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Abstract. We consider nonparametric estimation of a distribution function F associated with a random
variable X based on a random sample. First, for x a point of continuity of F , we define a class of esti-
mators for F (x) and obtain their rates of convergence. Contrary to the existing literature, we impose no
restriction on the existence or smoothness of the derivatives of F . The traditional kernel estimator for F (x)
is a member of the class. Second, for x that is either the location of a jump discontinuity or an isolated
point of the support, we define a class of estimators for the jump px = F (x) − F (x−) and obtain their
rates of convergence. Again, no additional restriction is imposed on F beyond right-continuity. Our results
are of significant practical use as there are numerous examples in Economics, Finance and Biomedicine of
distributions that have point masses. Our main insight is also applied to obtain new inversion theorems for
characteristic functions and explicit estimates for convergence rates. A small simulation study provides some
evidence on the finite sample properties of our proposed estimators and contrasts their performance with
some existing alternatives. An empirical section illustrates the use of our estimators using data on global
elevation and data associated with “P-hacking” in economics journals.
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1 Introduction

A classic problem in statistics is the pointwise estimation of a distribution function F associated with a

random variable X using a random sample of observations {Xi}ni=1 with n ∈ N. For any x ∈ R, a natural

estimator for F (x) is the empirical distribution Fn(x), but the fact that Fn(x) is a step function has been the

motivation to consider smooth, nonparametric estimators for F when it is assumed to be absolutely contin-

uous (Nadaraya, 1964; Watson and Leadbetter, 1964; Azzalini, 1981; Falk, 1983; Swanepoel and Van Graan,

2005). A much smaller set of papers has studied nonparametric estimators where F is assumed to be merely

continuous or even discontinuous at x. Murthy (1965) proposes consistent and asymptotically normal esti-

mators for F (x) when x is a point of continuity of F and for the jump px = F (x)− lim
h↓0

F (x− h) when x is a

point of discontinuity. Winter (1973) and Yamato (1973) establish the almost sure, uniform convergence of

a class of nonparametric estimators for cases where F is continuous but a density does not exist. However,

none of these papers provide rates of convergence of the estimators under study and, surprisingly, no rates of

convergence are available in the existing literature. Whenever rates of convergence are available, such as in

Azzalini (1981), Shirahata and Chu (1992), Altman and Léger (1995), Bowman et al. (1998), Li and Racine

(2007, p. 21, Theorem 2.1), Tenreiro (2013), and Cheng (2017), F is assumed to be at least differentiable at

x.

In this paper we define general classes of nonparametric estimators for F (x) when x is a point of continuity

of F and for px when x is a point of discontinuity of F . For estimators in both classes, we provide rates

at which their biases and variances decay to zero as n → ∞ without imposing any smoothness restrictions

on F . These results are new and fill a surprising gap in the literature on the nonparametric estimation of

distribution functions and their jumps. As a direct consequence of our main results, we obtain sufficient

conditions for asymptotic normality of estimators in these classes.

The method used in proving our main results relies on the Stieltjes integral and, as a byproduct, we are

able to obtain new inversion theorems for characteristic functions together with convergence rates, general-

izing Lévy’s theorem (Lukacs, 1970, Thm. 3.2.1) and Borovkov’s theorem (Borovkov, 2009, Thm 7.2.2).
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The rest of this paper is organized as follows. In Section 2 we consider the estimation of F (x) at continuity

points and in Section 3 we consider the estimation of px. The lemmas used in Sections 2 and 3 to prove our

main theorems on estimation are applied in Section 4 to obtain new inversion theorems for characteristic

functions. Section 5 contains simulation results and Section 6 provides simple examples of empirical uses for

our estimators. Section 7 gives a brief conclusion. All proofs are provided in the appendix. In what follows,

since F is a distribution function, we take F to be right-continuous. We let L1 denote the space of functions

f on R with a finite norm ‖f‖L1
=
∫
R
|f(t)|dt; C the space of uniformly bounded, continuous functions on

R with norm ‖f‖C = sup
t∈R
|f(t)|; χS the indicator function of a set S; and E(X) the expectation and V (X)

the variance of a random variable X.

2 Estimation at points of continuity of F

We start by defining a general class of estimators for F (x) when x is a point of continuity of F . Given a

function U and a random sample {Xi}ni=1 from F we consider estimators defined as

F̂ (x) =
1

n

n∑
i=1

U

(
Xi − x
h

)
(1)

where h = hn > 0 is a bandwidth, or smoothing parameter, satisfying h → 0 as n → ∞. In addition, we

place the following restriction on U .

Assumption 1. Let U ∈ C, lim
x→−∞

U(x) = 1 and lim
x→∞

U(x) = 0.

If K : R → R is integrable with
∫∞
−∞K(t)dt = 1 and we set U(x) =

∫∞
x
K(t)dt, then it follows that U

satisfies Assumption 1. In addition, if K is an even function, then

F̂ (x) =
1

n

n∑
i=1

L

(
x−Xi

h

)
, (2)

where L(x) =
∫ x
−∞K(t)dt. This is the smoothed kernel distribution estimator, first proposed by Nadaraya

(1964) and extensively studied in the literature. See, more recently, Berg and Politis (2009), Giné and Nickl

(2009), Chacón and Rodŕıguez-Casal (2010), and Cheng (2017).

Letting φU (N) = max
{

supz<−N |U(z)− 1| , supz>N |U(z)|
}

for N > 0, Assumption 1 implies that
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φU (N) → 0 as N → ∞. Also, letting ω(x, ε) = sup0<h≤ε (F (x+ h)− F (x− h)), if x is a point of con-

tinuity of F , then ω(x, ε)→ 0 as ε→ 0.

Lemma 1. If U satisfies Assumption 1 and δ ∈ (0, 1), then for all h > 0

∣∣∣∣∫
R

U

(
y − x
h

)
dF (y)− F (x)

∣∣∣∣ ≤ φU (hδ−1) + ω(x, hδ)(1 + ‖U‖C).

The standard procedure used in the existing literature (Azzalini, 1981; Altman and Léger, 1995; Bowman

et al., 1998; Li and Racine, 2007; Cheng, 2017) is to obtain
∫
R
U
(
y−x
h

)
dF (y) using integration by parts

and then try to obtain convergence rates by imposing conditions on the derivatives of F . Using Stieltjes

integration, we are able to bypass the imposing additional smoothing conditions on F . Lemma 1 is the basis

for the following theorem.

Theorem 1. Suppose that U satisfies Assumption 1 and let x be a continuity point of F . Then

(i)
∣∣∣E(F̂ (x))− F (x)

∣∣∣ ≤ φU (hδ−1) + ω(x, hδ)(1 + ‖U‖C) and

(ii) if F (x) ∈ (0, 1) then nV (F̂ (x)) = F (x)(1− F (x)) + o(1).

We note that Murthy (1965) and Yamato (1973) established asymptotic unbiasedness for the estimator

F̂ (x) in Equation (2) when x is a point of continuity of F , but provided no rates of convergence, as we do

in part (i) of Theorem 1.1 If F is assumed to be continuous at every x ∈ R, then the following corollaries

give a uniform convergence rate for the bias and almost sure uniform convergence of F̂ to F .

Corollary 1. If U satisfies Assumption 1 and F ∈ C, then

sup
x∈R

ω(x, ε)→ 0 as ε→ 0 (3)

and supx∈R

∣∣∣E(F̂ (x))− F (x)
∣∣∣ ≤ φU (hδ−1) + supx∈R ω(x, hδ)(1 + ‖U‖C)→ 0 as h→ 0.

Corollary 2. If U satisfies Assumption 1 and F ∈ C, then supx∈R

∣∣∣F̂ (x)− F (x)
∣∣∣→ 0 almost surely.

