On the functional completeness of simple tournaments

Keith A. Kearnes

ABSTRACT. The theory of multitraces provides a new proof that any simple tournament with more than two elements is functionally complete.

A tournament is a finite, directed, complete graph $\langle V; E \rangle$ without multiple edges. Write $x \to y$ to indicate that $x, y \in V$ and $(x, y) \in E$. In this paper tournaments have loops on all vertices, so $x \to x$ for all $x \in V$. Associate to a tournament $\langle V; E \rangle$ an algebra $\langle V; \cdot \rangle$ with the same universe and a binary product defined by xy = yx = x whenever $x \to y$. Such an algebra is also called a tournament.

In [3], P. P. Pálfy applied Rosenberg's Completeness Theorem to prove that every simple tournament is functionally complete. Here we derive the same theorem from the theory of multitraces, [2], which is a part of tame congruence theory, [1].

A finite algebra \mathbf{A} is functionally complete if every finitary operation on its universe is a polynomial of the algebra. A trace of a finite simple algebra \mathbf{A} is a subset of A that is minimal among subsets $T \subseteq A$ satisfying |T| > 1 and T = e(A)for some unary polynomial e satisfying e(e(x)) = e(x). A multitrace of a finite simple algebra \mathbf{A} is a subset $M \subseteq A$ such that $M = p(T, T, \ldots, T) = p(T^n)$ for some trace T and some n-ary polynomial p. It is known that if \mathbf{A} is a finite simple algebra and T and T' are traces, then there are unary polynomials f and g such that f(T) = T' and g(T') = T, so any trace can be used in the definition of "multitrace". It is also known that if T is a trace and f is a unary polynomial whose restriction to T is nonconstant, then f(T) is another trace.

It is possible to construct an algebra on a trace T = e(A) by equipping T with (the restrictions to T of) all operations of the form $e(p(\mathbf{x}))$, p a polynomial operation of \mathbf{A} . The result is called the algebra *induced* on T by \mathbf{A} , and is denoted by $\mathbf{A}|_T$. It is shown in [1] that the algebras $\mathbf{A}|_T$ arising from different traces of \mathbf{A} are polynomially equivalent algebras, and that they come in only five types, which are numbered 1-5. Their polynomial equivalence types are: $\mathbf{1} = \text{simple } G$ -sets, $\mathbf{2} = 1$ -dimensional vector spaces, $\mathbf{3} = 2$ -element Boolean algebras, $\mathbf{4} = 2$ -element lattices, and $\mathbf{5} = 2$ -element semilattices.

The following specialization of Theorem 3.12 of [2] provides criteria for establishing functional completeness.

Theorem 1. A finite algebra **S** is functionally complete if and only if

(1) **S** is simple of type $\mathbf{3}$, and

1

¹⁹⁹¹ Mathematics Subject Classification: 08A40.

Key words and phrases: tournament, multitrace, tame congruence theory.

KEITH A. KEARNES

(2) S is a multitrace.

Lemma 2. Let S be a simple tournament with more than two elements.

- (1) If N is a subset of S and 1 < |N| < |S|, then there exist $x, y \in N$ and $z \in S N$ such that $x \to z \to y$.
- (2) **S** contains a multitrace M and an element z such that $M \cup \{z\}$ is strongly connected and $|M \cup \{z\}| > 1$. Moreover **S** has type **3**.
- (3) If M is any multitrace of **S** and $M \cup \{z\}$ is strongly connected, then $M \cup \{z\}$ is also a multitrace.
- (4) If M is a strongly connected multitrace and 1 < |M| < |S|, then there is an element $z \in S M$ such that $M \cup \{z\}$ is strongly connected.

Proof. For (1), assume instead that for every $z \in S - N$ it is the case that $x \to z$ for all $x \in N$ or $z \to x$ for all $x \in N$. Then any polynomial of the form p(x) = sx = xs, $s \in S$, is either constant on N or maps N into itself, implying that N is a congruence class. This is impossible if **S** is simple and 1 < |N| < |S|. Thus there is a $z \in S - N$ such that $x \to z$ for some $x \in N$ and $z \to y$ for some $y \in N$.

