CSCI5254: Convex Optimization & Its Applications

Convex functions

e basic properties and examples

e operations that preserve convexity

e the conjugate function

e quasiconvex functions

e log-concave and log-convex functions

e convexity with respect to generalized inequalities



Definition
f:R"™ — R is convex if dom f is a convex set and

fllz+(1=0)y) <O0f(z)+(1-0)f(y)

forall z,y edom f, 0 <0 <1

(y, f(y))
(z, f(x))

e f is concave if —f is convex

e f is strictly convex if dom f is convex and

fO0x+(1—0)y) <0f(z)+(1-0)f(y)

forxz,ycdomf, x £y, 0<6<1
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Examples on R

CoNnvex:

e affine: ax + b on R, for any a,b € R

e exponential: e**, for any a € R

e powers: z¥on Ry, fora>1ora <0

e powers of absolute value: |z|P on R, for p > 1

e negative entropy: zlogx on R,

concave:
e affine: ax + b on R, for any a,b € R
e powers: ¥ on R4, for0 < a <1

e |ogarithm: logx on Ry
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Examples on R" and R™*"

affine functions are convex and concave; all norms are convex

examples on R"

e affine function f(z) = alx + b

e norms: ||z, = (020, |z:|P)Y/P for p > 1,

T||so = maxy |z

examples on R™*" (m x n matrices)

e affine function

FX)=tr(ATX)+b=) Y A;X;;+b

i=1 j=1

e spectral (maximum singular value) norm

FIX) =1 X|l2 = Omax(X) = Amax(XTX))1/?
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Restriction of a convex function to a line

f:R"™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t |z +tv € dom f}

is convex (in t) for any x € dom f, v € R"
can check convexity of f by checking convexity of functions of one variable

example: f:S"™ — R with f(X) =logdet X, dom f =S"
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Restriction of a convex function to a line

f:R™ — R is convex if and only if the function ¢ : R — R,
g(t) = f(z + tv), domg = {t |z + tv € dom f}

is convex (in t) for any x € dom f, v € R"

can check convexity of f by checking convexity of functions of one variable

example: f:S" — R with f(X) =logdet X, dom f = S% |

g(t) = logdet(X +tV) log det X + log det (I + tX—l/QVX—1/2)

= logdet X + > "log(1+t\;)
1=1

where ); are the eigenvalues of X ~1/2V X ~1/2

g is concave in t (for any choice of X = 0, V'); hence f is concave
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Extended-value extension

extended-value extension f of fis

~

f(x)=f(z), z€domf,  f(z)=o00, x¢domf

often simplifies notation; for example, the condition

~

0<0<1 = [fOr+(1-0)y) <0f(x)+(1-0)f(y)
(as an inequality in RU {o0}), means the same as the two conditions

e dom f is convex

e for x,y € dom f,

0<6<1 = f(Oz+(1—0)y) <Of(z)+(1—0)f(y)
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First-order condition

f is differentiable if dom f is open and the gradient

o - (4242, 4)

exists at each x € dom f

1st-order condition: differentiable f with convex domain is convex iff

fly) > f(z)+ Vf(x) (y—z) forall z,y € dom f

f(y)
flx) + Vf(x) (y— =)

(z, f(z))

first-order approximation of f is global underestimator
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Second-order conditions

f is twice differentiable if dom f is open and the Hessian V?f(x) € S,

0° f(x)

2 L. —
v f(x)w 85@813’

1,7 =1,...,m,

exists at each x € dom f

2nd-order conditions for twice differentiable f with convex domain

e f is convex if and only if

V2f(z) =0 forall z € dom f

o if V2f(z) = 0 for all z € dom f, then f is strictly convex
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Examples

) = (1/2)at Pz + ¢'x +r (with P € S™)

i

(

quadratic function: f

Pz +q,

Viz) =

convex if P >0

| Az — b]3

least-squares objective: f(x)

convex (for any A)

quadratic-over-linear: f(x,y)

.ﬁ.ﬂvﬁ//g’//{y
L7

ZZ7N NN
22

....

convex for y > 0

10
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log-sum-exp: f(x) =log > ,_, expxy is convex

| 1
Vif(x) = 1—Tzd1ag(z) — (1TZ)2,zzT (z1 = exp i)

to show V2f(z) = 0, we must verify that vI'V2f(x)v > 0 for all v:

UTVZf(g;)v — (2 k Zkvl%)(g(:f::lcz)k)—z (2 k Uk 2k)° > 0

since (3, vizk)® < (02, 2z1kv3) (O, k) (from Cauchy-Schwarz inequality)

geometric mean: f(z) = ([]i_, zx)'/™ on R’ is concave

(similar proof as for log-sum-exp)
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Epigraph and sublevel set

a-sublevel set of f: R” — R:
Co = {o € dom f | f(2) < a)

sublevel sets of convex functions are convex (converse is false)

epigraph of f : R" — R:

epif = {(z,t) e R"""' |z € dom f, f(x) <t}

epi f

f is convex if and only if epi f is a convex set

Convex functions
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Jensen’s inequality

basic inequality: if f is convex, then for 0 <6 <1,

fOz+ (1—=0)y) <0f(x)+ (1-0)f(y)

extension: if f is convex, then

f(Ez) < Ef(2)
for any random variable z

basic inequality is special case with discrete distribution

prob(z = x) =0, prob(z=y)=1-—10
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Operations that preserve convexity

practical methods for establishing convexity of a function

1. verify definition (often simplified by restricting to a line)
2. for twice differentiable functions, show VZf(x) = 0

3. show that f is obtained from simple convex functions by operations
that preserve convexity

nonnegative weighted sum
composition with affine function
pointwise maximum and supremum
composition

minimization

perspective

Convex functions
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Positive weighted sum & composition with affine function

nonnegative multiple: af is convex if f is convex, a > 0
sum: f1 + fo convex if fi, fo convex (extends to infinite sums, integrals)

composition with affine function: f(Ax + b) is convex if f is convex

examples

e log barrier for linear inequalities

f(x) = —Zlog(bi —a; 1), domf={z|a]z<b,i=1,...,m}
i=1
e (any) norm of affine function: f(z) = ||Az + b||
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),...

examples

, fm(x)} is convex

e piecewise-linear function: f(r) = max;—1._..(alx + b;) is convex

PR

e sum of r largest components of x € R":
f(z) =2pp+ap + -+ 2

is convex (x; is ith largest component of x)

Convex functions
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Pointwise maximum

if f1, ..., fm are convex, then f(x) = max{fi(x),..., fin(x)} is convex

examples

e piecewise-linear function: f(r) = max;—1 . m(alx + b;) is convex

e sum of r largest components of x € R":
f(z) = xpy+ g+ + 2

is convex (x; is ith largest component of x)
proof:

flx) =max{z; +zp+ - +x;, |1 <i1 <ia < - <ip <n}

Convex functions
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Pointwise supremum

if f(z,y) is convex in x for each y € A, then

g(x) = sup f(z,y)
yeA

IS convex

examples

e support function of a set C: S¢(x) = sup,c¢ y!'z is convex

e distance to farthest point in a set ("

f(z) = sup ||z —
yel

e maximum eigenvalue of symmetric matrix: for X € S",

AmaX(X) = Ssup yTXy
lyll2=1

Convex functions
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Composition with scalar functions

composition of g : R — R and h: R — R:

. .. g convex, h convex, h nondecreasing
f is convex if ~ _ _
g concave, h convex, h nonincreasing

e proof (for n =1, differentiable g, h)
f(z) = h"(g(x))g' (x)* + W (g(x))g" (x)
e note: monotonicity must hold for extended-value extension h

examples

e expg(x) is convex if g is convex

e 1/g(x) is convex if g is concave and positive

Convex functions
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Vector composition

composition of ¢ : R® = R* and 1 : R* = R:

f(z) = h(g(x)) = h(g1(x), g2(@), - . ., gie())

fis convex if g; convex, h convex, h nondecreasing in each argument
g; concave, h convex, h nonincreasing in each argument

proof (for n = 1, differentiable g, h)

"(x) = g'(2)"Vh(g(2))g'(z) + Vh(g(x))" " (x)

examples
e > " logg;(x)is concave if g; are concave and positive

e log> " expgi(z) is convex if g; are convex
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Minimization
if f(z,y) is convex in (x,y) and C'is a convex set, then

g(z) = yiggf(fc, Y)

IS convex

examples

o f(z,y) =2l Ax + 221 By + y!' Cy with

[AB

BT C]zo, C >0

minimizing over y gives g(z) = inf, f(x,y) = 21 (A — BC~'B )z
g is convex, hence Schur complement A — BC~'BT >0

e distance to a set: dist(x,S) = inf,cgs ||z — y|| is convex if S is convex
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Perspective

the perspective of a function f : R" — R is the function ¢ : R” x R — R,
g(x,t) = tf(x/t),  domg={(z,t) |/t €domf, t >0}

g is convex if f is convex

examples
e f(z) =x'xis convex; hence g(x,t) = xlx/t is convex for t > 0

e negative logarithm f(x) = —logx is convex; hence relative entropy
g(x,t) =tlogt — tlogx is convex on RiJr

e if f is convex, then
g(x) = (' + d)f (Azx +b)/(c' z + d))

is convex on {x | ¢’z +d >0, (Az+b)/(cl'z +d) € dom f}
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The conjugate function

the conjugate of a function f is

fy)= sup (y'z— f(z))

rxedom f

f(x)

v ,///’»(0, —f*(y))
e f* is convex (even if f is not)

e will be useful in chapter 5

Convex functions
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examples

e negative logarithm f(x) = —logx
f*(y) = sup(zy+logz)
x>0
_ J —1-log(-y) y<0
- 00 otherwise

e strictly convex quadratic f(z) = (1/2)z' Qz with Q € ST},

() Sgp(yT:B — (1/2)2" Qx)

