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The Weighted Sum Rate Maximization in MIMO
Interference Networks: Minimax Lagrangian

Duality and Algorithm
Lijun Chen Seungil You

Abstract—We take a new approach to the weighted sum-
rate maximization in multiple-input multiple-output (MIMO)
interference networks, by formulating an equivalent max-min
problem. This reformulation has significant implications: the
Lagrangian duality of the equivalent max-min problem provides
an elegant way to establish the sum-rate duality between an
interference network and its reciprocal, and more importantly,
suggests a novel iterative minimax algorithm with monotonic con-
vergence for the weighted sum-rate maximization. The design and
the convergence proof of the algorithm use only general convex
analysis. They apply and extend to other max-min problems with
similar structure, and thus provide a general class of algorithms
for such optimization problems. This paper presents a promising
step and lends hope for establishing a general framework based
on the minimax Lagrangian duality for developing efficient
resource allocation and interference management algorithms for
general MIMO interference networks.

Index Terms—Iterative minimax algorithm, Lagrangian du-
ality, max-min optimization, weighted sum-rate maximization,
interference networks, multiple-input multiple-output (MIMO).

I. INTRODUCTION

The weighted sum-rate maximization, which aims to max-
imize the weighted sum-rate of all users or data links in a
network, is an important problem that serves as a basis for
many resource management and network design problems. It
has a long history, with a rich literature from the classical
water-filling structure for parallel Gaussian channels to more
recent iterative weighted MMSE algorithm [2], [15] and polite
water filling algorithm [11] for MIMO interference channels,
to just name a few. The weighted sum-rate maximization is in
general a highly nonconvex and NP hard problem, and despite
its importance and long history, remains open for general
channels/networks.

In this paper, we consider the weighted sum-rate maximiza-
tion in a general MIMO interference network that consists of
a set of interfering data links, each of them equipped with
multiple antennas at the transmitter and receiver. The MIMO
interference network, under many different names such as
MIMO B-MAC and MIMO IBC, includes broadcast chan-
nels, multiple access channels, interference channels, small
cell networks, and many other practical wireless networks
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as special cases. Specifically, we study the weighted sum-
rate maximization with general linear power covariance ma-
trix constraints, assuming Gaussian transmit signal, Gaussian
noise, and the availability of channel state information at the
transmitter (Section II). It typifies a class of problems that are
key to the next generation wireless communication networks
where the interference is a limiting factor.

Various solution approaches have been proposed for the
weighted sum-rate maximization in the MIMO interference
network or its special cases; see, e.g., [2]–[16], [19], [21]–[23],
[25]–[27]. Broadly speaking, most of these approaches fall into
the following three main categories, among others. The first
category exploits the relation between the mutual information
and the minimum mean square error (MMSE), and solves
the weighted sum-rate maximization based on the weighted
MMSE; see, e.g., [2], [15]. The second category exploits the
water-filling structure or its variants at the optimum to solve
iteratively for the KKT conditions; see, e.g., [11], [12]. The
third category is based on the iterative convex approximation
that at each iteration linearizes the nonconvex term around the
point from the previous iteration; see, e.g., [3], [13], [21].
Many of the resulting algorithms are meta algorithms that
require solving a large convex optimization problem at each
iteration, which may incur a high computational complexity;
and some of them do not even have guaranteed convergence.

In this paper, we take a different approach to the weighted
sum-rate maximization in the MIMO interference network,
which leads to a new and efficient algorithm with guaranteed
monotonic convergence as well as an elegant way to establish
the rate duality between an interference network and its
reciprocal. Specifically, we reformulate the weighted sum-rate
maximization as an equivalent max-min problem, by treating
the interference-plus-noise covariance matrix definition as
a constraint. We then construct an extended difference of
logdet function and apply matrix analysis techniques from
robust control to establish an explicit saddle point solution
for the Lagrangian of the equivalent max-min optimization
(Section III-A and the Appendix). When the explicit solution
is applied to the optimal dual variable, the Lagrangian duality
of the equivalent max-min problem provides an elegant way
to establish the sum-rate duality between the interference
network and its reciprocal (Section III). More importantly, the
explicit saddle solution has significant algorithmic implication,
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and suggests a novel algorithm, termed the iterative minimax
algorithm, for the weighted sum-rate maximization (Section
IV). The design and the convergence proof of the algorithm use
only general convex analysis. They apply and extend to other
max-min problems where the objective function is concave
in the maximizing variables and convex in the minimizing
variables and the constraints are convex, and thus provide a
general class of algorithms for such optimization problems.

The iterative minimax algorithm we design is based largely
on an explicit saddle point solution for the Lagrangian of
certain max-min optimization (Section III-A). This explicit
solution has been identified for the case where the matrices
involved are all square and invertible in [24]. In contrast, we
establish the explicit solution for any general matrices, as long
as the objective function is well-defined in a proper sense
(the Appendix). Our proof uses only general matrix analysis,
and the construction and techniques used are expected to find
applications in handling singularity issues that arise from the
matrix form capacity formula.

This paper benefits from the insight from the seminal work
by Yu [24] that establishes uplink-downlink duality via min-
imax duality for the sum capacity of the Gaussian broadcast
channel, and Section III can be seen as a substantial extension
of [24]. Our model is more general and the results expect
to find broad applications, and we establish the explicit saddle
point solution for the Lagrangian of the max-min optimization
with general matrices, and most importantly, we explore the
algorithmic implication of the minimax duality and explicit
saddle point solution to develop a novel algorithm for the
weighted sum-rate maximization.

The paper is organized as follows. The next section presents
details of the system model and problem formulation. Section
III explores the minimax Lagrangian duality, and establishes
the explicit saddle point solution for the Lagrangian of the
equivalent max-min problem and the sum-rate duality. Section
IV explores the algorithmic implication of the explicit saddle
point solution, and presents the iterative minimax algorithm
and its convergence analysis. Section V provides numerical
examples to complement the theoretical analysis in the previ-
ous sections, and Section VI concludes the paper.

Notations. The capital letters such as L are used to denote
sets, the capital letters in bold such as H are used to denote
matrices, and the lower case letters in bold such as x are used
to denote vectors. The identity matrix is denoted by I, and
the zero matrix is denoted by 0. The trace of matrix A is
denoted by Tr (A). For two n× n Hermitain matrices A and
B, A � B and A � B refer to the generalized inequalities
under the positive semidefinite cone Sn+. The inequality A � 0

(or A � 0) then means that matrix A is positive semidefinite
(or positive definite), i.e., A ∈ Sn+ (or A ∈ Sn++).

