of type 5 and the canonical form
of f is

(4.1) f(x) =
m∨

i=1

(
∧
c−1
i x) for some k-tuples c i (1 ≤ i ≤ m),

then f̃ will denote the (k +m)-ary operation

f̃(x, z ) = f̃(x1, . . . , xk, z1, . . . , zm) =

m∨

i=1

(zi ∧
∧
c−1
i x),

and for each j (1 ≤ j ≤ m), f̃ (j) will denote the (k + 1)-ary operation

f̃ (j)(x, z) = f̃ (j)(x1, . . . , xk, z) = (z ∧∧c−1
j x) ∨

m∨

i=1
i6=j

(
∧
c−1
i x).
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Since the joinands in the canonical form of f are pairwise disjoint, it is easy to see

that the joinands in the definition of f̃ and f̃ (j) (1 ≤ j ≤ m) are also such. Thus
these operations are given in canonical form.

Notice that the definition of f̃ and f̃ (j) (1 ≤ j ≤ m) require a fixed indexing of
the joinands of the canonical form of f . Therefore whenever we will mention any of

the operations f̃ and f̃ (j), we will assume that this indexing is fixed in advance. A
change in the indexing of the joinands of f results in a permutation of the variables

z in f̃ , and a change in the indexing of the family {f̃ (j) : 1 ≤ j ≤ m}. None of these
will affect the statements of the results.

Theorem 4.1. Let A be a G0-algebra of type 5 . The following conditions are equiv-
alent:

(i) V(A) is residually small (or equivalently, A is the only subdirectly irreducible
algebra in V(A)).

(ii) For every fundamental operation f of A, f̃ is a term operation of A.

(iii) For every fundamental operation f of A, all f̃ (j) are term operations of A.

Observe that condition (i) of the theorem is invariant under term equivalence,
so conditions (ii) and (iii) could be replaced by the same requirements for all term
operations in place of all fundamental operations. The equivalence of (ii) to its variant
for term operations, and the analogous statement for (iii), can also be proved in a
straightforward manner, using induction on the lengths of terms.

It is clear that for each operation f of a G0-algebra of type 5 the canonical form of

f is effectively computable, and hence so is the family of operations f̃ (j). Thus there
is an algorithm which decides whether condition (iii) holds, provided the algebra has
only finitely many fundamental operations. Thus Theorem 4.1 yields the following
corollary.

Corollary 4.2. There is an algorithm which, for every G0-algebra A of type 5 with
finitely many fundamental operations, decides whether the variety V(A) is residually
small.

This corollary can also be derived from our Lemma 3.13 and Theorem 5.1 of [12].
The rest of this section is devoted to the proof of Theorem 4.1. The easy equivalence

of conditions (ii) and (iii) is verified in Lemma 4.3, while the implications (ii)⇒(i)
and (i)⇒(iii) are the content of Lemmas 4.5 and 4.7, respectively.

Lemma 4.3. Let f be a term operation of a G0-algebra of type 5 , and assume that
f has canonical form (4.1). Then the G0-algebras

(A;∧, LG, 0, f̃) and (A;∧, LG, 0, {f̃ (j) : 1 ≤ j ≤ m})
are term equivalent.
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Proof. It is straightforward to check that

f̃(x, z1, . . . , zm) =

m∧

j=1

f̃ (j)(x, zj),

and

f̃ (j)(x, z) = f̃
(
x,
∧
c−1

1 x, . . . ,
∧
c−1
j−1x, z,

∧
c−1
j+1x, . . . ,

∧
c−1
m x

)

for every j (1 ≤ j ≤ m). �

Now we start the proof that in Theorem 4.1 condition (ii) implies condition (i). Our
approach will be based on the result of Lemma 3.13: we will show that if condition
(ii) holds and B is a rich subalgebra of An which fails to satisfy (S), then B fails to
satisfy (R). First we analyze what it means for B to fail (S).

