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Optimization problem in standard form

minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
= () '

e © € R" is the optimization variable
e fo: R" — R is the objective or cost function
e f,:R" =R, i=1,...,m, are the inequality constraint functions

e h; : R™ — R are the equality constraint functions
optimal value:
p* =inf{fo(x) | fi(zr) <0, i=1,....,m, hi(x) =0, i=1,...,p}

e p* = oo if problem is infeasible (no x satisfies the constraints)

e p* = —oo if problem is unbounded below
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Optimal and locally optimal points

x is feasible if x € dom f; and it satisfies the constraints
a feasible x is optimal if fo(x) = p*; Xopt is the set of optimal points

x is locally optimal if there is an R > 0 such that x is optimal for

minimize (over z) fo(2)

subject to fi(z) <0, i=1,....,m, hi(z)=0, i=1,...

|z —z|2 < R

examples (with n =1, m = p = 0)

e fo(r)=1/x, dom fy = Ry,: p* =0, no optimal point

o fo(x) =—logx, dom fh =R, : p*=—00

o fo(x)= :Ulog:c dom fy =R, : p*=—1/e, x = 1/e is optimal
o fo(z)=2a>—3x, p* = —0o0, local optimum at z =1
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Implicit constraints

the standard form optimization problem has an implicit constraint
m p
x €D = ﬂdomfz- N ﬂdomhi,

e we call D the domain of the problem
e the constraints f;(x) <0, h;(x) = 0 are the explicit constraints

e a problem is unconstrained if it has no explicit constraints (m = p = 0)

example:
minimize fo(x) = — Z,lf:l log(b; — al'x)

is an unconstrained problem with implicit constraints a! z < b;
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Feasibility problem

find x
subject to  fi(x) <0, i=1,....m
hi(x) =0, i=1,...,p

can be considered a special case of the general problem with fy(x) = 0:
minimize 0
subject to  fi(x) <0, i=1,....,m

hi(x) =0, 1

e p* = 0 if constraints are feasible; any feasible x is optimal

e p* = oo if constraints are infeasible
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Convex optimization problem

standard form convex optimization problem
minimize  fo(x)

subject to fz(:c) i=1,....,m
a; x—bz, 1=1,...,p

e fo, f1, ..., fm are convex; equality constraints are affine

e problem is quasiconvex if fy is quasiconvex (and f1, ..., fm convex)

often written as

minimize  fo(x)
subject to fz( )<0, i=1,....,m
Ax =0

important property: feasible set of a convex optimization problem is convex
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example

minimize  fo(z) = x7 + 25
subject to  fi(z) =21/(1+235) <0
e fo is convex; feasible set {(z1,x2) | 11 = —x2 < 0} is convex

e not a convex problem (according to our definition): f; is not convex, hy
is not affine

e equivalent (but not identical) to the convex problem
minimize  x% + 13

subject to x1 <0
T+ To = 0
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Local and global optima

any locally optimal point of a convex problem is (globally) optimal
proof: suppose x is locally optimal and y is optimal with fo(y) < fo(x)

x locally optimal means there is an R > 0 such that

z feasible, |z—z|o <R = fo(z) > fo(x)

consider z = 0y + (1 — 0)z with 0 = R/(2|ly — z||2)

o |[y—zlla >R, 500 <6 <1/2
e 2 is a convex combination of two feasible points, hence also feasible

e ||z —z|2 = R/2 and

fo(z) < 0fo(z) + (1 —0)foly) < fo(x)

which contradicts our assumption that x is locally optimal
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Optimality criterion for differentiable f

x Is optimal if and only if it is feasible and

Vfolx) (y —x) >0 for all feasible y

if nonzero, V fo(x) defines a supporting hyperplane to feasible set X at z

Convex optimization problems



e unconstrained problem: z is optimal if and only if

r € dom fj, V fo(x) =0

e equality constrained problem
minimize fo(x) subjectto Ax =10
x is optimal if and only if there exists a v such that

r € dom fo, Ax = b, Vi(x)+Av =0

e minimization over nonnegative orthant
minimize fo(x) subjectto x>0

x is optimal if and only if

r €domfy, =0, { Vio(x)i=0 x;>0
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Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints
minimize  fo(x)
subject to fz( ) <0, i=1,....,m
Ax =b
Is equivalent to

minimize (over z) fo(Fz + xg)
subject to filFz4+x9) <0, i=1,...,m

where F' and z( are such that

Ar=b <= x = Fz+ xg for some z
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e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  f;(A;x+b;) <0, 1=1,...