1Murthy (1965) focuses on the estimation of the reliability function R(x) = 1−F (x) using R̂(x) = 1
n

∑n
i=1 L

(
Xi−x

h

)
, but

his results apply directly to F̂ (x) in Equation (2). Yamato (1973) establishes asymptotic unbiasedness for a class of estimators

defined by F̃ (x) = 1
n

∑n
i=1Wn (x−Xi), where Wn(x) →

{
0, if x < 0
1, if x ≥ 0

. Letting Wn(x) = L
(
x
h

)
shows that F̂ (x) in

Equation (2) is in his class.
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The following theorem gives the asymptotic distribution of F̂ (x) under suitable normalization and cen-

tering.

Theorem 2. Suppose that U satisfies Assumption 1 and that x is a point of continuity of F such that

F (x) ∈ (0, 1). For δ ∈ (0, 1), if h→ 0,
√
nφU (hδ−1)→ 0, and

√
nω(x, hδ)→ 0 as n→∞, then

√
n(F̂ (x)− F (x))

d→ N(0, (1− F (x))F (x)).

Remark 1. The requirements that
√
nφU (hδ−1) → 0 and

√
nω(x, hδ) → 0 can always be satisfied by an

appropriate choice of the sequence {hn}. If U(x) =
∫∞
x
K(t)dt and K has a compact support (as we choose

in our simulations), then
√
nφU (hδ−1) = 0 for any δ ∈ (0, 1) and all h ∈ (0, h(δ)). If K has a compact

support, the choice of the bandwidth is dictated solely by the condition that
√
nω(x, hδ)→ 0. If, in addition

to continuity at x, F satisfies a local Lipschitz condition of order α > 0, then for some positive constant Mx

and u ∈ (0, hδ], F (x+u)−F (x−u) < 2Mxu
α ≤ 2Mxh

αδ and
√
nω(x, hδ) ≤ 2Mx

√
nhαδ → 0 if nh2αδ = o(1).

If, as usual, h ∝ n−γ for γ > 0, then nh2αδ = o(1) if γ > 1/(2αδ).

Now, we turn to the estimation of the probability F (x, y) ≡ F (y)−F (x) for x < y. From Theorem 1 we

can derive the rate of convergence of F̂ (y)− F̂ (x) to F (x, y). However, the variance of F̂ (y)− F̂ (x) cannot

be easily obtained from Theorem 1. To do so, we make the following assumption.

Assumption 2. Let G = G ([a, b]) be a bounded continuous function of intervals [a, b] ⊂ R or, more

precisely, of an ordered pair (a, b), where a < b, with lim
b→−∞

G ([a, b]) = 0, lim
a→−∞, b→∞

G ([a, b]) = 1, and

lim
a→∞

G ([a, b]) = 0.

Define φG(N) = max
{

supb<−N |G ([a, b]) |, supa>N |G ([a, b]) |, supa<−N, b>N |G ([a, b])− 1|
}

and note

that Assumption 2 implies that φG(N) → 0 as N → ∞. If a kernel K satisfies
∫
R
K(t)dt = 1, then

G ([a, b]) =
∫ b
a
K(t)dt satisfies Assumption 2. Additionally, if U1 and U2 satisfy Assumption 1, then

G([a, b]) = U1(a)− U2(b), with −∞ < a < b <∞, satisfies Assumption 2. We estimate F (x, y) by

F̂ (x, y) =
1

n

n∑
i=1

G

([
Xi − y
h

,
Xi − x
h

])
.
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Lemma 2. If G satisfies Assumption 2 and δ ∈ (0, 1), then for all h > 0,∣∣∣∣∫
R

G

([
z − y
h

,
z − x
h

])
dF (z)− F (x, y)

∣∣∣∣ ≤ φG(hδ−1) + (1 + ‖G‖C)
[
ω(x, hδ) + ω(y, hδ)

]
.

Theorem 3. Suppose that G satisfies Assumption 2, x < y are continuity points of F , and δ ∈ (0, 1). Then

(i)
∣∣∣EF̂ (x, y)− F (x, y)

∣∣∣ ≤ φG(hδ−1) + (1 + ‖G‖C)
[
ω(x, hδ) + ω(y, hδ)

]
for h > 0 and

(ii) if F (x, y) ∈ (0, 1), then V (F̂ (x, y)) = 1
n [F (x, y)(1− F (x, y)) + o(1)].

The following corollary on the uniform rate of convergence is promptly obtained.

Corollary 3. If G satisfies Assumption 2 and F ∈ C, then

sup
x,y∈R

∣∣∣EF̂ (x, y)− F (x, y)
∣∣∣ ≤ φG(hδ−1) + 2(1 + ‖G‖C) sup

x∈R
ω(x, hδ)→ 0 as h→ 0.

3 Estimation of jumps of a distribution function

Let the jump of F at a point x be given by px = F (x)− F (x−), where F (x−) ≡ lim
ε↓0

F (x− ε). We estimate

px by

p̂x =
1

n

n∑
i=1

W

(
Xi − x
h

)
, (4)

where the function W satisfies the following assumption.

Assumption 3. The function W is bounded and continuous and satisfies W (0) = 1 and lim
|x|→∞

W (x) = 0.

We let ωW (ε) = sup|x|≤ε |W (x)− 1|, φW (N) = sup|x|≥N |W (x)|, and δF (ε) =
∫
|z−x|<ε dF (z) − px ≥ 0.

Assumption 3 implies that ωW (ε)→ 0 as ε→ 0 and φW (N)→ 0 as N →∞. Since
⋂
h>0

(x− h, x+ h) = {x},

by the continuity of probability, limε→0 δF (ε) = 0.

Denote by (Ff) the exponential Fourier transform of f . Thus, for a distribution function F , (FF )(t) =∫
R
eitzdF (z) and, for the kernel K, (FK)(t) =

∫
R
eitzK(z)dz. If K is a kernel, its exponential Fourier

transform (FK) satisfies Assumption 3.

Lemma 3. (i) Let ε1 ∈ (0, 1) and ε2 > ε1. For any λ ∈ (0, 1),∣∣∣∣∫
R

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣ ≤ ωW (λε2−ε1)
[
px + δF (λ1−ε1)

]
+ (1 + ‖W‖C) δF (λ1−ε1) + φW (λ−ε1).
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(ii) If x is an isolated point of the support of F, that is,
∫
|z−x|<h dF (z) = px for all small h > 0, then for

all small λ > 0, ∣∣∣∣∫
R

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣ ≤ φW (λ−ε1).

In particular, when W has a compact support,
∫
R
W
(
z−x
λ

)
dF (z) = px for all small λ.

Remark 2. Theorem 3.2.3 of Lukacs (1970) shows that the jumps of F can be found from the characteristic

function of F according to

px = lim
λ→0

∫
R

e−itx(FF )(t)λK(λt)dt

for K = χ[−1/2,1/2]. Mynbaev (2012) extended this result to symmetric K ∈ L1. Neither work provided an

estimate of the rate of convergence. Noting that

∫
R

e−itx(FF )(t)λK(λt)dt =

∫
R

(FK)

(
z − x
λ

)
dF (z), (5)

it follows immediately that Lemma 3 improves Mynbaev’s result by lifting the symmetry condition and

providing a rate of convergence.

Theorem 4. Suppose that W satisfies Assumption 3.

(i) Let ε1 ∈ (0, 1) and ε2 > ε1. Then for any h ∈ (0, 1),

|E(p̂x)− px| ≤ ωW (hε2−ε1)
[
px + δF (h1−ε1)

]
+ (1 + ‖W‖C) δF (h1−ε1) + φW (h−ε1).

(ii) If x is an isolated point of the support of F , then for all small h,

|E(p̂x)− px| ≤ φW (h−ε1).

In particular, when W has a compact support, p̂x is unbiased for all small h.

(iii) If px ∈ (0, 1) then V (p̂x) = 1
n [px(1− px) + o(1)] as h→ 0.