A failure of condition (S) for B means that for some k > 0 there exist a k-ary term
t and elements b1, b2, . . . , bk ∈ B such that b1 is nondiagonal and

êt(b1, b2, . . . , bk) = 1̂, but êt(0̂, b2, . . . , bk) 6= 1̂.

Since t is monotone and for an element b ∈ B we have ê(b) = 1̂ if and only if b = 1̂,
the displayed properties are equivalent to requiring that

(4.2) t(b1, b2, . . . , bk) = 1̂, but t(0̂, b2, . . . , bk) < 1̂.

If for a term t there exist elements b1, b2, . . . , bk ∈ B such that b1 is nondiagonal and
(4.2) holds, then we will say that t witnesses the failure of condition (S).

The next lemma shows that if condition (S) fails for some B, then this failure is
witnessed by a term operation which is almost a fundamental operation.

Lemma 4.4. Let A be a G0-algebra of type 5 , and let B be a rich subalgebra of An.
If condition (S) fails for B, then this failure is witnessed by a term operation of the
form t(x1, . . . , xk) = af(x1π, . . . , xkπ) where a ∈ G, f is a fundamental operation,
and π is a permutation of the set {1, . . . , k}.
Proof. Let us fix a term t witnessing the failure of condition (S), and select t so that
t has the least possible number of nonunary operation symbols. Let b1, b2, . . . , bk ∈ B
be elements from B such that b1 is nondiagonal and (4.2) holds. It is not the case
that t is essentially unary, because then t has to depend on its first variable, and a
unary term operation cannot produce 1̂ from a nondiagonal element b1. Thus t is of
the form

t(x) = af(t1(x), t2(x), . . . , tm(x))

for some a ∈ G, some fundamental operation f which is m-ary (m ≥ 2), and some
terms tl (1 ≤ l ≤ m). Let cl = tl(b1, b2, . . . , bk) (1 ≤ l ≤ m). By permuting the
variables of f we may assume that the elements c1, . . . , cs are nondiagonal, while
cs+1, . . . , cm are diagonal (0 ≤ s ≤ m).
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Now let s+ 1 ≤ l ≤ m. Then cl = âl for some al ∈ A, and the term a−1
l tl has the

property a−1
l tl(b1, b2, . . . , bk) = 1̂ where b1 is nondiagonal. By the choice of t the term

tl cannot witness the failure of (S), therefore a−1
l tl(0̂, b2, . . . , bk) = 1̂, that is,

tl(0̂, b2, . . . , bk) = âl = cl.

Thus

af(0̂, . . . , 0̂, cs+1, . . . , cm)≤ af(t1(0̂, b2, . . . , bk), . . . , ts(0̂, b2, . . . , bk), cs+1, . . . , cm)

= af(t1(0̂, b2, . . . , bk), . . . , tm(0̂, b2, . . . , bk))

= t(0̂, b2, . . . , bk)

< 1̂

and
af(c1, . . . , cs, cs+1, . . . , cm) = 1̂.

So the sequence

af(0̂, . . . , 0̂, cs+1, . . . , cm)≤ af(0̂, . . . , 0̂, cs, . . . , cm) ≤ . . .

≤ af(0̂, c2, . . . , cm) ≤ af(c1, . . . , cm) = 1̂

contains two consecutive members such that the first one is less than 1̂ and the second
one is equal to 1̂. With the elements appearing there an operation arising from af
by permuting variables witnesses the failure of (S). �
Lemma 4.5. If A is a G0-algebra of type 5 such that for every fundamental operation

f of A, f̃ is a term operation of A, then V(A) is residually small.

Proof. Assume that A satisfies the hypotheses of the lemma, and consider a rich
subalgebra B of An (n > 0) for which condition (S) fails. Lemma 3.13 says that we
are done if we are able to show that condition (R) must fail for B.