II. SYSTEM MODEL

Consider a general interference network N with a set L
of MIMO data links (or users), with the transmitter tl and
receiver rl of link l ∈ L being equipped with nl and ml

antennas respectively. Let xl ∈ Cnl×1 denote the transmit
signal of link l, which is assumed to be circularly symmetric
complex Gaussian.1 The received signal yl ∈ Cml×1 at the
receiver rl can be written as

yl =
∑
k∈L

Hlkxk + wl, (1)

where Hlk ∈ Cml×nk denotes the channel matrix from the
transmitter tk to the receiver rl, and wl ∈ Cml×1 denotes the
additive circularly symmetric complex Gaussian noise with
identity covariance matrix.

The interference network described above is very general
and includes as special cases many practical channels and
networks such as broadcast channels, multiple access channels,
small cell networks, and heterogeneous networks, etc.

A. The power covariance matrix constraints

Denote by Σl � 0 the covariance matrix of the transmit
signal xl, l ∈ L. We now specify the constraints on these
power covariance matrices.

Assume that the links are grouped into a set S of non-
empty subsets Ls, s ∈ S that cover all of L. Each subset Ls

may correspond to those links that are controlled or managed
by a certain entity or for a certain purpose. These subsets
may overlap with each other; and some of them may even be
identical, corresponding to the situation where there may be
multiple constraints on the same subset of links. For each link
l ∈ L, denote by Sl the set of those subsets that include the
link, i.e., Sl = {s ∈ S|l ∈ Ls}.

Each link l ∈ L is associated with an nl × nl constraint
matrix Qs

l � 0 for each s ∈ Sl; and two of these matrices may
be identical. We assume that each group of links Ls, s ∈ S
is subject to a linear power covariance matrix constraint as
follows: ∑

l∈Ls

Tr (ΣlQ
s
l ) ≤ 1, s ∈ S. (2)

The constraint (2) is very general and captures all reasonable
linear constraints on power. For instance, when there is only
a budget PT on the total power of all links as considered in
many existing work such as [11], the cardinality |S| = 1 and
Qs
l = 1

PT
I. When there is only a per-link power budget pl, l ∈

L, each group Ls contains only one link and Qs
l = 1

Pl
I. Each

group Ls, s ∈ S may also represent those links or users in
a cell of a microcell network and each cell s is subject to
a total power budget Ps. In this scenario, the subsets Ls are
non-overlapping and Qs

l = 1
Ps

I, ∀l ∈ Ls.

Remark 1. We have assumed linear constraints on the power
covariance matrices. However, as will be seen later, our
theory development and algorithm design are based on general
convex analysis. So the results in this paper can be extended
to the network with nonlinear convex power covariance matrix
constraints, which we will investigate in future work.

1The assumption of circularly symmetric complex signal can be dropped
by applying the theory development and proposed algorithm to real Gaussian
signal with twice the dimension.
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B. The weighted sum-rate maximization

Assume that the channel state information is available at the
transmitter. For given power covariance matrix Σl, l ∈ L, an
achievable rate cl of the link l is given by

cl = log

∣∣∣∣∣∣∣I + HllΣlH
+
ll

I +
∑

k∈L\{l}

HlkΣkH
+
lk

−1
∣∣∣∣∣∣∣, (3)

where | · | denotes the matrix determinant and the interferences
from other links are treated as noise.2 Assume that each link
l ∈ L is associated with a weight wl > 0. We aim to allocate
power for each link so as to maximize the weighted sum-rate
subject to the power covariance matrix constraints:

max
Σl�0

∑
l∈L

wlcl (4)

s.t.
∑
l∈Ls

Tr (ΣlQ
s
l ) ≤ 1, s ∈ S. (5)

The weighted sum-rate maximization is in general a hard non-
convex problem. It is a fundamental problem that serves as a
basis for many resource management and network design prob-
lems, while still remains open for general channels/networks.

III. THE MINIMAX LAGRANGIAN DUALITY

In this section, we will reformulate the weighted sum-rate
maximization as an equivalent max-min problem, by treating
the interference-plus-noise covariance matrix definition as a
constraint. This seemingly trivial reformulation has significant
implications: the Lagrangian duality of the equivalent max-
min problem provides an elegant way to establish the sum-rate
duality between an interference network and its reciprocal, and
more importantly, suggests a new algorithm for the weighted
sum-rate maximization.

A. The minimax Lagrangian duality

Denote by Ωl, l ∈ L the interference-plus-noise covariance
matrix at the receiver rl, i.e.,

Ωl = I +
∑

k∈L\{l}

HlkΣkH
+
lk. (6)

We can rewrite the weighted sum-rate maximization (4)-(5)
equivalently as the following max-min problem:

max
Σl�0

min
Ωl�0

∑
l∈L

wl
(
log
∣∣Ωl + HllΣlH

+
ll

∣∣− log |Ωl|
)

(7)

s.t.
∑
l∈Ls

Tr (ΣlQ
s
l ) ≤ 1, s ∈ S, (8)

Ωl = I +
∑

k∈L\{l}

HlkΣkH
+
lk, l ∈ L. (9)

Note that, when HllΣlH
+
ll is not of full rank, the above

problem is equivalent to a truncated system where Ωl is

2If the interference from link k to link l is completely cancelled using
successive decoding and cancellation or dirty paper coding, we can simply
set Hlk = 0. This allows our model to cover a wide range of communication
techniques.

restricted to Ωl = HllXlH
+
ll , Xl � 0. Intuitively, this follows

from the fact that when the signal at a channel is zero, it does
not matter what the interference-plus-noise is, in terms of the
achieved rate; mathematically, this causes technical difficulty
regarding singular matrices; see the Appendix for more detail
and insight.

The objective function of problem (7)-(9)

F(Σ,Ω) =
∑
l∈L

wl
(
log
∣∣Ωl + HllΣlH

+
ll

∣∣− log |Ωl|
)

is concave in Σ and convex in Ω. Consider the Lagrangian

L(Σ,Ω,Λ,µ)

= F(Σ,Ω) +
∑
s∈S

µs

(
1−

∑
l∈Ls

Tr (ΣlQ
s
l )

)

+
∑
l∈L

Tr

Λl(Ωl − I−
∑

k∈L\{l}

HlkΣkH
+
lk)

 ,

where µ = {µs}s∈S with µs ≥ 0 the dual variable associated
with the power covariance matrix constraint (8), and Λ =

{Λl}l∈L with Λl � 0 the dual variable associated with the
interference-plus-noise covariance matrix definition (9).3 For
any given (Λ,µ), L is concave in Σ and convex in Ω as F
is. Thus, maxΣ minΩ L = minΩ maxΣ L, and the optimum
in solving for the dual function is a saddle point.