Remark 3. Now suppose that the moments
∫
R
tjK(t)dt are zero for j = 1, ...,m − 1 and the derivative

(FK)(m) is bounded. Then, since (FK)(j)(0) = 0 for j = 1, ...,m− 1, by Taylor’s theorem,

(FK)

(
z − x
λ

)
− (FK)(0) = (FK)(m)(θ)

(
z − x
λ

)m
1

m!
.
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Using this equation, taking W = (FK) and choosing h and h1 as in the proof of Lemma 3,∣∣∣∣∣
∫
|z−x|<h1

(FK)

(
z − x
λ

)
dF (z)− px

∣∣∣∣∣ ≤ sup
∣∣(FK)(m)

∣∣
m!

(
h1
λ

)m ∣∣∣∣∣
∫
|z−x|<h1

dF (z)

∣∣∣∣∣
+

∣∣∣∣∣
∫
|z−x|<h1

dF (z)− px

∣∣∣∣∣
≤ cλm(ε2−ε1)

[
px + δF (λ1−ε1)

]
+ δF (λ1−ε1).

The resulting bound,

|E(p̂x)− px| ≤ cλm(ε2−ε1)
[
px + δF (λ1−ε1)

]
+
(
1 + ‖K‖L1

)
δF (λ1−ε1) + sup

|z|≥λ−ε1
|(FK)(z)| ,

shows that imposing higher-order kernel conditions, without restricting the class of distribution functions,

has a limited effect on the convergence rate because of the term δF (λ1−ε1). The following theorem establishes

the asymptotic normality of p̂x under suitably centering and normalization.

Theorem 5. Suppose that W satisfies Assumption 3 and that F has a jump px at x, where px ∈ (0, 1).

For ε1 ∈ (0, 1) and ε2 > ε1, if h → 0,
√
nφW (h−ε1) → 0,

√
nωW (hε2−ε1) → 0, and

√
nδF (h1−ε1) → 0 as

n→∞, then

√
n(p̂x − px)

d→ N(0, (1− px)px).

Remark 4. The requirements that
√
nφW (h−ε1)→ 0 and

√
nωW (hε2−ε1)→ 0 as n→∞ always hold with

appropriately chosen {hn}. If W (t) = (FK)(t) such that W has a compact support (e.g., the W and K

used in Subsection 5.2), then
√
nφW (h−ε1) = 0 for all small h. The condition that

√
nδF (h1−ε1) → 0 can

always be satisfied if hn tends to 0 sufficiently quickly. However, to obtain a tractable dependence of the

bandwidth on n, note that

δF (h1−ε1) = F (x+ h1−ε1)−
(
F (x− h1−ε1) + px

)
.

If a Lipschitz condition of order α is imposed on the difference on the right hand side of the equality, then

√
nδF (h1−ε1) < 2Mx

√
nh(1−ε1)α. As in Remark 1, if h ∝ n−γ , it suffices to choose γ > 1/(2(1 − ε1)α) to

satisfy the condition.
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Theorem 6. If K is a kernel and F1 is purely discrete with a jump pj at ξj, then
∑
j p

2
j can be recovered

from the characteristic function of F1, as
∑
j p

2
j = lim

λ→0

∫
R
|(FF1)(t)|2 λK(λt)dt.

This result improves upon Theorem 3.3.4 of Lukacs (1970) and Mynbaev (2012), where the rate of

convergence was not established and the assumptions on K are more restrictive. Both works miss the

requirement that F1 should be purely discrete.

4 Inversion theorems

Let the Fourier transform of the distribution F be written as ψ(s) = (FF )(s) =
∫
R
eistdF (t). When ψ is

integrable, we denote by F−1 the inverse Fourier transform and write (F−1ψ)(t) = 1
2π

∫
R
e−istψ(s)ds. In

this case, F has a bounded density f and F−1ψ = f (Shiryaev, 1996, p. 283). When ψ is not integrable,

there are three tasks of interest: (1) recovering F (x) when x is a continuity point of F ; (2) recovering

F (x, y) = F (y)− F (x), where x < y are both points of continuity; and (3) recovering the jumps of F . The

derivation in Gil-Pelaez (1951) accomplishes the first task and gives

F (x) =
1

2
+

1

2π

∫ ∞
0

eitxψ(−t)− e−itxψ(t)

it
dt.

For the other two tasks, we provide new inversion theorems whose main advantages are explicit convergence

rates. These results, through Lemmas 2 and 3, reveal the common structure of inversion theorems and their

link with distribution function estimation. Furthermore, our proofs do not rely on probabilistic methods, so

our results hold for any function F of bounded variation.

The heuristics for task (2) are as follows. First,

F (y)− F (x) =

∫
R

χ[x,y](t)dF (t). (6)

Letting gx,y(t) = χ[x,y](−t), we write

U(s) ≡ (gx,y ∗ F )(s) =

∫
gx,y(s− t)dF (t),

the convolution of gx,y and F . Then, Equation (6) becomes

F (y)− F (x) =

∫
R

gx,y(−t)dF (t) = (gx,y ∗ F )(0) = U(0). (7)
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Since (y − x)−1U(s) is a density (Borovkov, 2009, p. 62), U is integrable. The Fourier transform is known

to map a convolution to a product as

(FU)(t) = (Fgx,y)(t)ψ(t). (8)

If the product on the right-hand side of Equation (8) is integrable, then by the Fourier inversion theorem,

Equations (7) and (8) yield that F (y)− F (x) = (F−1FU)(0) = F−1 [( Fgx,y)ψ] (0). When the right side of

Equation (8) is not integrable, we regularize it by multiplying by a “cutoff” function H(h·), where h > 0 is

a parameter and · is a placeholder for its argument. The function H is chosen to satisfy

F (y)− F (x) = lim
h→0
F−1 [H(h·)(Fgx,y)ψ] (0). (9)

Theorem 7. Let x and y be points of continuity of F . (i) Suppose that H is integrable with (FH)(v) =∫
R
eisvH(s)ds and such that the function

G([a, b]) =
1

2π

∫ b

a

(FH)(v)dv

satisfies Assumption 2. Then for δ ∈ (0, 1) and all h > 0,

∣∣∣∣ 1

2π

∫
R

e−ixt − e−iyt

it
H(ht)ψ(t)dt− F (x, y)

∣∣∣∣ ≤ φG(hδ−1) + (1 + ‖G‖C)
[
ω(x, hδ) + ω(y, hδ)

]
.

(ii) In the case where H = χ[−1,1], Assumption 2 is satisfied and Lévy’s theorem (Lukacs, 1970, Thm. 3.2.1),

F (x, y) = lim
h→0

1

2π

∫ 1/h

−1/h

e−ixt − e−iyt

it
ψ(t)dt,

follows with an estimate of the convergence rate.

(iii) In the case where H(t) = e−t
2

, Assumption 2 is satisfied and Borovkov’s theorem (Borovkov, 2009, Thm

7.2.2),

F (x, y) = lim
h→0

1

2π

∫
R

e−ixt − e−iyt

it
e−h

2t2ψ(t)dt,

follows with an estimate of the convergence.

The following theorem addresses task (3), where interest is in recovering a jump px of F at x.
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Theorem 8. Let K be a kernel and set W = FK. (i) Let ε1 ∈ (0, 1) and ε2 > ε1. For any λ ∈ (0, 1),∣∣∣∣∫
R

e−itxψ(t)λK(λt)dt− px
∣∣∣∣ ≤ ωW (λε2−ε1)

[
px + δF (λ1−ε1)

]
+ (1 + ‖W‖C) δF (λ1−ε1) + φW (λ−ε1).

(ii) If x is an isolated point of the support of F, then for all small λ > 0∣∣∣∣∫
R

e−itxψ(t)λK(λt)dt− px
∣∣∣∣ ≤ φW (λ−ε1).