is equivalent to

minimize (over =, ¥;)  fo(yo)
subject to fily;) <0, 1=1,...

yZIAZZC—I—bZ, i:O,l,...,m

e introducing slack variables for linear inequalities

minimize  fo(x)
subject to alx <b;, i=1,...,m

is equivalent to

minimize (over z, s) fo(x)

subject to alr+s;=0b; i=1,..

Convex optimization problems
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e epigraph form: standard form convex problem is equivalent to

minimize (over x, t) t
subject to folx) =t <0
fz(

) -
750

@l/\

Ax

e minimizing over some variables

minimize  fo(x1, 72)

subject to  f;(z1) <0, 1=1,..

Is equivalent to

minimize  fo(z1)

subject to  fi(z1) <0, 1=1,.

where fo(z1) = infy, fo(z1, z2)

Convex optimization problems
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Quasiconvex optimization

minimize  fo(x)
subject to  f;(x) <0, i=1,...,m
Ax =b

with fy : R" — R quasiconvex, fi, ..., [, convex

can have locally optimal points that are not (globally) optimal

(337 fO(CU)

Convex optimization problems
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convex representation of sublevel sets of fj

if fo is quasiconvex, there exists a family of functions ¢; such that:

e ¢.(x) is convex in x for fixed ¢

e t-sublevel set of fj is O-sublevel set of ¢, 1.e.,

fol) <t <= du(x) <0

example

with p convex, ¢ concave, and p(z) > 0, g(z) > 0 on dom fj

can take ¢;(z) = p(x) — tq(x):
e fort >0, ¢; convex in x

e p(x)/q(x) < tif and only if ¢4(z) <0

Convex optimization problems
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quasiconvex optimization via convex feasibility problems
d+(x) <0, filz) <0, i=1,...,m, Ax =b (1)

e for fixed t, a convex feasibility problem in z

e if feasible, we can conclude that t > p*; if infeasible, t < p*

Bisection method for quasiconvex optimization

given | < p*, u > p”*, tolerance € > 0.

repeat
L.t:=(4+u)/2.
2. Solve the convex feasibility problem (1).
3.if (1) is feasible, u :=t; elsel :=t.
until u — [ < €.

requires exactly [log,((u —1)/€)] iterations (where u, [ are initial values)
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Linear program (LP)

minimize c¢'z +d
subject to Gx =X h
Ax =b
e convex problem with affine objective and constraint functions

e feasible set is a polyhedron

Convex optimization problems
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Examples

diet problem: choose quantities x4, . .., z, of n foods

e one unit of food j costs c;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize ¢!z

subjectto Ax>b, x>0

piecewise-linear minimization
minimize maxizl,,,,,m(aiT:E + b;)
equivalent to an LP

minimize t
subject to alx +b; <t, i=1,...,m

Convex optimization problems
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Chebyshev center of a polyhedron

Chebyshev center of /«

P={x|alax<b, i=1,...,m}
Is center of largest inscribed ball
B={zc+ulllulls <7}
e al'x <b; for all z € B if and only if

sup{a; (zc +u) | [lull2 <7} = aj zc + rllaill2 < b;

e hence, ., v can be determined by solving the LP

maximize 7
subject to  alx.+7llai2 <b;, i=1,...,m

Convex optimization problems
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Linear-fractional program

minimize  fo(x)
subject to Gz X h

Ax =b
linear-fractional program
cl'e+d -
fo(z) = Tot dom fo(z) ={z [ e z+ f > 0}

e a quasiconvex optimization problem; can be solved by bisection

e also equivalent to the LP (variables y, z)

minimize ¢’y + dz
subject to Gy <X hz
Ay = bz
ely+ fz=1
z>0

Convex optimization problems
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generalized linear-fractional program