_1T—1
—QyQy

Convex functions
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Quasiconvex functions

f : R™ — R is quasiconvex if dom f is convex and the sublevel sets
Su = {z € dom f | f(2) < a}

are convex for all «

e f is quasiconcave if —f is quasiconvex

e f is quasilinear if it is quasiconvex and quasiconcave

Convex functions
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Examples

o \/m Is quasiconvex on R

o ceil(x) =inf{z € Z| 2 > x} is quasilinear
e logx is quasilinear on R,

e f(x1,x2) = x5 IS quasiconcave on R?H

e linear-fractional function

T b
f(x):%, dom f = {z |clz+d > 0}
is quasilinear
e distance ratio
|z — all2
f(x) = 1z = bll, dom f = {z | ||z — al|2 < ||z — b||2}
2

IS quasiconvex
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internal rate of return

e cash flow = = (zq,...,z,); x; is payment in period i (to us if z; > 0)
e we assume zg < Oand xg+21+---+x, >0
e present value of cash flow x, for interest rate r:

PV(z,r) =) (1+7) 'z,
i=0
e internal rate of return is smallest interest rate for which PV (x,r) = 0:
IRR(x) = inf{r > 0| PV(x,r) =0}

IRR is quasiconcave: superlevel set is intersection of open halfspaces

IRR(z) > R <<= Z(l +7r) ", >0for 0<r <R
i=0
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Properties

modified Jensen inequality: for quasiconvex f

0<0<1 = f(0z+(1-0)y) <max{f(x),f(y)}

first-order condition: differentiable f with cvx domain is quasiconvex iff

fly) < flx) = Vi)' (y—2)<0

sums of quasiconvex functions are not necessarily quasiconvex

Convex functions
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Log-concave and log-convex functions
a positive function f is log-concave if log f is concave:
f(0x+(1=0)y) > f(x)’f(y)' ™" for0<o<1

f is log-convex if log f is convex

e powers: % on R, . is log-convex for a < 0, log-concave for a > 0

e many common probability densities are log-concave, e.g., normal:

) = 1 3@ (@ -7)

vV (2m)rdet X

e cumulative Gaussian distribution function ® is log-concave

1 xr
O(z) = \/—2_7T/ e~ /2 dy

Convex functions
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Properties of log-concave functions

e twice differentiable f with convex domain is log-concave if and only if
f@)V2f(x) 2V f(2)Vf(x)"
for all x € dom f
e product of log-concave functions is log-concave
e sum of log-concave functions is not always log-concave

e integration: if f: R" x R™ — R is log-concave, then

g(x) = / F(x,y) dy

is log-concave (not easy to show)

Convex functions
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consequences of integration property

e convolution f x g of log-concave functions f, g is log-concave

(7 +9)@) = [ £ =gty

e if C' C R" convex and y is a random variable with log-concave pdf then
f(z) = prob(z +y € C)

is log-concave

proof: write f(x) as integral of product of log-concave functions

f(:v)=/g(:v+y)p(y) dy, 9(’“>:{ é Z;g

p is pdf of y
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example: yield function
Y(z) = prob(x +w € 5)
e 2 € R": nominal parameter values for product

e w € R"™: random variations of parameters in manufactured product

e S: set of acceptable values

if S is convex and w has a log-concave pdf, then

e Y is log-concave

e yield regions {x | Y(z) > «} are convex

Convex functions
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Convexity with respect to generalized inequalities

f:R" — R™ is K-convex if dom f is convex and

fllz+(1—-0)y) =k 0f(x)+ (1 —0)f(y)

forr,yecdomf,0<60<1

example f: 8™ — 8™, f(X) = X?is S''-convex

proof: for fixed z € R™, 21 X%z = || X 2|3 is convex in X, i.e.,
AOX +(1-0)Y)2<02'X%2+ (1 -0)21Y?2

for X, Y eS™ 0<6<1

therefore (0X + (1 —0)Y)? < 0X*+ (1 - 0)Y?

Convex functions
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