In particular, if K is an entire function of exponential type, then W has a compact support by the Paley–

Wiener theorem (Iosida, 1980, p.162) and
∫
R
e−itxψ(t)λK(λt)dt = px for all small λ.

Next, we briefly describe modifications required for the case of functions of bounded variation.2 Let a

function F be defined and finite on the interval [a, b] with −∞ < a < b < ∞. The total variation of F on

[a, b] is defined as

V ba (f) = sup

n∑
i=1

|F (xi)− F (xi−1)|

where the supremum is taken over all partitions x0 = a < x1 < · · · < xn = b. If F is defined on the real line

and supa<b V
b
a (F ) <∞, then F is said to be of finite variation on R and the number V∞−∞(F ) = supa<b V

b
a (F )

is called the total variation of F . Using Theorem 1 of Natanson (1955) where appropriate, it is easy to obtain

the following generalization of our basic Lemmas 1, 2, and 3.

Lemma 4. (i) If U satisfies Assumption 1 and δ ∈ (0, 1), then for all h > 0∣∣∣∣∫
R

U

(
y − x
h

)
dF (y)− F (x)

∣∣∣∣ ≤ φU (hδ−1)V∞−∞(F ) + V x+h
δ

x−hδ (F )(1 + ‖U‖C).

(ii) If G satisfies Assumption 2 and δ ∈ (0, 1), then for all h > 0,∣∣∣∣∫
R

G

([
z − y
h

,
z − x
h

])
dF (z)− F (x, y)

∣∣∣∣ ≤ φG(hδ−1)V∞−∞(F ) + (1 + ‖G‖C)
[
V x+h

δ

x−hδ (F ) + V y+h
δ

y−hδ (F )
]
.

(iii) Let ε1 ∈ (0, 1) and ε2 > ε1. For any λ ∈ (0, 1)∣∣∣∣∫
R

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣ ≤ ωW (λε2−ε1)V x+λ
1−ε1

x−λ1−ε1 (F )+(1 + ‖W‖C)
[
V x+λ

1−ε1

x−λ1−ε1 (F )− px
]
+φW (λ−ε1)V∞−∞(F ).

2See chapter 8 in Natanson (1955), especially the appendix.
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(iv) If x is an isolated point of the support of F, that is,
∫
|z−x|<h dF (z) = px for all small h > 0, then

for all small λ > 0, ∣∣∣∣∫
R

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣ ≤ φW (λ−ε1)V∞−∞(F ).

In particular, when W has a compact support,
∫
R
W
(
z−x
λ

)
dF (z) = px for all small λ.

One application of this result is to F (x) =
∫ x
−∞ f(t)dt where f ∈ L1. This F is absolutely continuous and

of bounded variation. An analogue of Theorem 7 based on Lemma 4 shows that F (x, y) =
∫ y
x
f(t)dt can be

recovered from ψ and that f can be found as

f(y) =
d

dy
lim
h→0
F−1 [H(h·)(Fgx,y)ψ] (0).

5 Simulations

In this section we conduct a small simulation study to shed some light on the finite sample performance of

the class of distribution estimators defined by Equation (1), where the distribution is continuous at x but

not differentiable, and the class of estimators for the jump px at x defined by Equation (4).

5.1 Estimation of F at a point of continuity x

We consider the estimator F̂ (x) for F (x) at x = 0 with U(x) =
∫∞
x
K(t)dt and K(t) = 3

4 (1 − t2) for

|t| ≤ 1, called the Epanechnikov kernel. Data are generated from the following distributions, where Φ(x) =∫ x
−∞

1√
2π

exp
(
− 1

2 t
2
)
dt:

F1(x) =


0, if x < −2,

1
4 (x+ 2), if −2 ≤ x < 0,

Φ(x), if x ≥ 0

and F2(x) =



0, if x < −2,

1
4 (x+ 2), if −2 ≤ x < 0,

(x+ 1
2 ), if 0 ≤ x ≤ 1

2 ,

1, if x > 1
2 .

The distribution F1 pieces together the distribution associated with a uniform density on [−2, 2] to the left

of x = 0 and a standard Gaussian distribution to the right of x = 0. While F1 is continuous at x = 0, it is not

differentiable, with limx↑0 F
(1)
1 (x) = 0.25 and limx↓0 F

(1)
1 (x) = 1√

2π
. The distribution F2 pieces together the

distribution associated with a uniform density on [−2, 2] to the left of x = 0 and the distribution associated

with a uniform density on [−1/2, 1/2] to the right of x = 0. Again, F2 is continuous but not differentiable
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at x = 0 with limx↑0 F
(1)
2 (x) = 0.25 and limx↓0 F

(1)
2 (x) = 1. The “kink” in F2 at x = 0 is more pronounced

than that of F1. Figure 1 shows the graphs of both distributions.
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Figure 1: The distributions F1 and F2.

We consider two versions of F̂ (0). The first is calculated with a bandwidth h ∝ Cn−1/3 with C > 0,

which is the optimal rate of decay under the assumption that F is twice differentiable at x = 0 (Bowman

et al., 1998; Li and Racine, 2007). Given that both F1 and F2 are not differentiable at x = 0, this decay rate

is not suitable for estimating F1(0) or F2(0). The second is calculated with a bandwidth h ∝ Cn−1/2−ε for

ε > 0, conforming to the requirements in Remark 1. In particular, we use h ∝ Cn−1/1.99.3

We consider sample sizes n = 100, 500, 2500 and, for each distribution, we draw 10, 000 samples. Simu-

lated bias, variance, and mean squared error (MSE) at x = 0 are reported in Table 1. For comparison, we

also report results for the empirical distribution Fn.

We make the following general observations. First, as expected, bias, variance and MSE decrease with

3Both F1 and F2 are Lipschitz of order α = 1, thus it suffices to take 2δ = 1.99 in Remark 1. Since in both cases it is not
possible to calculate the constant C, in these simulations, we set C = 1.
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Table 1: Bias, variance×103, and MSE×103 for F̂ with h ∝ n−1/3 and h ∝ n−1/1.99 and for Fn, at x = 0
and n = 100, 500, 2500.

h ∝ n−1/3 h ∝ n−1/1.99 Fn
F1

n = 100
Bias -0.0097 -0.0046 -0.0005
Variance×103 0.1650 0.0734 2.5170
MSE×103 0.2600 0.0945 2.5172
n = 500
Bias -0.0058 -0.0020 -0.0000
Variance×103 0.0201 0.0066 0.4995
MSE×103 0.0533 0.0104 0.4995
n = 2500
Bias -0.0034 -0.0009 0.0002
Variance×103 0.0023 0.0006 0.0974
MSE×103 0.0140 0.0013 0.0974
F2

n = 100
Bias -0.0502 -0.0224 0.0003
Variance×103 0.3005 0.1416 2.4675
MSE×103 2.8242 0.6438 2.4675
n = 500
Bias -0.0296 -0.0098 -0.0004
Variance×103 0.0363 0.0126 0.5067
MSE×103 0.9137 0.1096 0.5069.
n = 2500
Bias -0.0173 -0.0043 -0.0000
Variance×103 0.0043 0.0011 0.0996
MSE×103 0.3023 0.0199 0.0996
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sample sizes for all estimators. Second, for both distributions, using the rate of decay for the bandwidth

suggested by our theoretical results produces smaller bias, variance and MSE, relative to the case where the

estimator is calculated using h ∝ n−1/3. The gains can be significant, e.g., in the case of F1 for n = 2500,

the MSE of F̂ calculated using h ∝ n−1/3 is ten times larger than that of F̂ using h ∝ n−1/1.99. In the case

of F2, the MSE is more than 15 times larger. Irrespective of the rate of decay of h, F̂ has better performance

than Fn in terms of MSE but, as expected, Fn has a smaller and negligible bias. Third, bias, variance and

MSE for F̂ using h ∝ n−1/3 or h ∝ n−1/1.99 is larger for F2, where the kink at x = 0 is more pronounced

than in F1. As expected, the performance of Fn is not impacted by the magnitude of the kink.