Ty 4 d,
fole) = max_ Tﬁ i £ domfow) = {w | efotfi> 0.0 =1, o1}

a quasiconvex optimization problem; can be solved by bisection

example: Von Neumann model of a growing economy
maximize (over z, ) min,—y .,z /x;

subject to x>0, Bzt < Ax

e 1,z € R™: activity levels of n sectors, in current and next period
e (Ax);, (Bx™);: produced, resp. consumed, amounts of good i

e x /x;: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector
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Quadratic program (QP)

minimize  (1/2)z' Pz +q¢'a +r
subject to Gax X h
Ax =0

o Pc Sﬁ, so objective is convex quadratic

e minimize a convex quadratic function over a polyhedron

Convex optimization problems
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Examples

least-squares
minimize ||Az — b||3

e analytical solution 2* = ATh (AT is pseudo-inverse)

e can add linear constraints, e.g., | 2z X u

linear program with random cost

T

minimize ¢élx +y2lYr = Ecly + yvar(clz)

subject to Gx = h, Ax =0

e c is random vector with mean ¢ and covariance X

T T

e hence, ¢L'x is random variable with mean &% 2 and variance 21Xz

e v > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)

Convex optimization problems
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Quadratically constrained quadratic program (QCQP)

minimize  (1/2)2! Pox + ¢z + 7
subject to  (1/2)z' Pz +q¢lxz+7; <0, i=1,...,m
Ax =D

e P, € S"'; objective and constraints are convex quadratic

o if P,..., P, €S, feasible region is intersection of m ellipsoids and
an affine set

Convex optimization problems
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Second-order cone programming

minimize 1z
subject to || Az + bill < clz+d;, i=1,...,m
Frx =g
(A; € R"*" F € RP™™)

e inequalities are called second-order cone (SOC) constraints:

(A;z + b;, cf x + d;) € second-order cone in R™ !

e for n; = 0, reduces to an LP; if ¢; = 0, reduces to a QCQP

e more general than QCQP and LP

Convex optimization problems
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP

minimize cl'x

subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;
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Robust linear programming

the parameters in optimization problems are often uncertain, e.g., in an LP
minimize c'z
subject to alx <b;, i=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize cl'x

subject to alx <b;foralla; €&, i=1,...,m,

e stochastic model: a; is random variable; constraints must hold with
probability 7

minimize cl'x

subject to  prob(alz <b;))>n, i=1,....,m
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deterministic approach via SOCP

e choose an ellipsoid as &;:
E=AHa; + Pu | ||ullzs <1} (a; e R", P; e R"™")
center is a;, semi-axes determined by singular values/vectors of P;

e robust LP

minimize ¢!z

subject to alx <b; Va; €&, i=1,....,m
is equivalent to the SOCP

minimize L'y

subject to  alz + ||Plz| <b;, i=1,...,m

(follows from sup,,<1(@: + Pu)'z = aj z + || P z||2)

Convex optimization problems
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stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ; (a; ~ N(a;, %;))

T
)

bz' — C_LT.CU
prob(al z < b;) = ® L
|5 22

e a!x is Gaussian r.v. with mean a! z, variance z! X;x; hence

where ®(z) = (1/v/27) [*_ e~ /2dt is CDF of N(0,1)

e robust LP
minimize c¢lx
subject to prob(alz <b;)>mn, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize ¢!z

subject to  alx + <I>_1(77)H23/2:1:H2 <b, i=1....m

Convex optimization problems
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Generalized inequality constraints

convex problem with generalized inequality constraints

minimize  fo(x)
subject to  fi(x) =k, 0, i=1,....m
b

e fo:R" = Rconvex; f; : R" — R* K,-convex w.r.t. proper cone K;
e same properties as standard convex problem (convex feasible set, local
optimum is global, etc.)
conic form problem: special case with affine objective and constraints
minimize ¢’z
subjectto Fr+ g <K 0
Ax =D

extends linear programming (K = R'") to nonpolyhedral cones
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Semidefinite program (SDP)

minimize ¢!z

subject to x1Fy + a0l + -+ x,F, + G <0
Ax =b

with £, G € S”

e inequality constraint is called linear matrix inequality (LMI)

e includes problems with multiple LMI constraints: for example,

A

o B+ +x,F,+ G =0, o1 Fy 4+ +x,F, +G =<0

~

is equivalent to single LMI
Fy0 £ 0 £, 0 G 0
xl[o F1]+$2[0 F2]+ +£”’”[0 ﬁn]+[o é]