By Lemma 4.4 there exist a fundamental operation f and an element a ∈ G such
that a term operation t arising from af by permuting its variables witnesses the

failure of (S). By assumption, f̃ is a term operation of A. It is easy to show that t̃,
too, is a term operation of A. This follows by observing that if g arises from f by

permuting its variables then g̃ arises the same way from f̃ ; furthermore, if g = af for
some a ∈ G then

g̃(x, z) = af̃(x, a−1z).

Using Lemma 4.3 we conclude that all t̃(j) as well, are term operations of A.
Let t be k-ary and let t have canonical form

t(x) =

m∨

i=1

(
∧
c−1
i x) for some k-tuples c i (1 ≤ i ≤ m).

Further, let bj = (b1j , . . . , bnj) (1 ≤ j ≤ k) be elements from B such that b1 is
nondiagonal and (4.2) holds. Let us form the n × k matrix whose columns are the
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n-tuples b1, . . . , bk, and denote the rows of this matrix by r 1, . . . , rn. The equality
t(b1, . . . , bk) = 1̂ means that t(r i) = 1 for each i (1 ≤ i ≤ n). Hence, for each i
(1 ≤ i ≤ n), there exists an index si (1 ≤ si ≤ m) such that r i ≥ csi. We may
assume without loss of generality that the joinands of t are indexed so that r 1 ≥ c1.
Let c1 = (c11, . . . , c1k).

We claim that r l 6≥ c1 for at least one l (1 ≤ l ≤ n). Suppose otherwise, that is,
r i ≥ c1 for all i (1 ≤ i ≤ n). Then bij = c1j whenever c1j 6= 0. This means that
bj = ĉ1j is diagonal whenever c1j 6= 0. Since b1 is nondiagonal, we have c11 = 0, and
hence

1̂ = c−1
11 0̂ ∧ c−1

12 b2 ∧ · · · ∧ c−1
1k bk ≤ t(0̂, b2, . . . , bk) < 1̂,

which is impossible.
Let us fix an index l such that r l 6≥ c1. Then

t̃(1)(r l, 0) = 1 and t̃(1)(r 1, 0) = 0.

Furthermore, it is clear that

t̃(1)(r i, 1) = 1 for all i (1 ≤ i ≤ n).

Now consider the unary polynomial operation p(z) = t̃(1)(b1, b2, . . . , bk, z) of B. Com-

puting the values coordinatewise one can easily check that êp(1̂) = 1̂, êp(o1) = o1,

but êp(0̂) > 0̂ as the lth coordinate of êp(0̂) is 1. Thus condition (R) fails for B. �

Lemma 4.6. Let A be a G0-algebra of type 5 , and suppose that the variety V(A) is
residually small. If f is a k-ary term operation of A with canonical form (4.1), then
A has a (k + 1)-ary term operation t which satisfies the following equalities:

t(c1, 1) = 1
t(c1, 0) = 0
t(c i, 0) = 1 for i = 2, . . . , m.

Proof. Consider a k-ary term operation f of A with canonical form (4.1), and let I be
any subset of {2, . . . , m}. We will show by induction on |I| that A has a (k+ 1)-ary
term operation t satisfying the three equalities displayed in the lemma for i ∈ I.
Clearly, the case I = {2, . . . , m} yields the required term operation.

For I = ∅ the claim is obvious: we can take the term operation t(x, z) = z. Now
assume that I is nonempty and that an appropriate term operation exists for all
proper subsets of I. For simplicity of notation assume that I = {2, . . . , n} (n ≤ m),
and consider the columns bj = (c1j , . . . , cnj) (1 ≤ j ≤ k) of the n × k matrix whose
rows are the first n tuples c i = (ci1, . . . , cik) (1 ≤ i ≤ n) from the canonical form of
f . Recall that oi denotes the n-tuple with all coordinates 1 but the i-th one which is
0 (1 ≤ i ≤ n), and let B be the subalgebra of An generated by the set

{b1, . . . , bk} ∪ {1̂, o1, . . . , on}.
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In other words, B is the smallest rich subalgebra of An which contains the elements
b1, . . . , bk.