For (2) start with M equal to some trace. Since the tournament multiplication is a semilattice operation on any 2-element subset, it follows from the structure of traces that M has type **3**, **4** or **5**. This implies that M has 2 elements, say $M = \{a, b\}$, where we assume $a \to b$. Since 1 < |M| = 2 < |S|, item (1) guarantees that there is some $z \in S - M$ such that either $a \to z \to b$ or $b \to z \to a$. In the latter case, $M \cup \{z\}$ is strongly connected, establishing the first statement of (2). To complete the proof of that statement in the former case, observe that if $a \to z \to b$ then $\{a, b\}z = \{a, z\}$ is a nonsingleton polynomial image of a trace, so is another trace. Hence the set

$$N = \{s \in S \mid a \to s \text{ and } \{a, s\} \text{ is a trace} \}$$

has at least 2 elements and does not contain a. By item (1) there exist $u, v \in N$ and $z' \in S - N$ such that $u \to z' \to v$. Since $a \to u \to z'$ we have $a \neq z'$. If $a \to z'$, then $\{a, v\}z' = \{a, z'\}$ is a trace, so $z' \in N$, a contradiction. Thus we must have $z' \to a$, in which case $z' \to a \to u \to z'$ is a directed triangle containing a trace $M' = \{a, u\}$. This trace is a multitrace for which there is an element $z' \in S - M'$ such that $M' \cup \{z'\}$ is strongly connected, completing the proof of the first statement in item (2). In either case of our argument we produced a directed triangle $a \to b \to z \to a$ containing a trace $\{a, b\}$, so it is easy to see that the type of **S** is **3** (Boolean type). This is because the tournament multiplication is a semilattice operation on M while the polynomial q(x) = ((xz)a)b is Boolean complementation on M.

For (3), note that if $A = p(T^m)$ and $B = q(T^n)$ are multitraces, then the complex product $AB = \{ab \mid a \in A, b \in B\}$ is also a multitrace, since $AB = r(T^{m+n})$ for $r(\mathbf{xy}) = p(\mathbf{x}) \cdot q(\mathbf{y})$. Moreover, any singleton set is a multitrace, being the image of a constant unary polynomial. Thus, if M is a multitrace, so are the complex products $M\{z\}, M(M\{z\}), M(M(M\{z\}))$, etc. We argue that this is an increasing sequence of sets which terminates at $M \cup \{z\}$ whenever $M \cup \{z\}$ is strongly connected.

 $\mathbf{2}$

Since $M \cup \{z\}$ is strongly connected, there exists $m \in M - \{z\}$ such that $z \to m$, equivalently z = mz. Thus, $\{z\} \subseteq M\{z\}$. Multiplying both sides of this inclusion by M repeatedly yields $M\{z\} \subseteq M(M\{z\}) = M^2\{z\}$, then $M^2\{z\} \subseteq M^3\{z\}$, etc. Thus the multitraces $M^i\{z\}$ increase with i. They are contained in $M \cup \{z\}$ since this set is a subalgebra of **S**. If $X := \bigcup_i M^i\{z\}$, then $X = M^j\{z\}$ for some large j, which makes X a multitrace. By construction we have MX = X, so there is no directed edge from M - X into X. Since $z \in X$, there can be no directed edge from the set $(M \cup \{z\}) - X = M - X$ into X. But $M \cup \{z\}$ is strongly connected and X is a nonempty subset, so this forces $M \cup \{z\} = X =$ a multitrace.

For (4), apply (1).

Items (2) and (3) of this lemma produce a nontrivial strongly connected multitrace, while items (3) and (4) allow one to grow this multitrace without restriction until we reach S. Since the type of **S** is **3**, we obtain from Theorem 1 the desired result.

Theorem 3. A simple tournament with more than two elements is functionally complete.

However, the advantage of multitraces is that they are a 'local' tool; they may be applied to minimal congruences as easily as to simple algebras. All the arguments of Lemma 2 apply to the setting of minimal congruences, hence:

Theorem 4. If α is a minimal congruence of a tournament, then every α -class is a multitrace. If some α -class has at least 3 elements, then the type of $\langle 0, \alpha \rangle$ is **3**.

Minimal congruences of type **3** whose classes are multitraces are functionally complete in the sense that, if U_0, U_1, \ldots, U_n are congruence classes, then any function $f: U_1 \times \cdots \times U_n \to U_0$ can be interpolated by a polynomial. (Theorem 3.12 of [2] proves this when all U_i are equal, but it is easy to see that the statement holds without that assumption.)

Acknowledgement. I thank the referee for suggesting that I include Lemma 2 (1) and for simplifying the proof of Lemma 2 (2).

References

- Hobby, D., McKenzie, R.: The Structure of Finite Algebras. Contemporary Mathematics 76, American Mathematical Society, Providence, RI, 1988
- [2] Kearnes, K.A., Kiss, E.W., Valeriote, M.A.: Minimal sets and varieties. Trans. Amer. Math. Soc. 350, no. 1, 1–41 (1998)
- [3] Pálfy, P.P.: Some functionally complete minimal clones. Acta Sci. Math. 73 no. 3-4, 487–495 (2007)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER, CO 80309-0395, USA *E-mail address*: kearnes@euclid.colorado.edu