Consider the first order condition (part of the KKT condition
[1]) for the optimum:4

wlH
+
ll

(
Ωl + HllΣlH

+
ll

)−1
Hll = Φl, (10)

wl

(
Ω−1
l −

(
Ωl + HllΣlH

+
ll

)−1
)

= Λl, (11)

where

Φl =
∑
s∈Sl

µsQ
s
l +

∑
k∈L\{l}

H+
klΛkHkl.

For any given feasible dual variable (Λ,µ), the above con-
dition gives the saddle point condition of Lagrangian L as
a function of (Σ,Ω); and when (Λ,µ) is a dual optimum,
solving the equations (10)-(11) gives a primal optimum [1].
In the next section, we will exploit this fact to design a novel
algorithm to solve the weighted sum-rate maximization.

Theorem 1. Given feasible dual variables (Φ,µ), an explicit
solution (Σ,Ω) for the saddle point equations (10)-(11) is
given by:

Ωl = wlHll

(
Φl + H+

llΛlHll

)−1
H+
ll , (12)

Σl = wl

(
Φ−1
l −

(
Φl + H+

llΛlHll

)−1
)
. (13)

The solution (12)-(13) is motivated by [24] which focuses
on a primal-dual optimum and where correspondingly the

3Even though the equation (9) is an equality constraint, the dual feasibility
requires Λl � 0, as minΩl�0 L = −∞ otherwise.

4Note that the first oder condition does not hold for all dual variables, but
only for those that satisfy the dual feasibility condition. We only need to
consider those feasible dual variables [1].
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optimal power covariance matrix Σl and the interference-plus-
noise matrix Ωl are assumed to be positive definite and the
channel matrix Hll is assumed to be square and invertible.
Here, the explicit solution (12)-(13) is established for any
given feasible dual variables, and the power covariance matrix
and the interference-plus-noise matrix are positive semidefinite
and the channel matrix can be any general matrix. However,
the solution is for an equivalent, truncated system where we
ignore the interference-plus-noise of a channel whose signal
is zero, and “-1” denotes pseudo inverse if the matrix involved
is singular. The proof of Theorem 1 is rather involved, and is
presented in the Appendix.

The equations (10)-(11) and equations (12)-(13) have sim-
ilar structures, which can be exploited to establish the sum-
rate duality between an interference network and its reciprocal
based on the Lagrangian dual of the (truncated) max-min
problem (7)-(9).

Definition 1. Consider an interference networkN with a set L
of MIMO links and channel matrix Hkl from the transmitter
of link l ∈ L to the receiver of link k ∈ L. Its reciprocal
N̂ is defined as a network with the same set L of links but
with reversed directions where the channel matrix Ĥkl from
the transmitter of link l to the receiver of link k is given by
Ĥkl = H+

lk.

The transmitter (receiver) of a link in the reciprocal network
N̂ is the receiver (transmitter) of the corresponding link in the
original network N . For instance, for a broadcast channel with
a channel matrix H, its reciprocal is a multiple access channel
with channel matrix H+, and vice versa [17], [18], [24].

Motivated by the structural parallel between the equations
(10)-(11) and equations (12)-(13), define a weighted sum-rate
maximization problem for the reciprocal network:

max
Σ̂l�0

min
Ω̂l�0

∑
l∈L

wl

(
log
∣∣∣Ω̂l + ĤllΣ̂lĤ

+
ll

∣∣∣− log
∣∣∣Ω̂l

∣∣∣) (14)

s.t.
∑
l∈Ls

Tr
(

1

|Sl|µs
Σ̂l

)
≤ 1, s ∈ S, (15)

Ω̂l =
∑
s∈Sl

µsQ
s
l +
∑

k∈L\{l}

ĤlkΣ̂kĤ
+
lk, l ∈ L, (16)

where µs, s ∈ S are the optimal duals associated with the
constraints (8), the noise covariance matrix at link l ∈ L is
given by

∑
s∈Sl

µsQ
s
l , and the power covariance matrices Σ̂l

are constrained group-wise as in the original network. Denote
by µ̂s, s ∈ S and Λ̂l, l ∈ L the dual variables associated with
the constraints (15) and (16), respectively. By Theorem 1, the
following primal-dual of the reciprocal network

{Σ̂l, Ω̂l; µ̂s, Λ̂l} = {Λl,Φl;µs,Σl} (17)

satisfies the first-order condition for the optimum of the
weighted sum-rate maximization (14)-(16) of the reciprocal
network.

Even though the above problem achieves the same maxi-
mal sum-rate as problem (7)-(9) of the original network, its
constraints depend on the optimum of problem (7)-(9) and

also have a very different structure from those of problem (7)-
(9), which makes the rate duality between the two networks
less appealing. In the next subsection, we will study a few
appealing cases with “strong” rate duality where the weighted
sum-rate maximization problem of the reciprocal network has
exactly the same structure as that of the original network.

However, this weighted sum-rate maximization problem
may involve the optimal dual variables of the weighted sum-
rate maximization of the original network, as follows:

B. Case studies

We now discuss two typical cases, and show how the
minimax Lagrangian duality can be used to establish the
strong rate duality between the interference network and its
reciprocal.

1) The network with the per-link power constraints and
without interlink interference: Here the set S = L, Ωl = I,
and Ql = I

Pl
with Pl the power budget at each link l ∈ L. As

each link is independent, we can just focus on one link:

max
Σl�0

min
Ωl�0

log|Ωl + HllΣlH
+
ll | − log|Ωl| (18)

s.t. Tr
(

Σl

Pl

)
≤ 1, Ωl = I. (19)

The first order condition (10)-(11) reduces to

wlH
+
ll

(
Ωl + HllΣlH

+
ll

)−1
Hll = µl

I

Pl
,

wl

(
Ω−1
l −

(
Ωl + HllΣlH

+
ll

)−1
)

= Λl,

where µl ≥ 0 is the dual variable associated with the power
covariance matrix constraint. Define

Σ̂l =
Pl
µl

Λl,

Ω̂l = I.