All finite sample results are in line with our expectations and confirm, in an experimental setting, the

asymptotic results we have derived.

5.2 Estimation of the jump px

We consider two estimators for the jump px where x = 0, denoted by p0. The first is an element of the class

defined by Equation (4) with W (t) = (1 − t2)3+, which is the exponential Fourier transform of the kernel

K(t) = 48 cos(t)
πx4

(
1− 15

x2

)
− 144 sin(t)

πt5

(
2− 5

t2

)
. The second is the estimator proposed in Equation (3.10) of

Murthy (1965),

p̃0 =
1

n

n∑
i=1

G (Xi/h) =
1

n

n∑
i=1

2

(∫ Xi/h

−∞
K(t)dt− χ{Xi/h>0}

)

where G(x) = 2
(∫ x
−∞K(t)dt− χ{x>0}

)
and K is the standard Gaussian kernel. Now, p̃0 does not belong to

the class of jump estimators studied in this work because G is not continuous at every point in R. Murthy

(1965) showed that p̃0 is asymptotically unbiased but did not obtain the rate of decay of this bias.

We consider data generated from the following distributions, where p0 = 0.2, 0.1, 0.01 and µR = −Φ−1(0.5+

p0):

F1(x) =


Φ(x), if −∞ < x < 0

1
2 + p0, if x = 0∫ x
−∞

1√
2π

exp
(
− 1

2 (t− µR)2
)
dt, if x > 0;
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F2(x) =



0, if x < −2

1
4 (x+ 2), if −2 ≤ x < 0

1
2 + p0, if x = 0∫ x
−∞

1√
2π

exp
(
− 1

2 (t− µR)2
)
dt, if x > 0;

and

F3(x) =


1
2 exp (x/8) , if −∞ < x < 0

1
2 + p0, if x = 0∫ x
−∞

1√
2π

exp
(
− 1

2 (t− µR)2
)
dt, if x > 0.

For all three distributions, there is a jump at x = 0 of size p0. For F1, limx↑0 F
(1)
1 (x) = limx↓0 F

(1)
1 (x),

whereas for F2 and F3, these two limits are different, with the largest discrepancy occurring in the case of

F3. Figure 2 shows the graphs of each distribution with a jump p0 = 0.2.
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Figure 2: The distributions F1, F2, and F3 with p0 = 2

As in the previous subsection, we consider sample sizes n = 100, 500, 2500 and, for each distribution, we

draw 10, 000 samples. Both p̂0 and p̃0 are calculated with a bandwidth h ∝ Cn−1/1.99 with C = 1. Simulated

bias, variance and MSE at x = 0 are reported in Table 2.

The following general observations can be made. First, for both estimators, bias, variance and MSE

decrease with sample size. Bias has no apparent relationship with jump size, remaining approximately the
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Table 2: Bias, variance×103, and MSE×103 for p̂0 and p̃0, where n = 100, 500, 2500 and p0 = 0.2, 0.1, 0.01.

Bias Variance×103 MSE×103

p̂0 p̃0 p̂0 p̃0 p̂0 p̃0
n = 100, p0 = 0.2
F1 0.0329 0.0051 1.7441 1.9434 2.8267 1.9697
F2 0.0249 -0.0074 1.7046 1.8926 2.3245 1.9471
F3 0.0176 -0.0208 1.5976 1.7974 1.9066 2.2305

n = 500, p0 = 0.2
F1 0.0146 0.0023 0.3224 0.3356 0.5362 0.3407
F2 0.0116 -0.0030 0.3253 0.3409 0.4592 0.3499
F3 0.0076 -0.0096 0.3182 0.3376 0.3764 0.4295

n = 2500, p0 = 0.2
F1 0.0063 0.0007 0.0650 0.0665 0.1042 0.0670
F2 0.0051 -0.0014 0.0648 0.0673 0.0909 0.0692
F3 0.0034 -0.0042 0.0647 0.0658 0.0760 0.0838

n = 100, p0 = 0.1
F1 0.0340 0.0008 1.0919 1.2755 2.2461 1.2761
F2 0.0281 -0.0095 1.0381 1.1884 1.8279 1.2778
F3 0.0195 -0.0242 1.0250 1.1489 1.4041 1.7333

n = 500, p0 = 0.1
F1 0.0150 0.0005 0.1918 0.2095 0.4161 0.2097
F2 0.0123 -0.0044 0.1974 0.2085 0.3496 0.2276
F3 0.0087 -0.0107 0.1831 0.1980 0.2591 0.3123

n = 2500, p0 = 0.1
F1 0.0067 0.0002 0.0378 0.0388 0.0822 0.0389
F2 0.0053 -0.0021 0.0368 0.0377 0.0644 0.0422
F3 0.0038 -0.0047 0.0371 0.0378 0.0518 0.0599

n = 100, p0 = 0.01
F1 0.0347 0.0001 0.3363 0.4444 1.5387 0.4444
F2 0.0284 -0.0112 0.2994 0.3948 1.1065 0.5206
F3 0.0201 -0.0254 0.2421 0.2958 0.6479 0.9417

n = 500, p0 = 0.01
F1 0.0154 0.0001 0.0419 0.0516 0.2777 0.0516
F2 0.0125 -0.0049 0.0375 0.0456 0.1939 0.0698
F3 0.0090 -0.0112 0.0321 0.0367 0.1123 0.1620

n = 2500, p0 = 0.01
F1 0.0067 -0.0000 0.0059 0.0067 0.0513 0.0067
F2 0.0055 -0.0022 0.0055 0.0061 0.0358 0.0108
F3 0.0039 -0.0050 0.0050 0.0055 0.0201 0.0301
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same for p0 = 0.2, 0.1, 0.01 for both estimators. The same is not true for variance or MSE, which clearly decay

as the jump size decreases from 0.2 to 0.01. Another clear pattern that emerges is that, in the case of F1

where limx↑0 F
(1)
1 (x) = limx↓0 F

(1)
1 (x) or when the difference between these two limits is small, as in the case

of F2, p̃0 clearly outperforms p̂0 in terms of MSE. However, in the case of F3, where the difference between

limx↑0 F
(1)
3 (x) and limx↓0 F

(1)
3 (x) is much larger, p̂0 clearly outperforms p̃0 in terms of MSE. Although not

reported in Table 2, both estimators perform much worse if h ∝ Cn−1/3 with C = 1 is used in their

calculation. Overall, the observed experimental finite sample performance confirms our theoretical results.

6 Empirical illustrations

6.1 Global elevation

We look at global elevation (i.e., elevation above sea level) data from Zabotin et al. (2014). This paper exam-

ines the long-range propagation of heater-produced signals from the European Incoherent Scatter (EISCAT)

heating facility at the Tromsø Observatory in the Scandinavian Mountains.

Table 3: Descriptive statistics for the empirical illustrations: elevation, in meters, from Zabotin et al. (2014)
and z-statistics from Brodeur et al. (2016).

Mean SD Max Min Mode n
Elevation
Full 800.0954 340.1575 1989.0000 4.0000 333.0000 2,159,615
Random 799.7601 338.6744 1949.0000 4.0000 333.0000 99,983
z-statistics
Raw 2.4353 2.0568 9.9977 3.9961e-05 1.0000 44,952
Eye-catcher 2.3636 1.9934 9.9977 3.9961e-05 1.0000 29,565

The full data set, available from NASA4, measures global digital elevation and is quite large, covering

roughly 99% of the Earth’s landmass. Zabotin et al. (2014) extracted a relatively small subsample of the

total data (specifically, 68◦N to 69◦N and 18◦E to 19.5◦E), resulting in 2,159,615 observations. We took a

random subsample of 99,983 observations of this subset. Table 3 gives descriptive statistics for both samples
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Figure 3: Histogram and distribution of our random sample of the global elevation data from Zabotin et al.
(2014).

and shows that our random sample is representative of the full sample used in Zabotin et al. (2014).