First we prove that f (more precisely, an operation arising from f by permuting

its variables) witnesses the failure of (S) in B. Clearly, we have f(b1, . . . , bk) = 1̂.
Since n ≥ 2 and the rows c1, . . . , cn are pairwise distinct, at least one of the columns
b1, . . . , bk is nondiagonal. Assume without loss of generality that b1 is nondiagonal;
in particular, b1 6= 0̂. Let, say, ci1 6= 0. Since c i is a minimal element for which f
assumes the value 1, by changing its nonzero first coordinate to zero yields a tuple
where f assumes the value 0. Therefore f(0̂, b2, . . . , bk) < 1̂, as the ith coordinate of
the left hand side is 0.

The preceding paragraph shows that condition (S) fails for B. However, by as-
sumption, the variety V(A) is residually small. Hence by Lemma 3.13 condition (R)
has to fail for B. That is, there exists a unary polynomial operation p of B such that

(4.3) êp(1̂) = 1̂, êp(o1) = o1, but êp(0̂) > 0̂.

We can write the polynomial operation êp as

êp(z) = t′(b1, . . . , bk, 1̂, o1, o2, . . . , on, z)

for some term t′ where the parameters are from the generating set of B. Now replace
the parameters o2, . . . , on by 1̂. By monotonicity the values at 1̂, o1, and 0̂ can only
increase, but have to remain within the set ê(B) = {0, 1}n. Thus the value at 1̂ will

remain 1̂, the value at 0̂ will continue to be greater than 0̂, and the value at o1 will be
o1 or 1̂. However, since the change we made does not affect the first coordinate, we
get that the value at o1 will be o1. We can apply the same trick for o1, too, provided
that we are able to prove that the value at o1 will remain o1. Suppose not, that is,
changing the parameter o1 to 1̂ changes the value at o1 from o1 to 1̂. Then let’s look
at the first coordinates of all equalities we know, and compute some values of the
polynomial operation

p1(x, y) = t′(c1, 1, x, 1, . . . , 1, y)

of A. From the original equalities (where o1 is unchanged), by putting z = 1̂ and
z = o1, respectively, we get that p1(0, 1) = 1 and p1(0, 0) = 0. From the assumption

that changing the parameter o1 to 1̂ changes the value at o1 from o1 to 1̂, we get that
p1(1, 0) = 1. By monotonicity these equalities show that p1 restricts to the set {0, 1}
as join, which is impossible (cf. Proposition 2.3). This proves that all parameters

o1, o2, . . . , on can be changed to 1̂ so that the required properties of p in (4.3) remain

valid. Finally, each occurrence of 1̂ as a parameter in the polynomial can be replaced
by f(b1, . . . , bk).



22 KEITH A. KEARNES AND ÁGNES SZENDREI

These arguments show that we can always select a polynomial p satisfying (4.3)
where the only parameters that occur in the expression of êp(z) are b1, . . . , bk. Ac-
cordingly, from now on, let

êp(z) = t′(b1, . . . , bk, z)

for some term t′. Now the equations (4.3), viewed coordinatewise, mean that

t′(c i, 1) = 1 for all i (1 ≤ i ≤ n),
t′(c1, 0) = 0,
t′(c l, 0) = 1 for some l (2 ≤ l ≤ n).

Applying the induction hypothesis for the proper subset I −{l} of I = {2, . . . , n} we
know that A has a (k + 1)-ary term operation t′′ such that

t′′(c1, 1) = 1
t′′(c1, 0) = 0
t′′(c i, 0) = 1 for i 6= l (2 ≤ i ≤ n).