The first order condition becomes

wlH
+
ll

(
Ωl + HllΣlH

+
ll

)−1
Hll =

µl
Pl

Ω̂l, (20)

wl

(
Ω−1
l −

(
Ωl + HllΣlH

+
ll

)−1
)

=
µl
Pl

Σ̂l, (21)

and the explicit solution (12)-(13) becomes

wlHll

(
Ω̂l + H+

ll Σ̂lHll

)−1

H+
ll =

µl
Pl

Ωl, (22)

wl

(
Ω̂−1
l −

(
Ω̂l + H+

ll Σ̂lHll

)−1
)

=
µl
Pl

Σl. (23)

Comparing equations (20)-(21) and equations (22)-(23), we
can conclude that the Lagrangian dual of the max-min problem
(18)-(19) is also a max-min problem:

max
Σ̂l�0

min
Ω̂l�0

log|Ω̂l + H+
ll Σ̂lHll| − log|Ω̂l| (24)

s.t. Tr

(
Σ̂l

Pl

)
≤ 1, Ω̂l = I, (25)

which is the sum-rate maximization problem defined on the
reciprocal link with channel matrix H+

l . At the corresponding
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saddle points, the two problems achieve the same rate, since
one is the dual of the other. Furthermore, introducing the dual
variables µ̂ and Λ̂l for the problem (24)-(25), we have the
following correspondence:

(Σl; Λl, µl) = (
Pl
µ̂l

Λ̂l;
µ̂l
Pl

Σ̂l, µ̂l), (26)

(Σ̂l; Λ̂l, µ̂l) = (
Pl
µl

Λl;
µl
Pl

Σl, µl). (27)

This recovers the well-known result in [17], [18], [24]. The
difference from [24] is that we establish the explicit solution
(22)-(23) and the correspondence (26)-(27) for general power
covariance matrices and channel matrices and at any saddle
points of the Lagrangian function (instead of only at an
optimum).

2) The network with the total power constraint: Here |S| =
1 and Ql = I

PT
, with PT the total power budget. The max-min

problem (7)-(9) reduces to

max
Σl�0

min
Ωl�0

∑
l

wl
(
log|Ωl + HllΣlH

+
ll | − log|Ωl|

)
(28)

s.t.
∑
l

Tr
(

Σl

PT

)
≤ 1, (29)

Ωl = I +
∑

k∈L\{l}

HklΣkH
+
lk, (30)

and the first order condition (10)-(11) reduces to

wlH
+
ll

(
Ωl + HllΣlH

+
ll

)−1
Hll = Φl,

wl

(
Ω−1
l −

(
Ωl + HllΣlH

+
ll

)−1
)

= Λl,

with Φl = µ I
PT

+
∑
k∈L\{l}H+

klΛkHkl, where µ ≥ 0 is the
dual variable associated with the total power constraint. Define

Σ̂l =
PT
µ

Λl,

Ω̂l = I +
∑

k∈L\{l}

H+
klΣ̂kHkl.

The first order condition becomes

wlH
+
ll

(
Ωl + HllΣlH

+
ll

)−1
Hll =

µ

PT
Ω̂l, (31)

wl

(
Ω−1
l −

(
Ωl + HllΣlH

+
ll

)−1
)

=
µ

PT
Σ̂l, (32)

and the explicit solution (12)-(13) becomes

wlHll

(
Ω̂l + H+

ll Σ̂lHll

)−1

H+
ll =

µ

PT
Ωl, (33)

wl

(
Ω̂−1
l −

(
Ω̂l + H+

ll Σ̂lHll

)−1
)

=
µ

PT
Σl. (34)

Comparing equations (31)-(32) and equations (33)-(34), we
can conclude that the Lagrangian dual of the max-min problem
(28)-(30) is also a max-min problem:

max
Σ̂l�0

min
Ω̂l�0

∑
l

wl

(
log|Ω̂l + H+

ll Σ̂lHll| − log|Ω̂l|
)

(35)

s.t.
∑
l

Tr

(
Σ̂l

PT

)
≤ 1, (36)

Ω̂l = I +
∑

k∈L\{l}

H+
klΣ̂kHlk, (37)

which is the weighted sum-rate maximization problem defined
on a network of reciprocal channels with channel matrix H+.
At the corresponding saddle points, the two problems achieve
the same weighted sum-rate, since one is the dual of the other.
Furthermore, introducing the dual variables µ̂ and Λ̂l for the
problem (35)-(37), we have the following correspondence:

(Σl; Λl, µ) = (
PT
µ̂

Λ̂l;
µ̂

PT
Σ̂l, µ̂), (38)

(Σ̂l; Λ̂l, µ̂) = (
PT
µ

Λl;
µ

PT
Σl, µ). (39)

This provides a simple proof of the weighted sum-rate duality
for the MIMO interference network with the total power
constraint identified in, e.g., [11].

IV. THE ITERATIVE MINIMAX ALGORITHM

Motivated by the minimax Lagrangian duality, in this sec-
tion we will design a novel algorithm for the weighted sum-
rate maximization and establish its convergence properties.

A. The iterative minimax algorithm

Note that an optimum of the max-min problem (7)-(9) is
a saddle point, and the first order condition (10)-(11) and its
explicit solution (12)-(13) or part of them will give a saddle
point, maximum, or minimum of Lagrangian L when certain
subset of its variables is fixed and given. This motivates an
iterative minimax algorithm to achieve an optimum, as follows.

1) Start with given Σn
l , l ∈ L that is feasible, i.e.,∑

l∈Ls

Tr (Σn
l Qs

l ) ≤ 1, s ∈ S,

and Ωn
l = I +

∑
k∈L\{l}HlkΣ

n
kH+

lk, l ∈ L. By
equation (11) that gives the condition for minimizing
L over Ωl, we choose Λn

l � 0 such that

Λn
l = wl

(
(Ωn

l )−1 −
(
Ωn
l + HllΣ

n
l H+

ll

)−1
)
. (40)

Therefore, for any Ω � 0, we have

F(Σn,Ωn) ≤ L(Σn,Ωn,Λn,µn)

≤ L(Σn,Ω,Λn,µn), (41)

where µn ≥ 0 will be determined later. Define

Φn
l =

∑
s∈Sl

µnsQs
l +

∑
k∈L\{l}

H+
klΛ

n
kHkl. (42)

Note that Φn
l does not necessary satisfy equation (10).

