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Abstract. The theory of multitraces provides a new proof that any simple tournament

with more than two elements is functionally complete.

A tournament is a finite, directed, complete graph 〈V ;E〉 without multiple edges.
Write x → y to indicate that x, y ∈ V and (x, y) ∈ E. In this paper tournaments
have loops on all vertices, so x → x for all x ∈ V . Associate to a tournament
〈V ;E〉 an algebra 〈V ; ·〉 with the same universe and a binary product defined by
xy = yx = x whenever x → y. Such an algebra is also called a tournament.

In [3], P. P. Pálfy applied Rosenberg’s Completeness Theorem to prove that every
simple tournament is functionally complete. Here we derive the same theorem from
the theory of multitraces, [2], which is a part of tame congruence theory, [1].

A finite algebra A is functionally complete if every finitary operation on its
universe is a polynomial of the algebra. A trace of a finite simple algebra A is a
subset of A that is minimal among subsets T ⊆ A satisfying |T | > 1 and T = e(A)
for some unary polynomial e satisfying e(e(x)) = e(x). A multitrace of a finite
simple algebra A is a subset M ⊆ A such that M = p(T, T, . . . , T ) = p(Tn) for
some trace T and some n-ary polynomial p. It is known that if A is a finite simple
algebra and T and T ′ are traces, then there are unary polynomials f and g such that
f(T ) = T ′ and g(T ′) = T , so any trace can be used in the definition of “multitrace”.
It is also known that if T is a trace and f is a unary polynomial whose restriction
to T is nonconstant, then f(T ) is another trace.

It is possible to construct an algebra on a trace T = e(A) by equipping T
with (the restrictions to T of) all operations of the form e(p(x)), p a polynomial
operation of A. The result is called the algebra induced on T by A, and is denoted
by A|T . It is shown in [1] that the algebras A|T arising from different traces of A
are polynomially equivalent algebras, and that they come in only five types, which
are numbered 1-5. Their polynomial equivalence types are: 1 = simple G-sets,
2 = 1-dimensional vector spaces, 3 = 2-element Boolean algebras, 4 = 2-element
lattices, and 5 = 2-element semilattices.

The following specialization of Theorem 3.12 of [2] provides criteria for estab-
lishing functional completeness.

Theorem 1. A finite algebra S is functionally complete if and only if
(1) S is simple of type 3, and
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(2) S is a multitrace.

Lemma 2. Let S be a simple tournament with more than two elements.

(1) If N is a subset of S and 1 < |N | < |S|, then there exist x, y ∈ N and
z ∈ S −N such that x → z → y.

(2) S contains a multitrace M and an element z such that M ∪ {z} is strongly
connected and |M ∪ {z}| > 1. Moreover S has type 3.

(3) If M is any multitrace of S and M∪{z} is strongly connected, then M∪{z}
is also a multitrace.

(4) If M is a strongly connected multitrace and 1 < |M | < |S|, then there is an
element z ∈ S −M such that M ∪ {z} is strongly connected.

Proof. For (1), assume instead that for every z ∈ S−N it is the case that x → z for
all x ∈ N or z → x for all x ∈ N . Then any polynomial of the form p(x) = sx = xs,
s ∈ S, is either constant on N or maps N into itself, implying that N is a congruence
class. This is impossible if S is simple and 1 < |N | < |S|. Thus there is a z ∈ S−N
such that x → z for some x ∈ N and z → y for some y ∈ N .

For (2) start with M equal to some trace. Since the tournament multiplication
is a semilattice operation on any 2-element subset, it follows from the structure
of traces that M has type 3,4 or 5. This implies that M has 2 elements, say
M = {a, b}, where we assume a → b. Since 1 < |M | = 2 < |S|, item (1) guarantees
that there is some z ∈ S − M such that either a → z → b or b → z → a. In the
latter case, M∪{z} is strongly connected, establishing the first statement of (2). To
complete the proof of that statement in the former case, observe that if a → z → b
then {a, b}z = {a, z} is a nonsingleton polynomial image of a trace, so is another
trace. Hence the set

N = {s ∈ S | a → s and {a, s} is a trace}

has at least 2 elements and does not contain a. By item (1) there exist u, v ∈ N
and z′ ∈ S − N such that u → z′ → v. Since a → u → z′ we have a 6= z′.
If a → z′, then {a, v}z′ = {a, z′} is a trace, so z′ ∈ N , a contradiction. Thus
we must have z′ → a, in which case z′ → a → u → z′ is a directed triangle
containing a trace M ′ = {a, u}. This trace is a multitrace for which there is an
element z′ ∈ S − M ′ such that M ′ ∪ {z′} is strongly connected, completing the
proof of the first statement in item (2). In either case of our argument we produced
a directed triangle a → b → z → a containing a trace {a, b}, so it is easy to see that
the type of S is 3 (Boolean type). This is because the tournament multiplication
is a semilattice operation on M while the polynomial q(x) = ((xz)a)b is Boolean
complementation on M .

For (3), note that if A = p(Tm) and B = q(Tn) are multitraces, then the complex
product AB = {ab | a ∈ A, b ∈ B} is also a multitrace, since AB = r(Tm+n) for
r(xy) = p(x)·q(y). Moreover, any singleton set is a multitrace, being the image of a
constant unary polynomial. Thus, if M is a multitrace, so are the complex products
M{z},M(M{z}),M(M(M{z})), etc. We argue that this is an increasing sequence
of sets which terminates at M ∪ {z} whenever M ∪ {z} is strongly connected.
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Since M ∪{z} is strongly connected, there exists m ∈ M −{z} such that z → m,
equivalently z = mz. Thus, {z} ⊆ M{z}. Multiplying both sides of this inclusion
by M repeatedly yields M{z} ⊆ M(M{z}) = M2{z}, then M2{z} ⊆ M3{z}, etc.
Thus the multitraces M i{z} increase with i. They are contained in M ∪ {z} since
this set is a subalgebra of S. If X :=

⋃
i M i{z}, then X = M j{z} for some large

j, which makes X a multitrace. By construction we have MX = X, so there is no
directed edge from M −X into X. Since z ∈ X, there can be no directed edge from
the set (M ∪ {z}) − X = M − X into X. But M ∪ {z} is strongly connected and
X is a nonempty subset, so this forces M ∪ {z} = X = a multitrace.

For (4), apply (1). �

Items (2) and (3) of this lemma produce a nontrivial strongly connected multi-
trace, while items (3) and (4) allow one to grow this multitrace without restriction
until we reach S. Since the type of S is 3, we obtain from Theorem 1 the desired
result.

Theorem 3. A simple tournament with more than two elements is functionally
complete.

However, the advantage of multitraces is that they are a ‘local’ tool; they may be
applied to minimal congruences as easily as to simple algebras. All the arguments
of Lemma 2 apply to the setting of minimal congruences, hence:

Theorem 4. If α is a minimal congruence of a tournament, then every α-class is
a multitrace. If some α-class has at least 3 elements, then the type of 〈0, α〉 is 3.

Minimal congruences of type 3 whose classes are multitraces are functionally com-
plete in the sense that, if U0, U1, . . . , Un are congruence classes, then any function
f : U1 × · · · × Un → U0 can be interpolated by a polynomial. (Theorem 3.12 of [2]
proves this when all Ui are equal, but it is easy to see that the statement holds
without that assumption.)
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