Panel (a) of Figure 3 plots the histogram of our random sample of the elevation data using 100 equally

spaced bins. This is analogous to Figure 5 in Zabotin et al. (2014). In both histograms, we see a sharp spike

for the bin that includes the mode elevation of 333 meters, given the presence of lakes in the area under

consideration. This suggests that there may be a jump in the distribution at that value. Panel (b) of Figure

3 visually confirms this phenomenon. Using our estimator of the distribution, we see a jump in the estimated

distribution at x = 333.5

To formally test for this jump, we use Theorem 5 to test the null hypothesis that there is no jump at

333 meters (i.e., H0 : p333 = 0). The estimated value of p333 is p̂333 = 0.0175, with a relatively tight 95%

confidence interval of [0.0167, 0.0183].6 Thus, we reject the null hypothesis of the absence of a jump at

x = 333.

4https://asterweb.jpl.nasa.gov/gdem.asp
5As in the simulations described in Subsection 5.1, our distribution estimator was implemented using an Epanechnikov

kernel and a bandwidth h ∝ Ch−1/1.99 with C = 1. We experimented with C = 0.5, 2, 10 with little numerical difference in
the estimated distribution.

6The estimate p̂333 was obtained as described in Subsection 5.2.
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6.2 P -hacking in top economics journals

As students in introductory statistics, we were required to memorize common critical values from the standard

normal distribution in order to perform inference. We were also taught that there was nothing special about

these values, but nonetheless they play an important role in the publication of academic papers. As null

results are often seen as less important from a publication standpoint, publication bias arises, specifically

towards tests rejecting null hypotheses.

This phenomenon has been known for some time Sterling (1959) and has been studied in great detail in

Brodeur et al. (2016). The authors of this paper look at three of the top journals in economics (American

Economic Review, Journal of Political Economy and Quarterly Journal of Economics) and examine roughly

50,000 tests published in those journals over the 2005-2011 period.7 They find visual evidence of bimodality

in the estimated density of test statistics. This trough suggests an under-representation of insignificant tests

just below the 5% level of significance.

In order for their kernel estimated densities to be valid, there should be no jumps in the distribution of

test statistics. In the “Discontinuities” section of their online appendix, the authors attempted to identify

potential discontinuities at the standard critical values of 1.65, 1.96 and 2.57. They found very little evidence

of discontinuities other than for their “eye-catcher” sample at the 10% significance level, where eye-catcher

is defined as a paper using asterisks to define statistical significance at a given confidence level e.g., ∗, ∗∗,

and ∗ ∗ ∗ for 10%, 5% and 1%, respectively.

Here, we formally test for these discontinuities, specifically, at the three values used to create Figure 1A

(pp. 9) and Figure 6A (pp. 27) of Brodeur et al. (2016). Our two replicated histograms with 100 bins can

be found in the top row of Figure 4. Descriptive statistics corresponding to those histograms are given in

Table 3. We purposely chose the “raw distribution” of the test statistics as Brodeur et al. (2016) believed

that these raw distributions were more likely to have “potential discontinuities” (pp. 10).

The bottom row of Figure 4 presents our estimated distribution functions. The estimated jumps in both

7The full data set is available at https://www.aeaweb.org/articles?id=10.1257/app.20150044
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(d) Distribution: eye-catchers

Figure 4: Histograms and distributions for raw and eye-catcher z-statistics from Brodeur et al. (2016).
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distributions at 1.65, 1.96, and 2.57 were zero to at least two decimal places and none were significantly

different from zero. Hence, we find no evidence of jumps in either distribution at these levels.

However, looking closely at the estimated distribution, there appear to be small jumps at x = 1, 2,

3, 4. The first is the most common, as the mode for each distribution is shown to be equal to one in

Table 3. Brodeur et al. (2016) notes that “the way authors report the value of their tests and the way

we reconstruct the underlying statistics” lead to tests being “expressed as ratios of small integers” which

get “overrepresented because of the low precision used by authors.” The largest estimated jump in the

distribution occurred at x = 1, where p̂1 = 0.0110 with a 95% confidence bound of [0.0100, 0.0119] for the

raw data and p̂1 = 0.0120 with a 95% confidence bound of [0.0107, 0.0132] for the eye-catcher data.

In short, we see no evidence of discontinuities in the distribution of test statistics at the standard critical

values, but we suggest using the “de-rounded” distribution of test statistics in Panel B of the aforementioned

figures if using these data in practice.

7 Conclusion

We show that the use of the Stieltjes integral can easily provide rates of decay for biases of certain classes

of estimators of distribution functions at their points of continuity and at their jumps without imposing any

restrictions on the distribution. These results are useful in providing additional asymptotic characterizations

for the estimators in these classes and in establishing new Fourier inversion theorems with convergence

rates. Future work on exact criteria for bandwidth selection under our assumptions is needed to facilitate

implementation of the estimators in empirical work.
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Appendix

Lemma 1. Proof. Since U is bounded and continuous and F is of bounded variation,
∫
R
U
(
y−x
h

)
dF (y)

exists (Natanson, 1955, p. 238). For ε > 0,

∣∣∣∣∫
R

U

(
y − x
h

)
dF (y)−

∫ x

−∞
dF (y)

∣∣∣∣ ≤ ∣∣∣∣∫
y<x−ε

[
U

(
y − x
h

)
− 1

]
dF (y)

∣∣∣∣+

∣∣∣∣∣
∫
|x−y|≤ε

U

(
y − x
h

)
dF (y)

∣∣∣∣∣
+

∣∣∣∣∫
y>x+ε

U

(
y − x
h

)
dF (y)

∣∣∣∣+

∫ x

x−ε
dF (y).

We obtain the bounds

∣∣∣∣∫
y<x−ε

[
U

(
y − x
h

)
− 1

]
dF (y)

∣∣∣∣ ≤ sup
z<−ε/h

|U(z)− 1|
∫
y<x−ε

dF (y) ≤ φU (ε/h)F (x)∣∣∣∣∣
∫
|x−y|≤ε

U

(
y − x
h

)
dF (y)

∣∣∣∣∣ ≤ ‖U‖C [F (x+ ε)− F (x− ε)] ≤ ‖U‖C ω(x, ε),∣∣∣∣∫
y>x+ε

U

(
y − x
h

)
dF (y)

∣∣∣∣ ≤ sup
z>ε/h

|U(z)|
∫
y>x+ε

dF (y) ≤ φU (ε/h)(1− F (x))

and
∫ x
x−ε dF (y) ≤ ω(x, ε). Collecting the above inequalities,

∣∣∣∣∫
R

U

(
y − x
h

)
dF (y)− F (x)

∣∣∣∣ ≤ φU (ε/h) + (1 + ‖U‖C)ω(x, ε).

To finish the proof, we set ε = hδ.

Theorem 1. Proof. (i) follows directly from Lemma 1 since
∣∣∣E (F̂ (x)

)
− F (x)

∣∣∣ =
∣∣∫
R
U
(
t−x
h

)
dF (t)− F (x)

∣∣.
(ii) We have that V (F̂ (x)) = 1

n

{
E
(
U2
(
X−x
h

))
−
[
E
(
U
(
X−x
h

))]2}
. From part (i) we know that E

(
U
(
X−x
h

))
=

F (x) + o(1) as h→ 0. U2 satisfies Assumption 1, so by Lemma 1,

∣∣∣∣E (U2

(
X − x
h

))
− F (x)

∣∣∣∣ ≤ φU2(hδ−1) + ω(x, hδ)(1 +
∥∥U2

∥∥
C

)→ 0 as h→ 0.

With F (x) ∈ (0, 1) the statement follows.