2) Given the above (Λn
l ,Φ

n
l ) and µn, by equations (12)-

(13), we choose (Σ̃n+1, Ω̃n+1) such that

Σ̃n+1
l = wl

(
(Φn

l )−1 −
(
Φn
l + HllΛ

n
l H+

ll

)−1
)
. (43)

Ω̃n+1
l = wlHll

(
Φn
l + HllΛ

n
l H+

ll

)−1
H+
ll . (44)

Plug Ω = Ω̃n+1 into inequality (41), we have

F(Σn,Ωn) ≤ L(Σn, Ω̃n+1,Λn,µn). (45)
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By the first order condition (10)-(11), (Σ̃n+1, Ω̃n+1) is
the saddle point of L(Σ,Ω,Λn,µn). Thus,

L(Σn, Ω̃n+1,Λn,µn) ≤ L(Σ̃n+1, Ω̃n+1,Λn,µn)

≤ L(Σ̃n+1,Ω,Λn,µn) (46)

for any Ω � 0.
3) The matrix Σ̃n+1

l is a function of µns , s ∈ Sl, denoted
explicitly by Σ̃n+1

l (µns ; s ∈ Sl). Define the set T such
that

T = {s ∈ S|
∑
l∈Ls

Tr
(
Qs
l Σ̃

n+1
l (µns̄ = 0+; s̄ ∈ Sl)

)
≥ 1}.

For each s ∈ S\T , we set µns = 0. For those s ∈ T , we
choose µns such that∑

l∈Ls

Tr
(
Qs
l Σ̃

n+1
l (µns̄ ; s̄ ∈ Sl)

)
= 1, s ∈ T. (47)

Note that Tr
(
Σ̃n+1
l (µns ; s ∈ Sl)

)
is decreasing in µns ,

and there are |T | equations for |T | variables. So, there
exists a solution to equation (47). With the afore choice
of µns , s ∈ S, we can see that

µns

(
1−

∑
l∈Ls

Tr
(
Σ̃n+1
l Qs

l

))
= 0. (48)

The above is a complementary slackness condition (part
of the KKT condition) that is required at an optimum [1],
but in our algorithm we enforce this condition at each
iteration.

4) Let

λ = max
s∈S

∑
l∈Ls

Tr
(
Σ̃n+1
l Qs

l

)
.

We see that 0 < λ ≤ 1. We then choose (Σn+1
l ,Ωn+1

l )

such that

Σn+1
l =

Σ̃n+1
l

λ
, (49)

Ωn+1
l = I +

∑
k∈L\{l}

HlkΣ
n+1
k H+

lk. (50)

Plug Σ̃n+1 = λΣn+1 and Ω = λΩn+1
l into the

inequality (46) and combine with the inequality (45),
we have

F(Σn,Ωn) ≤ L(λΣn+1, λΩn+1,Λn,µn)

= F(Σn+1,Ωn+1) +
∑
l∈L

(λ− 1)Tr (Λn
l )

+
∑
s∈S

µns

(
1−

∑
l∈Ls

Tr
(
Σ̃n+1
l Qs

l

))
= F(Σn+1,Ωn+1) +

∑
l∈L

(λ− 1)Tr (Λn
l )

≤ F(Σn+1,Ωn+1), (51)

where the second equality follows from equation (48)
and the last inequality follows from the fact that λ ≤ 1.

5) Repeat 1-4, we will obtain a monotone increasing se-
quence {F(Σn,Ωn)}, based on which we can conclude
that (Σn,Ωn) converges to a saddle point of the max-
min problem (7)-(9) and thus an (local) optimum of the
weighted sum-rate maximization (4)-(5).

We call the above algorithm the iterative minimax algo-
rithm; see Table I for a formal description. Different from
many existing algorithms mentioned in Section I, the iterative
minimax algorithm is not a meta algorithm that requires solv-
ing a large convex optimization problem at each iteration. The
only step of the algorithm that may potentially be complicated
is Step 8) that may require solving sets of coupled equations
when the subsets Ls, s ∈ S overlap. But Step 8) can be solved
efficiently using, e.g., the bisection search method. Moreover,
in practice, we expect that the subsets Ls, s ∈ S seldom
overlap.

TABLE I
THE ITERATIVE MINIMAX ALGORITHM

1) Initialize Σl, l ∈ L such that∑
l∈Ls Tr

(
ΣlQ

s
l

)
≤ 1, s ∈ S

2) Ωl ← I +
∑
k∈L\{l}HlkΣkH

+
lk, l ∈ L

3) Λl ← wl

(
(Ωl)

−1 −
(
Ωl + HllΣlH

+
ll

)−1
)
, l ∈ L

4) Φl ←
∑
s∈Sl µsQs

l +
∑
k∈L\{l}H+

klΛkHkl, l ∈ L

5) Σ̃l ← wl

(
(Φl)

−1 −
(
Φl + HllΛlH

+
ll

)−1
)
, l ∈ L

6) T ← {s ∈ S|
∑
l∈Ls Tr

(
Qs
l Σ̃l(µs̄ = 0+; s̄ ∈ Sl)

)
≥ 1}

7) µs ← 0 if s ∈ S\T
8) For s ∈ T, choose µs such that∑

l∈Ls Tr
(
Qs
l Σ̃l(µs̄; s̄ ∈ Sl)

)
= 1, s ∈ T

9) λ← maxs∈S
∑
l∈Ls Tr

(
Σ̃lQ

s
l

)
10)Σl ← Σ̃l

λ
, l ∈ L

11)Go to 2)

B. The convergence analysis

We now study the convergence properties of the iterative
minimax algorithm. The following result is immediate.

Theorem 2. The iterative minimax algorithm converges to a
saddle point (Σ∗,Ω∗) of the max-min problem (7)-(9); and Σ∗

is a (local) optimum of the weighted sum-rate maximization
(4)-(5).

Proof. By inequality (51), we have

With Lemma ??, to show the convergence of the iterative
minimax algorithm, it is enough to show that if F(Σn,Ωn) =

F(Σn+1,Ωn+1), then (Σn,Ωn) = (Σn+1,Ωn+1).

Seen form the derivation of the inequality (51), if
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F(Σn,Ωn) = F(Σn+1,Ωn+1), then

F(Σn,Ωn) = L(Σn,Ωn,Λn,µn)

= L(Σn, Ω̃n+1,Λn,µn)

= L(Σ̃n+1, Ω̃n+1,Λn,µn)

= L(Σn+1,Ωn+1,Λn,µn)

= F(Σn+1,Ωn+1).