Convex optimization problems



LP and SOCP as SDP

LP and equivalent SDP

LP: minimize ¢z SDP: minimize ¢z

subject to Ax <b subject to diag(Ax —b) <0

(note different interpretation of generalized inequality <)

SOCP and equivalent SDP

SOCP: minimize f'x
subject to HAzw+bz||2 < C,LTZE—l—dZ', 1 = 1,...,m

SDP: minimize 1z
subject to (Az + )T Tx+d; =0, 2=1,...,m
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Eigenvalue minimization

minimize  Apax(A(x))
where A(z) = Ao + x1 41 + - - + 2, A,, (with given 4; € %)
equivalent SDP

minimize ¢
subject to  A(z) <t

e variables z € R", t € R

e follows from
Amax(A) <t <=  A=<tI

Convex optimization problems
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Matrix norm minimization

minimize | A(@)]|2 = (Amax(A(z)TA(z))) "
where A(x) = Ao+ 21A; + -+ - + 2, A, (with given 4; € RP*9)
equivalent SDP
minimize t
. t
subject to [ A

e variables x € R", t € R

e constraint follows from
[Alls <t <= ATA<tI, t>0

tI A
[AT t]]to
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Geometric programming

monomial function

ai, ,a an

f(x) = cx{txg? - - xon, dom f = R"

with ¢ > 0; exponent o; can be any real number
posynomial function: sum of monomials

K

flz) =) ey - -afr,  domf=RL,
k=1

geometric program (GP)

minimize  fo(x)
subject to  f;(x) <

with f; posynomial, h; monomial

Convex optimization problems



Geometric program in convex form

change variables to y; = log z;, and take logarithm of cost, constraints

e monomial f(x) = cx{'---z% transforms to
log f(e¥t,...,e"") =aly +b (b =1logc)

: K
e posynomial f(z) =3, cxx]*as? -+ xn"* transforms to

K
log f(e¥',...,eY") = log <Z ea}g“bk) (b = log cx)
k=1

e geometric program transforms to convex problem

minimize  log Zle exp(ad,y + bOk))
subject to log Zle exp(aly + bzk)) <0, i=1,....m
Gy+d=0

Convex optimization problems
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Design of cantilever beam

segment 4 segment 3 segment 2 segment 1

Z

e NV segments with unit lengths, rectangular cross-sections of size w; X h;

e given vertical force F' applied at the right end

design problem

minimize  total weight
subject to upper & lower bounds on w;, h;

upper bound & lower bounds on aspect ratios h;/w;
upper bound on stress in each segment

upper bound on vertical deflection at the end of the beam
variables: w;, h; fori=1,..., N
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objective and constraint functions

e total weight wihy + -+ -+ wyhy is posynomial

e aspect ratio h;/w; and inverse aspect ratio w;/h; are monomials
e maximum stress in segment i is given by 6iF'/(w;h?), a monomial

e the vertical deflection y; and slope v; of central axis at the right end of
segment ¢ are defined recursively as

v = 12(i—1/2)

B + Vit

y;, = 6(t—1/3) + Vit1 + Yit1

fori=N,N—1,...,1, with vyy11 =yni1 =0 (E is Young's modulus)

v; and y; are posynomial functions of w, h
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formulation as a GP

minimize  wihy + - +wyhy

subject to wmaxwZ <1, wminwi—l <1, +=1,...,N
hil hi <1, hpwh; ' <1, i=1,...,N

Sl w " hy <1, Smmwih; ' <1, i=1,...,N
6iFo;l w'h7 <1, i=1,...,N

Yy < 1

note

® we write Win < Wi < Whax and hpin < hz < hmax

wmin/wi S 17 wi/wmax S 17 hmin/hi S 17 hi/hmax S

o we write Siin < h;/w; < Siax as
Sminwi/hi S 17 hi/(szmaX) S 1

Convex optimization problems
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Minimizing spectral radius of nonnegative matrix