Corollary 1. Proof. Since lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1, the variation of F on (−∞,−N ] and [N,∞)

will be small for large N > 0. On [−N,N ], F is uniformly continuous and its variation on the segment

[x− ε, x+ ε] will be small for small ε and all x ∈ [−N,N ]. Thus, (3) is true and the statement follows from

Theorem 1 (i).
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Corollary 2. Proof. Let Fn(x) = 1
n

∑n
i=1 e(x−Xi), where e(x) =

{
0, if x < 0
1, if x ≥ 0

is the empirical distribu-

tion function. Then supx∈R |F̂ (x)−F (x)| ≤ supx∈R |F̂ (x)−Fn(x)|+supx∈R |Fn(x)−F (x)|. By the Glivenko-

Cantelli theorem, supx∈R |Fn(x)−F (x)| → 0 almost surely, so to complete the proof we need only show that

supx∈R |F̂ (x)− Fn(x)| → 0 almost surely. Since F̂ (x) =
∫
R
U
(
y−x
h

)
dFn(y) and Fn(x) =

∫
R
e(x− y)dFn(y),

|F̂ (x)− Fn(x)| ≤
∫
R

∣∣U (y−xh )− e(x− y)
∣∣ dFn(y). Then for ε > 0,

∫
R

∣∣∣∣U (y − xh
)
− e(x− y)

∣∣∣∣ dFn(y) =

∫
y<x−ε

∣∣∣∣U (y − xh
)
− 1

∣∣∣∣ dFn(y)

+

∫
|x−y|≤ε

∣∣∣∣U (y − xh
)
− e(x− y)

∣∣∣∣ dFn(y)

+

∫
y>x+ε

∣∣∣∣U (y − xh
)∣∣∣∣ dFn(y).

From the proof of Lemma 1, since Fn is a distribution,

|F̂ (x)− Fn(x)| ≤ φU (ε/h) + (1 + ‖U‖C)(Fn(x+ ε)− Fn(x− ε))

≤ φU (ε/h) + (1 + ‖U‖C) (|Fn(x+ ε)− F (x+ ε)|+ |F (x+ ε)− F (x− ε)|

+ |F (x− ε)− Fn(x− ε)|) .

Letting ε = hδ for δ ∈ (0, 1),

sup
x∈R
|F̂ (x)− Fn(x)| ≤ φU (hδ−1) + (1 + ‖U‖C)

(
sup
x∈R

∣∣Fn(x+ hδ)− F (x+ hδ)
∣∣+ sup

x∈R
ω(x, hδ)

+ sup
x∈R

∣∣F (x− hδ)− Fn(x− hδ)
∣∣) .

By the continuity of F and the uniform, almost sure convergence of Fn to F , supx∈R |F̂ (x) − Fn(x)| → 0

almost surely as h→ 0, which completes the proof.

Theorem 2. Proof. Let Zin = 1
nU
(
Xi−x
h

)
, µn = E(Zin) and s2n =

∑n
i=1E(Zin−µn)2. Then s2n = V (F̂ (x))

and

F̂ (x)− E(F̂ (x))√
V (F̂ (x))

=

n∑
i=1

Zin − µn
sn

=

n∑
i=1

Xin,

where Xin = Zin−µn
sn

, E(Xin) = 0, V (Xin) = 1
s2n
E(Zin − µn)2, and

∑n
i=1 V (Xin) = 1. By Liapounov’s

central limit theorem,
∑n
i=1Xin

d→ Z ∼ N(0, 1), provided that limn→∞
∑n
i=1E

(
|Xin|2+θ

)
= 0 for some
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θ > 0 (see Davidson, 1994, p. 369-372). It follows from the assumption that the Xi are independent and

identically distributed that

n∑
i=1

E
(
|Xin|2+θ

)
= nV (F̂ (x))−1−θ/2E(|Zin − µn|2+θ)

and, by the cr inequality, E(|Zin − µn|2+θ) ≤ 21+θ(E(|Zin|2+θ) + |µn|2+θ). From Theorem 1, if h → 0,

n|µn|2+θ = 1
n1+θ |F (x) + o(1)|2+θ. Consequently,

n∑
i=1

E
(
|Xin|2+θ

)
≤ nV (F̂ (x))−1−θ/221+θ

(
1

n2+θ
E

(∣∣∣∣U (X1 − x
h

)∣∣∣∣2+θ
)

+ |µn|2+θ
)

= (nV (F̂ (x)))−1−θ/221+θn−θ/2

(
E

(∣∣∣∣U (X1 − x
h

)∣∣∣∣2+θ
)

+ |F (x) + o(1)|2+θ
)

→ 0 as n→∞

since nV (F̂ (x))→ F (x)(1−F (x)) and E
(∣∣U (X1−x

h

)∣∣2+θ) = O(1) by the fact that U2+θ satisfies Assumption

1. Now, noting that
√
n(F̂ (x)−F (x)) =

√
n(F̂ (x)−E(F̂ (x))) +

√
n(E(F̂ (x))−F (x)),

√
n(F̂ (x)−F (x))

d→

N(0, (1− F (x))F (x)) provided that
√
n(E(F̂ (x))− F (x))→ 0. But from Theorem 1,

|
√
n(E(F̂ (x))− F (x))| ≤

√
nφU (hδ−1) +

√
nω(x, hδ)(1 + ||U ||C).

Since
√
nφU (hδ−1)→ 0 and

√
nω(x, hδ)→ 0 by assumption, the proof is complete.

Lemma 2. Proof. We set
[
z−y
h , z−xh

]
≡ [a, b] and write∫

R

G ([a, b]) dF (z)−
∫ y

x

dF (z) =

∫
z<x−ε

G ([a, b]) dF (z) +

∫ y−ε

x+ε

[G ([a, b])− 1] dF (z)

+

∫
z>y+ε

G ([a, b]) dF (z) +

∫
|z−x|≤ε

G ([a, b]) dF (z)

+

∫
|z−y|≤ε

G ([a, b]) dF (z) +

∫ x+ε

x

dF (z) +

∫ y

y−ε
dF (z).

In the first integral, z−y
h < z−x

h < − ε
h , so∣∣∣∣∫

z<x−ε
G ([a, b]) dF (z)

∣∣∣∣ ≤ sup
b<−ε/h

G ([a, b])F (x) ≤ φG(ε/h)F (x).

In the second integral, z−y
h < − ε

h ,
z−x
h > ε

h and∣∣∣∣∫ y−ε

x+ε

[G ([a, b])− 1] dF (z)

∣∣∣∣ ≤ sup
a<−ε/h, b>ε/h

|G ([a, b])− 1|(F (y)− F (x)) ≤ φG(ε/h)(F (y)− F (x)).
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In the third integral, z−x
h > z−y

h > ε
h and∣∣∣∣∫

z>y+ε

G ([a, b]) dF (z)

∣∣∣∣ ≤ sup
a>ε/h

G ([a, b]) (1− F (y)) ≤ φG(ε/h)(1− F (y)).

The sum of the remaining four integrals is obviously bounded by (1 + ‖G‖C) [ω(x, ε) + ω(y, ε)]. Thus, to

finish the proof it remains to add the bounds and set ε = hδ.

Theorem 3. Proof. Part (i) immediately follows from Lemma 2 because EF̂ (x, y) =
∫
R
G
([
z−y
h , z−xh

])
dF (z).

Part (ii) follows from

V (F̂ (x, y)) =
1

n

{
EG2

([
X − y
h

,
X − x
h

])
−
[
EG

([
X − y
h

,
X − x
h

])]2}
,

where G2 satisfies Assumption 2 and, by Lemma 2,∣∣∣∣EG2

([
X − y
h

,
X − x
h

])
− F (x, y)

∣∣∣∣ ≤ φG2(hδ−1) + (1 +
∥∥G2

∥∥
C

)
[
ω(x, hδ) + ω(y, hδ)

]
→ 0 as h→ 0.