It follows that both (Σn,Ωn,Λn,µn) and
(Σn+1,Ωn+1,Λn,µn) satisfy the KKT condition (the
first order condition, the primal feasibility, the dual feasibility,
and the complementary slackness [1]) of the max-min
problem (7)-(9), and thus both are saddle points of the
max-min problem. Furthermore, for any given dual variables,
the Lagrangian L is strictly concave in Σ. So, Σn = Σn+1,
and Ωn = Ωn+1 follows. Therfore, the iterative minimax
algorithm converges monotonically to a saddle point of the
max-min problem (7)-(9). The second part of the theorem
follows from the equivalence between the max-min problem
and the weighted sum-rate maximization problem.

Remark 2. The iterative minimax algorithm converges fairly
fast and can be implemented realtime. As each link knows
its own power covariance matrix and can measure/estimate
its interference-plus-noise covariance matrix, the algorithm
admits a distributed implementation if used as a realtime
algorithm.

Remark 3. The design and the convergence proof of the
iterative minimax algorithm use only general convex analysis.
They apply and extend to any max-min problems where the
objective function is concave in the maximizing variables and
convex in the minimizing variables and the constraints are
convex, and thus provide a general class of algorithms for
such optimization problems, which we will investigate in detail
in future work.

C. Case studies

We now discuss two typical cases and the corresponding
iterative minimax algorithms.

1) The network with the total power constraint: As men-
tioned in Section III-B2, here |S| = 1, and Ql = I

PT
with PT

the total power budget. The matrix Σ̃l defined in Section IV-A
is a function of µ, the dual variable associated with the total
power constraint. The iterative minimax algorithm reduces to
that described in Table II.

We have proposed another algorithm for the network with
the total power constraint in a previous work [10], which uses
the fact that the total power constraint is tight at an optimum,
and normalizes µ such that

∑
l∈L Tr

(
µ
PT

Σ̃l

)
= 1, i.e., the

algorithm enforces the tightness of the total power constraint
at the initial point and each iteration. In contrast, the algorithm
in Table II enforces the complementary slackness condition at
each iteration and can start with any feasible Σ. Moreover, the
algorithm in [10] hardly offers any insight on the algorithm

TABLE II
THE ITERATIVE MINIMAX ALGORITHM FOR THE NETWORK WITH THE

TOTAL POWER CONSTRAINT

1)Initialize Σl, l ∈ L such that
∑
l∈L Tr

(
Σl
PT

)
≤ 1

2)Ωl ← I +
∑
k∈L\{l}HlkΣkH

+
lk, l ∈ L --

3)Λl ← wl

(
(Ωl)

−1 −
(
Ωl + HllΣlH

+
ll

)−1
)
, l ∈ L

4)Φl ← µI +
∑
k∈L\{l}H+

klΛkHkl, l ∈ L

5)Σ̃l ← wl

(
(Φl)

−1 −
(
Φl + HllΛlH

+
ll

)−1
)
, l ∈ L

6)µ← 0 if
∑
l∈L Tr

(
Σ̃l(0

+)
PT

)
< 1;

otherwise, choose µ such that∑
l∈L Tr

(
Σ̃l(µ)
PT

)
= 1

7)λ←
∑
l∈L Tr

(
Σ̃l
PT

)
8)Σl ← Σ̃l

λ
, l ∈ L

9)Go to 2)

design for the network with general linear power covariance
matrix constraints.

2) The network with the per-link power constraints: Here
the set S = L, and Ql = I

Pl
with Pl the power budget at

each link l ∈ L. The matrix Σ̃l defined in Section IV-A is
a function of µl, the dual variable associated with the power
constraint at link l. The iterative minimax algorithm reduces
to that described in Table III.

TABLE III
THE ITERATIVE MINIMAX ALGORITHM FOR THE NETWORK WITH THE

PER-LINK POWER CONSTRAINTS

1)Initialize Σl, l ∈ L such that Tr
(

Σl
Pl

)
≤ 1

2)Ωl ← I +
∑
k∈L\{l}HlkΣkH

+
lk, l ∈ L

3)Λl ← wl

(
(Ωl)

−1 −
(
Ωl + HllΣlH

+
ll

)−1
)
, l ∈ L

4)Φl ← µI +
∑
k∈L\{l}H+

klΛkHkl, l ∈ L

5) Σ̃l ← wl

(
(Φl)

−1 −
(
Φl + HllΛlH

+
ll

)−1
)
, l ∈ L

6)µl ← 0 if Tr
(

Σ̃l(0
+)

Pl

)
< 1;

otherwise, choose µl such that Tr
(

Σ̃l(µl)
Pl

)
= 1

7)λ← maxl∈L Tr
(

Σ̃l
PT

)
8)Σl ← Σ̃l

λ
, l ∈ L

9)Go to 2)

V. NUMERICAL EXAMPLES

In this section, we provide numerical examples to com-
plement the analysis in the previous sections. Consider a
network where each link is equipped with 3 (4) antennas
at its transmitter (receiver) and the channel matrices have
zero-mean, unit-variance, i.i.d. complex Gaussian entries. We
will consider and compare the networks with low, moderate,
and high interference, which are characterized by scaling the
interference channel matrices Hij , i 6= j with a factor of 0.1,
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1, and 5 respectively. The weights wl’s are uniformly drawn
from [0.5, 1].

The implementation of our iterative minimax algorithm is
straightforward. It only uses basic matrix operations, except for
finding µ for which we use a bisection search method. This
is different from many other algorithms that need additional
problem parser or use the interior point method which are
often hard to implement in practical applications.

A. The network with the total power constraint

Figures 1, 2 and 3 show the monotonic convergence of our
algorithm (Table II) in a network with |L| = 10 interfering
links and a total power constraint PT = 10. Overall, the
algorithm shows very fast convergence. We see that the
convergence speed depends on the strength of interference.
As the interference becomes stronger, the weighted sum-rate
becomes highly non-convex. This intrinsic difficulty of the
problem makes the convergence slower.
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Fig. 1. The network with low interference and total power constraint.
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Fig. 2. The network with moderate interference and total power constraint.

B. The network with the per-link power constraints

Figures 4, 5 and 6 show the monotonic convergence of our
algorithm (Table III) in a network with |L| = 10 interfering
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Fig. 3. The network with high interference and total power constraint.

links and per-link power constraints where Pl’s are uniformly
drawn from {1, 2, · · · , 10}. Again, we see that the stronger the
interference, the slower the algorithm converges; but overall,
the algorithm shows fast convergence.
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Fig. 4. The network with low interference and per-link power constraints.
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Fig. 5. The network with moderate interference and per-link power con-
straints.
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Fig. 6. The network with high interference and per-link power constraints.

