CSCI5254: Convex Optimization & Its Applications

Geometric problems

e extremal volume ellipsoids
e centering
e classification

e placement and facility location



Minimum volume ellipsoid around a set

Lowner-John ellipsoid of a set C: minimum volume ellipsoid £ s.t. C' C &
o parametrize £ as & = {v | ||Av + b||2 < 1}; w.l.o.g. assume A € ST

e vol & is proportional to det A™!; to compute minimum volume ellipsoid,

minimize (over A, b) logdet A~}
subject to Sup,cc |[Av + blj2 <1

convex, but evaluating the constraint can be hard (for general C)
finite set C = {x1,...,xmn}:

minimize (over A, b) logdet A~1
subject to |Az; + 0| <1, i=1,...,m

also gives Lowner-John ellipsoid for polyhedron conv{z, ..., z,,}

applications?
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid £ inside a convex set C' C R"

o parametrize £ as £ = {Bu+d | |Jul|2 < 1}; w.l.o.g. assume B € S’

e vol & is proportional to det B; can compute £ by solving

maximize logdet B
SUbjeCt to SUPIIuHQSl IC(BU -+ d) < 0

(where Io(z) =0 for x € C and Io(x) = oo for x & C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {z | alx <b;, i =1,...,m}:

maximize logdet B
subject to  ||Ba;|l2 +ald <b;, i=1,....m

(constraint follows from supy,,,<1 al (Bu+ d) = ||Ba;||2 + al d)
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Efficiency of ellipsoidal approximations

C' C R" convex, bounded, with nonempty interior

e Lowner-John ellipsoid, shrunk by a factor n, lies inside C

e maximum volume inscribed ellipsoid, expanded by a factor n, covers

example (for two polyhedra in R?)

/
N

factor n can be improved to /n if C' is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C:

e center of largest inscribed ball ('Chebyshev center’)
for polyhedron, can be computed via linear programming (page ?7)

e center of maximum volume inscribed ellipsoid (page 3)

MVE center is invariant under affine coordinate transformations
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Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations
filx) <0, i=1,...,m, Fxr=g
is defined as the optimal point of

minimize —>_ " log(—fi(z))
subjectto Fxr =g

e more easily computed than MVE or Chebyshev center (see later)

e not just a property of the feasible set: two sets of inequalities can
describe the same set, but have different analytic centers
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analytic center of linear inequalities alz < b;, i =1,...,m

Tac 1S Minimizer of

b(a) == log(bi — alw

inner and outer ellipsoids from analytic center:
T .
ginner C {33 | a; x < bz’; 1 = 17 7m} C gouter

where

ginner — {ZC | (55 T xac)Tv2§b(5€ac)($ T xac) S 1}
Eouter = {33 | (z — leELC)TV2¢(5%C)(QC — Tac) < m(m — 1)}
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Linear discrimination

separate two sets of points {z1,...,xn}, {y1,.-.,ym} by a hyperplane:

alz; +b>0 i=1,...,N, aly, +b<0, i=1,....M

homogeneous in a, b, hence equivalent to
T - T -
axr;+b>1, 1=1,... N, a Yy +o< -1, +=1,...,. M
a set of linear inequalities in a, b

Geometric problems



Robust linear discrimination

(Euclidean) distance between hyperplanes

Hi = {z]|a'z+b=1}
Ho = {z|a'z+b=-1}

is dist(H1, Ha) = 2/||al|2

to separate two sets of points by maximum margin,
minimize  (1/2)|al|2
subject to a’x; +b>1, i=1,...,N (1)
aly;+b< -1, i=1,...,.M

(after squaring objective) a QP in a, b
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Lagrange dual of maximum margin separation problem (1)

maximize 17X+ 11y
subject to 2 HZfil i — Zi\il piyi|| <1 (2)
2
1" =1y, A>=0, u>0

from duality, optimal value is inverse of maximum margin of separation

Interpretation
e change variables to 6; = \; /11X, v; = p; /1T, t = 1/(1T XN+ 11 p)

e invert objective to minimize 1/(1TA +11p) =t

<t

minimize ¢
subject to ||Z L0z — sz\i1 ViYi

2

=0, 119=1, =0, 11y=1

optimal value is distance between convex hulls
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Approximate linear separation of non-separable sets

minimize 17w 4+ 17
subjectto alz;+b>1—-w;, i=1,...,N
aly, +b< —-14wv;, i=1,....M
u=0, v>=0
e anLPina, b, u, v
e at optimum, u; = max{0,1 — a’'z; — b}, v; = max{0,1 + al'y; + b}

e can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize  |lal|2 + (1T u + 11v)

subjectto alz; +b>1—-w;, i=1,...,N
aty,+b< —-14wv;, i=1,....M
u=0, v>=0

produces point on trade-off curve between inverse of margin 2/||a||2 and
classification error, measured by total slack 17w + 17w

same example as previous page,
with v = 0.1:
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Nonlinear discrimination

separate two sets of points by a nonlinear function:
flz;) >0, i=1,...,N, fly;) <0, +=1,..., M
e choose a linearly parametrized family of functions
f(z) = 0" F(2)
F = (F,...,F;): R" = R" are basis functions

e solve a set of linear inequalities in 6:

0'F(x;)>1, i=1,...,N, 0 F(y;) < -1, i=1,...
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quadratic discrimination: f(2) = 2zl Pz +ql2z+r
x; Pri+q xi+r>1, yi Pyi+q yi+r < —1

can add additional constraints (e.g., P = —1I to separate by an ellipsoid)

polynomial discrimination: F'(z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial
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Placement and facility location

e N points with coordinates z; € R® (or R?)
e some positions x; are given; the other x;'s are variables

e for each pair of points, a cost function f;;(z;, ;)

placement problem
minimize  » .. fi;j(zi, z;)
variables are positions of free points

Interpretations

e points represent plants or warehouses; f;; is transportation cost between
facilities 7 and j

e points represent cells on an IC; f;; represents wirelength
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example: minimize »_; . 4 h([|zi — xj||2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = 22, h(z) = 2
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