One can check that the term operation

t(x, z) = t′(x, t′′(x, z))

satisfies the requirements for I. Indeed,

t(c1, 1) = t′(c1, t
′′(c1, 1)) = t′(c1, 1) = 1,

t(c1, 0) = t′(c1, t
′′(c1, 0)) = t′(c1, 0) = 0,

t(c i, 0) = t′(c i, t′′(c i, 0)) = t′(c i, 1) = 1 for i 6= l (2 ≤ i ≤ n),

and

t(c l, 0) = t′(c l, t
′′(c l, 0)) ≥ t′(c l, 0) = 1,

whence t(c l, 0) = 1. This completes the proof. �

Lemma 4.7. If A is a G0-algebra of type 5 such that the variety V(A) is residually

small, then for every term operation f of A, all f̃ (j) are term operations of A.

Proof. Suppose that A is a G0-algebra of type 5 such that the variety V(A) is
residually small, and let f be any k-ary term operation of A with canonical form

(4.1). By symmetry it suffices to show that f̃ (1) is a term operation of A. We
will prove that if t is a (k + 1)-ary term operation whose existence is ensured by
Lemma 4.6, then the term operation t∗ of A defined as

t∗(x, z) = f(x) ∧ t(x, z ∧∧c−1
1 x)

equals f̃ (1).

In view of Lemma 2.2, it suffices to verify that Min(t∗) = Min(f̃ (1)). Looking at

the canonical form of f̃ (1) we can read off the elements of Min(f̃ (1)): they are the



THE RESIDUAL CHARACTER OF STRICTLY SIMPLE TERM MINIMAL ALGEBRAS 23

(k + 1)-tuples (c1, 1) and (c i, 0) for 2 ≤ i ≤ m. Thus we have to prove the following
equality:

(4.4) Min(t∗) = {(c1, 1), (c2, 0), . . . , (cm, 0)}.
Let (c, a) ∈ Min(t∗). Then

1 = t∗(c, a) ≤ f(c),

so f(c) = 1, and hence c ≥ c i for some i (1 ≤ i ≤ m). This implies that (c, a) ≥
(c i, 0). If i 6= 1, then we have

(4.5) t∗(c i, 0) = f(c i) ∧ t(c i, 0) = 1 ∧ 1 = 1,

therefore by the minimality of the tuple (c, a) we must have that (c, a) = (c i, 0).
Now assume that i = 1. Then

1 = t∗(c1, a) ≤ t(c1, a ∧
∧
c−1

1 c1) = t(c1, a ∧ 1),

so t(c1, 1∧a) = 1. In case a 6= 1 this would imply that t(c1, 0) = 1 which contradicts
one of the properties of t. Thus a = 1, whence (c, a) ≥ (c1, 1). Since we have

(4.6) t∗(c1, 1) = f(c1) ∧ t(c1, 1 ∧
∧
c−1

1 c1) = 1 ∧ t(c1, 1) = 1 ∧ 1 = 1,

therefore again by the minimality of the tuple (c, a) we conclude that (c, a) = (c 1, 1).
This proves the inclusion ⊆ in (4.4).

The equalities (4.6) and (4.5) show that t∗ assumes the value 1 for every (k + 1)-
tuple appearing on the right hand side of (4.4). Since these tuples are pairwise
incomparable, they must all belong to Min(t∗). This completes the proof of the
lemma. �

References

[1] D. Hobby and R. McKenzie, The Structure of Finite Algebras, Contemporary Mathematics
v. 76, American Mathematical Society, 1988.

[2] K. A. Kearnes, E. W. Kiss, M. Valeriote, Minimal sets and varieties, Trans. Amer. Math. Soc.
350 (1998), 1–41.

[3] K. A. Kearnes, E. W. Kiss, M. Valeriote, A geometric consequence of residual smallness, to
appear in Ann. Pure Appl. Logic.

[4] K. A. Kearnes, R. N. McKenzie, Residual smallness relativized to congruence types, Manuscript,
1996.
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