C. The network with the general linear power constraints

We have tested and evaluated the general iterative min-
imax algorithm (Table I) for large networks with general
linear power covariance constraints. Here we present results
on a network with |L| = 30 interfering links, i.e., the
network serves the 30 links or users simultaneously, with-
out using any time, frequency, or code multiplexing. These
links are partitioned into five groups: S = {{1}, {2}, {3,
· · · , 7}, {8, · · · , 20}, {21, · · · , 30}}. We can view these dif-
ferent groups of links as being served by different “cells”.
We consider cases with different combinations of intracell
interference (i.e., interference between the links within a cell)
and intercell interference (i.e., interference between the links
of different cells). The power constraint matrix Qs

l is set to
the (scaled) identity matrix without loss of generality, and the
power budget of each cell is randomly drawn from {1, · · · , 10}
and then post-multiplied by the cardinality of the cell.
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Fig. 7. The network with low intracell interference and low intercell
interference.

Figures 7–9 show the monotonic convergence of our algo-
rithm for the cases where the intracell interference – intercell
interference are low – low, moderate – low, and high –
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Fig. 8. The network with moderate intracell interference and low intercell
interference.
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Fig. 9. The network with high intracell interference and moderate intercell
interference.

moderate, respectively. As expected, the algorithm shows fast
convergence.

Note that in our numerical experiments, we draw parameters
such as the power budgets for the network randomly for each
run of the simulation. So, the sum-rate achieved for specific
examples may not appear proportional to the network size.
For example, compared to Figures 5–6 of the 10-link network,
Figures 8–9 of the 30-link network show a much lower rate
per-link, which is because examples shown in Figures 8–9
happen to have much lower aggregate power.

D. Complexity analysis

We have evaluated in the above the monotonic convergence
of the iterative minimax algorithm in terms of the number of
iterations. We now analyze the complexity of each iteration.
Recall that L is the number of data links, and for simplicity,
assume that each link has N transmit (and receive) antennas,
so the resulting Σl is an N × N matrix. Suppose that we
use the straightforward matrix multiplication and inversion,
then the complexity of these operations are O(N3). In each
iteration, Ωl incurs a complexity of O(LN3), and so does
Ωl + Hl,lΣ

(n+1)
l H+

l,l. Furthermore, Φl incurs a complexity
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of O(LN3), and so do Σ̃l and Σl. Since we need L of
these operations, the total complexity is O(L2N3). If we use
faster matrix multiplication such as the one in [20] that has
a complexity of O(N2.3727), we can reduce computational
complexity at each iteration to O(L2N2.3727).

VI. CONCLUSION

We have taken a new approach to the weighted sum-
rate maximization in the MIMO interference networks, by
formulating an equivalent max-min problem. The Lagrangian
duality of the equivalent max-min problem provides an elegant
way to establish the sum-rate duality between an interference
network and its reciprocal, and more importantly, suggests
a novel iterative minimax algorithm with monotonic conver-
gence for the weighted sum-rate maximization. The design and
the convergence proof of the iterative minimax algorithm use
only general convex analysis and matrix analysis. They apply
and extend to any max-min problems where the objective
function is concave in the maximizing variables and convex
in the minimizing variables and the constraints are convex,
and thus provide a general class of algorithms for such
optimization problems. This paper presents a promising step
and lends hope for establishing a general framework based
on the minimax Lagrangian duality for characterizing the
weighted sum-rate and developing efficient resource allocation
and interference management algorithms for general MIMO
interference networks.

As further work, we will study the practical and distributed
implementation of the iterative minimax algorithm and evalu-
ate its performance under realistic characteristics of wireless
channels. We are also studying to exploit the special structure
(i.e., the objective function is convex in minimizing variables
and concave in maximizing variables) of the problem to design
algorithm that is guaranteed to converge to a global optimum.
We will also investigate the application of the minimax duality
and algorithm to other resource management and design
problems in wireless networks. Lastly, we are exploring the
algorithmic implication of the minimax duality for general
nonconvex optimization problems that can be (re-)formulated
equivalently as a max-min problem.

APPENDIX: PROOF OF THEOREM 1

Before we present the proof, we first define an extended
difference of logdet function. Let A,B ∈ Sn+, the difference
of logdet function

F (A,B) = log |A + B| − log |B|

is not well-defined if B is not positive definite. If there exists
a nonsingular square matrix T such that

T+AT =

[
A1

0

]
, T+BT =

[
B1

0

]
where A1 ∈ Sm+ , B1 ∈ Sm++ for some m ≤ n, then we can
define an extended difference of logdet function:

F (A,B) := log |A1 + B1| − log |B1| .

With the definition of the above extended function, matrix
inverse resulting from the derivative of logdet function is
pseudo inverse when the matrix involved is singular. In the
following, a difference of logdet function is meant to be the
extended difference of logdet function, and matrix inverse is
pseudo inverse when the matrix involved is singular.

We now come to the proof of Theorem 1. For simplicity of
presentation and without loss of generality, we reload notations
and consider the following problem:

max
Σ�0

min
Ω�0

log |Ω + HΣH+| − log |Ω|+ Tr (ΛΩ)− Tr (ΦΣ)

(52)

where Λ � 0 and Φ � 0. The key idea of the proof is to show
that problem (52) is equivalent to a problem with Ω restricted
to Ω = HXH+, X � 0.

Lemma 1. The problem (52) is equivalent to the following
problem:

max
Σ�0

min
Ω�0

log |Ω + HΣH+| − log |Ω|+ Tr (ΛΩ)− Tr (ΦΣ)

(53)

s.t. Ω = HXH+, X � 0. (54)

Proof. Since HΣH+ � 0 and Λ � 0, there exists a
nonsingular square matrix T such that

TΛT+ =


S1

0

S3

0

 ,

(T+)−1HΣH+T−1 =


S1

S2

0

0

 ,
where S1,S2,S3 are diagonal and positive definite; see, e.g.,
Theorem 3.22 in [28]. Let Ω = T+Ω̃T, problem (52)
becomes

max
Σ�0

min
Ω̃�0

log |Ω̃ + (T+)−1HΣH+T−1| − log |Ω̃|

+Tr
(
TΛT+Ω̃

)
− Tr (ΦΣ) .