Perron-Frobenius eigenvalue A,¢(A)

e exists for (elementwise) positive A € R™*"
e a real, positive eigenvalue of A, equal to spectral radius max; |A;(A)|
e determines asymptotic growth (decay) rate of A*: AF ~ )\gf as k — o

e alternative characterization: Apf(A) = inf{\ | Av < Av for some v > 0}

minimizing spectral radius of matrix of posynomials

e minimize \,¢(A(x)), where the elements A(z);; are posynomials of x

e equivalent geometric program:

minimize A
subject to 2?21 A(ZC)ZJUJ/(AUZ) <1, +=1,...,n

variables A\, v, =

Convex optimization problems 40



Vector optimization

general vector optimization problem

minimize (w.r.t. K) fo(x)
subject to fi(x)

<
hi(z) <

0, 2=1,....m
0

vector objective fy: R” — R?, minimized w.r.t. proper cone K € R?

convex vector optimization problem

minimize (w.r.t. K) fo(x

)
subject to fix) <0, i=1,...,m
Axr =10

with fy K-convex, f1, ...,

Convex optimization problems
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Optimal and Pareto optimal points

set of achievable objective values

O = {fo(x) | = feasible}

e feasible x is optimal if fy(x) is the minimum value of O

e feasible x is Pareto optimal if fo(x) is a minimal value of O

fo(z°)

fo(z™)

x” is optimal 2P is Pareto optimal
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Multicriterion optimization
vector optimization problem with K = RY.
folz) = (Fi(x), ..., Fo(x))

e ¢ different objectives F;; roughly speaking we want all F;'s to be small

e feasible x* is optimal if
y feasible = fo(x*) = foly)

if there exists an optimal point, the objectives are noncompeting

e feasible xP° is Pareto optimal if

y feasible,  fo(y) = fo(2P°) = fo(2"°) = fo(y)

if there are multiple Pareto optimal values, there is a trade-off between
the objectives
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Regularized least-squares

minimize (w.r.t. Ri) (|| Az — b3, [|z]|3)

0 10 20 30 40 50

Fy(z) = || Az — b|3

example for A € R10%10. heavy line is formed by Pareto optimal points

Convex optimization problems
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Risk return trade-off in portfolio optimization

minimize (w.r.t. R7) (—pTx,27%7)
subject to 1T2=1, x>0

e x € R" is investment portfolio; x; is fraction invested in asset %

e p € R" is vector of relative asset price changes; modeled as a random
variable with mean p, covariance X

o p''z = Er is expected return; z7' ¥z = var r is return variance

example
15% ‘ ‘ 1t |
x(4)/ =(3) x(2)
c 8
% 10%" .5
o S 0.5
c O x(l)
© e
GE) 5%+ =
O,
0% 30 10% 20% 0% 10% 20%
standard deviation of return standard deviation of return
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Scalarization

to find Pareto optimal points: choose A >+ 0 and solve scalar problem

minimize AT fo(x)
subject to  fi(z) <0, i=1,....,m
hz(ac):O, ’izl,...,p

if x is optimal for scalar problem,
then it is Pareto-optimal for vector
optimization problem

for convex vector optimization problems, can find (almost) all Pareto
optimal points by varying A > g+ 0
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Scalarization for multicriterion problems

to find Pareto optimal points, minimize positive weighted sum

M fo(z) = MFi(x) + -+ + A Fy(x)

examples

e regularized least-squares problem of page 44

20

take \ = (1,7) with v >0 151
minimize || Az — b5 + v||z||3

for fixed ~, a LS problem
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e risk-return trade-off of page 45

minimize —plx 4+ vzl Yz

subject to 17z =1,

for fixed v > 0, a quadratic program

Convex optimization problems
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