Lemma 3. Proof. (i) By the additivity of probability for any h1 ∈ (0, h),

px ≤
∫
|z−x|<h1

dF (z) ≤
∫
|z−x|<h

dF (z) = px + δF (h). (10)

This implies that ∫
h1≤|z−x|<h

dF (z) =

∫
|z−x|<h

dF (z)−
∫
|z−x|<h1

dF (z) ≤ δF (h) (11)

and ∣∣∣∣∣
∫
|z−x|<h1

dF (z)− px

∣∣∣∣∣ ≤ δF (h). (12)

We wish to bound

∫
R

W

(
z − x
λ

)
dF (z)− px =

∫
|z−x|<h1

W

(
z − x
λ

)
dF (z)− px

+

∫
h1≤|z−x|<h

W

(
z − x
λ

)
dF (z) +

∫
|z−x|≥h

W

(
z − x
λ

)
dF (z). (13)

Obviously, ∣∣∣∣∣
∫
|z−x|≥h

W

(
z − x
λ

)
dF (z)

∣∣∣∣∣ ≤ φW (h/λ). (14)

25



By Equations (10) and (12),∣∣∣∣∣
∫
|z−x|<h1

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
|z−x|<h1

[
W

(
z − x
λ

)
−W (0)

]
dF (z)

∣∣∣∣∣
+

∣∣∣∣∣W (0)

∫
|z−x|<h1

dF (z)− px

∣∣∣∣∣
≤ ωW (h1/λ)

∫
|z−x|<h1

dF (z) +

∣∣∣∣∣
∫
|z−x|<h1

dF (z)− px

∣∣∣∣∣
≤ ωW (h1/λ) [px + δF (h)] + δF (h). (15)

By Equation (11)∣∣∣∣∣
∫
h1≤|z−x|<h

W

(
z − x
λ

)
dF (z)

∣∣∣∣∣ ≤ ‖W‖C
∫
h1≤|z−x|<h

dF (z) ≤ ‖W‖C δF (h). (16)

Combining (14)–(16),∣∣∣∣∫
R

W

(
z − x
λ

)
dF (z)− px

∣∣∣∣ ≤ ωW (h1/λ) [px + δF (h)] + (1 + ‖W‖C) δF (h) + φW (h/λ).

It suffices to set h = λ1−ε1 and h1 = hλε2 = λ1+ε2−ε1 < h to finish the proof.

(ii) Instead of Equation (13), write∫
R

W

(
z − x
λ

)
dF (z)− px =

∫
|z−x|<h

W

(
z − x
λ

)
dF (z)− px +

∫
|z−x|≥h

W

(
z − x
λ

)
dF (z).

For all small h,
∫
|z−x|<hW

(
z−x
λ

)
dF (z) = W (0)px = px. By (14) we see that the statement in the lemma is

true.

Theorem 4. Proof. Both (i) and (ii) follow from Lemma 3. Part (iii) follows from (i) since

V (p̂x) =
1

n

{
EW 2

(
X − x
h

)
−
[
EW

(
X − x
h

)]2}

and the fact that W 2 satisfies Assumption 3.

Theorem 5. Proof. In the proof of Theorem 2, let Zin = 1
nW

(
Xi−x
h

)
and proceed with the same arguments

to conclude that
√
n(p̂x − E(p̂x))

d→ N(0, (1− px)px). Use Theorem 4 to obtain

|
√
n(E(p̂x)− px)| ≤

√
n
(
ωW (hε2−ε1)

[
px + δF (h1−ε1)

]
+ (1 + ‖W‖C) δF (h1−ε1) + φW (h−ε1)

)
.

Hence, given the conditions stated in the theorem,
√
n(E(p̂x)− px)→ 0 as n→∞.
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Theorem 6. Proof. Since F1 is purely discrete, its conjugate distribution, defined by F2(x) = 1−F1(−x−),

is also discrete. If F1 has a jump pj at ξj , then F2 has the same jump at −ξj . By Theorem 3.3.3 of Lukacs

(1970), the convolution F = F1 ∗ F2 has a jump
∑
j p

2
j at 0. Using Equation (3.3.2) from Lukacs (1970),

we have that (FF ) = (FF1)(FF2) = (FF1)(FF1) = |(FF1)|2, where the bar denotes complex conjugation.

Thus, (5) implies that

∫
R

(FK)
( z
λ

)
dF (z) =

∫
R

(FF )(t)λK(λt)dt =

∫
R

|(FF1)(t)|2 λK(λt)dt. (17)

By Lemma 3 and Equation (17),∣∣∣∣∣∣
∫
R

|(FF1)(t)|2 λK(λt)dt−
∑
j

p2j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
R

(FK)
( z
λ

)
dF (z)−

∑
j

p2j

∣∣∣∣∣∣
≤ ωK̃(λε2−ε1)

∑
j

p2j + δF (λ1−ε1)

+ (1 + ‖(FK)‖C) δF (λ1−ε1)

+ sup
|z|≥λ−ε1

|(FK)(z)| → 0.

Theorem 7. Proof. (i) We derive two equivalent formulas for the expression under the limit sign in Equation

(9). Denoting

Ix,y(h, t) = F−1 [H(h·)(Fgx,y)] (t),

we have that

F−1 [H(h·)(Fgx,y)(FF )] (0) =

∫
R

Ix,y(h,−t)dF (t), (18)

where the change in integration order is made possible by the integrability of H. For the same reason,

Ix,y(h,−t) =
[
(F−1H(h·)) ∗ gx,y

]
(−t) =

∫
R

(F−1H(h·))(−t− u)gx,y(u)du

=
1

2π

∫ (∫
R

ei(t+u)sH(hs)ds

)
gx,y(u)du

=
1

2π

∫
R

(FH(h·))(t+ u)gx,y(u)du.
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Writing (FH(h·))(s) = (FH)(s/h)/h,

Ix,y(h,−t) =
1

2πh

∫
R

(FH)

(
t+ u

h

)
χ[x,y](−u)du (replacing

t+ u

h
= v)

=
1

2π

∫ (t−x)/h

(t−y)/h
(FH) (v) dv = G

([
t− y
h

,
t− x
h

])
. (19)

On the other hand, since (Fgx,y)(t) =
∫
R
eistχ[x,y](−s)ds = e−ixt−e−iyt

it ,

F−1 [H(h·)(Fgx,y)ψ] (0) =
1

2π

∫
R

e−ixt − e−iyt

it
H(ht)ψ(t)dt. (20)

Equations (18)–(20) imply that

1

2π

∫
R

e−ixt − e−iyt

it
H(ht)ψ(t)dt =

∫
R

G

([
t− y
h

,
t− x
h

])
dF (t).

An application of Lemma 2 provides the stated bound, finishing the proof of part (i).

(ii) If H = χ[−1,1], then (FH) (s) = eis−e−is
is = 2 sin s

s and

G([a, b]) =
1

π

∫ b

a

sin s

s
ds→

 1, a→ −∞, b→∞
0, a→∞
0, b→ −∞

by Lemma 3.2.1 of Lukacs (1970). Assumption 2 is satisfied and the use of Lemma 2 completes the proof.

(iii) For H(t) = e−t
2

, (FH)(s) =
∫
eist−t

2

dt =
√
πe−s

2/4 = 2πφ(s; 0, 2) (Cramér, 1946, p.99), where φ(s; 0, 2)

is the value of a Gaussian density with parameters µ = 0 and σ2 = 2, evaluated at s. Hence,

G([a, b]) =

∫ b

a

φ(s; 0, 2)ds,

which satisfies Assumption 2. Again, the use of Lemma 2 completes the proof.

Theorem 8. Proof. The proof follows from Lemma 3, noting that∫
R

e−itx(FF )(t)λK(λt)dt =

∫
R

(FK)

(
z − x
λ

)
dF (z). (21)
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