Now, consider those terms in the objective function that
depend on Ω̃:

L̃(Ω̃)

= log |Ω̃ + (T+)−1HΣH+T−1| − log |Ω̃|+ Tr
(
TΛT+Ω̃

)

= log

∣∣∣∣∣∣∣∣


Ω̃11 + S1 Ω̃12 Ω̃13 Ω̃14

Ω̃+
12 Ω̃22 + S2 Ω̃23 Ω̃24

Ω̃+
13 Ω̃+

23 Ω̃33 Ω̃34

Ω̃+
14 Ω̃+

24 Ω̃+
34 Ω̃44


∣∣∣∣∣∣∣∣

− log

∣∣∣∣∣∣∣∣


Ω̃11 Ω̃12 Ω̃13 Ω̃14

Ω̃+
12 Ω̃22 Ω̃23 Ω̃24

Ω̃+
13 Ω̃+

23 Ω̃33 Ω̃34

Ω̃+
14 Ω̃+

24 Ω̃+
34 Ω̃44


∣∣∣∣∣∣∣∣

+Tr
(
S1Ω̃11

)
+ Tr

(
S3Ω̃33

)
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and its minimization over Ω̃ � 0. By the determinant for-

mula for block matrix, when A is invertible
∣∣∣∣[ A B

C D

]∣∣∣∣ =

|A|
∣∣D − CA−1B

∣∣, and the fact that the determinant is a
continuous function, we have

L̃(Ω̃) ≥ log

∣∣∣∣∣∣
 Ω̃11 + S1 Ω̃12 Ω̃13

Ω̃+
12 Ω̃22 + S2 Ω̃23

Ω̃+
13 Ω̃+

23 Ω̃33

∣∣∣∣∣∣
− log

∣∣∣∣∣∣
 Ω̃11 Ω̃12 Ω̃13

Ω̃+
12 Ω̃22 Ω̃23

Ω̃+
13 Ω̃+

23 Ω̃33

∣∣∣∣∣∣
+Tr

(
S1Ω̃11

)
+ Tr

(
S3Ω̃33

)
,

where the equality can be achieved when Ω̃i4 = 0 for all
i = 1, 2, 3, 4.5 We will restrict Ω̃ to those with Ω̃i4 = 0 for
all i = 1, 2, 3, 4, as the equality is achieved at one of those
matrices.

Since S3 � 0 and Ω̃33 � 0, Tr
(
S3Ω̃33

)
≥ 0. We further

have

L̃(Ω̃) ≥ log

∣∣∣∣[ Ω̃11 + S1 Ω̃12

Ω̃+
12 Ω̃22 + S2

]∣∣∣∣
− log

∣∣∣∣[ Ω̃11 Ω̃12

Ω̃+
12 Ω̃22

]∣∣∣∣+ Tr
(
S1Ω̃11

)
,

where the equality is achieved when additionally Ω̃i3 = 0

for all i = 1, 2, 3. Therefore, we conclude that there exists a
minimizer Ω̃? with the form:

Ω̃? =


Ω̃11 Ω̃12

Ω̃+
12 Ω̃22

0

0

 .
The above manipulation is to restrict the problem to an

equivalent, truncated system where we ignore the interference-
plus-noise of a channel whose signal is zero. As mentioned
in Section III-A, intuitively, the equivalence of this truncated
system to the original max-min problem follows from the
fact that when the signal is zero it does not matter what the
interference-plus-noise is.

Now, consider a vector v such that H+v = 0, we have

v+HΣHT v = v+T+


S1

S2

0

0

Tv

= 0,

which implies

Tv =
[

0 0 v̄3 v̄4

]T
.

5By the determinant formula and the Sylvester’s criterion for positive
semidefinite matrix, if Ω̃44 = 0, then Ω̃i4 = 0 for all i = 1, 2, 3.

Therefore,

v+Ω?v = v+T+Ω̃?Tv

= v+T+


Ω̃11 Ω̃12

Ω̃+
12 Ω̃22

0

0

Tv

= 0.

This implies the null space N (H+) ⊂ N (Ω?), and further,
the range R(H) ⊃ R(Ω?+) = R(Ω?). Therefore, there exists
a matrix X � 0 such that

Ω? = HXH+.

We conclude that there exists an optimal solution with Ω? =

HXH+, and thus problem (52) and problem (53)-(54) are
equivalent.

With Lemma 1, we are ready to present the explicit saddle
point solution. Consider the logdet terms in the objective
function:

log |Ω + HΣH+| − log |Ω|
= log |HXH+ + HΣH+| − log |HXH+|
= log |H+H(X + Σ)| − log |H+HX|
= log |X + Σ| − log |X|.

The singularity issue comes out when H+H is not invertible,
but this can be handled by adding a small term κI, κ > 0 to
H+H and then taking the limit κ→ 0. Thus, we can transform
problem (52) into the following simple one:

max
Σ�0

min
X�0

log |X+Σ|− log |X|+Tr
(
H+ΛHX

)
−Tr (ΦΣ) .

(55)
By the first order optimality condition for the saddle point, we
have

(X + Σ)−1 −Φ = 0,

(X + Σ)−1 −X−1 + H+ΛH = 0,

from which we obtain the following explicit saddle point
solution:

Σ = Φ−1 − (Φ + H+ΛH)−1, (56)

X = (Φ + H+ΛH)−1,

and in terms of Ω we have

Ω = HXH+ = H(Φ + H+ΛH)−1H+. (57)

Note that problem (55) is well-defined only when Σ, X

satisfy the property specified for matrices A, B in the
beginning of this Appendix. This is verified as follows.

Proposition 1. The objective function in problem (55) is well-
defined for matrices Σ, X that are given by (56)-(57).

Proof. Let Ψ = Φ + H+ΛH, we have that the null space
N (Ψ) ⊂ N (Φ). To see this, note that Φ � 0 and H+ΛH �
0. Suppose v ∈ N (Ψ), then vTΨv = vTΦv+vTH+ΛHv =

0. As each term is nonnegative, vTΦv = 0, i.e., v ∈ N (Φ).
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Since N (Ψ) ⊂ N (Φ), there exists a unitary matrix U such
that

U+ΨU =

[
Ψ1

0

]
, U+ΦU =

[
Φ1

0

]
where Ψ1 � 0 and Φ1 � 0. By equations (56)-(57),

X = U

[
Ψ−1

1

0

]
U+, Σ = U

[
Φ−1

1 −Ψ−1
1

0

]
U+.

Note that Ψ−1
1 � 0, so by the definition of the extended

difference of logdet function, the objective function in problem
(55) is well-defined.

With (56)-(57), we can easily recover the explicit solution
(12)-(13). This concludes the proof of Theorem 1.
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