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We provide a simple result on the H-decomposition of a U-statistics that allows for easy
determination of its magnitude when the statistic’s kernel depends on the sample size
n. The result provides a direct and convenient method to characterize the asymptotic
magnitude of semiparametric and nonparametric estimators or test statistics involving
high dimensional sums. We illustrate the use of our result in previously studied esti-
mators/test statistics and in a novel nonparametric R? test for overall significance of a
nonparametric regression model.
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1. Introduction

Nonparametric and semiparametric statistical models have gained popularity due to their
flexibility in specifying functional forms for moments or distributions under study (Li
and Racine, 2007; Tsybakov, 2009). In many instances, the asymptotic characterization
of estimators and test statistics associated with these models involves the study of U-
statistics. For example, consider the estimation of a generalized mean 6 = E(c(X)m(X))
(Newey, 1994; Imbens and Ridder, 2009) where m(x) = E(Y|X = x) and ¢(X) is a
known function. Given a random sample {(y;, x;)}7_,, the estimator for m(x) can usu-
ally be written as m(x) =Y . w;,(x)y; for weight functions w;,(x) that generally
depend on the sample size n. Hence, a nonparametric estimator for 6 can be de-

fined as 6, = Z;;l c(x)) Y iy win(x))yi = Ty + (5)un, where T, = Y| c(x)win(x;)yi
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and u, = (;)‘l Zl§i<j§n ¢u(Zi, Z;) is a U-statistic of degree 2, symmetric kernel
Gu(Zi, Z;) = c(xi)wjn(x;)y; + c(xj)win(x;)y; with Z; = (x;, ;).

The asymptotic behavior of 7, can easily be studied by suitable central limit theorems
or law of large numbers for triangular arrays, but a characterization of the asymptotic
properties of u, is more involved as the kernel ¢,(Z;, Z;) depends on the sample size n.
The main difficulty arises from the fact that as n — oo the behavior of the variance, as well
as other higher order moments of the U-statistic, differs from the case where the kernel is
independent of n (Borovskikh, 1996).

There exists, however, a large literature providing various asymptotic results. For non
degenerate U-statistics with n-dependent kernels of degree k € N, Weber (1983) and Rao
Jammalamadaka and Janson (1986) (k = 2) obtained central limit theorems (CLT) when
the sequence {Z;};—1 ... is independent and identically distributed (IID) under different
assumptions on the order of the sequence of U-statistic variances V(u,). For example,
Weber required that the variance of the conditional expectation of the kernels depend on n
in a specific manner (see condition (i) in Theorem 1) and that the U-statistics projections
have nonzero variances. Thus, his results cannot be applied to degenerate U-statistics (see
terms A,, or As, in Lemma 3.1).

Powell et al. (1989) obtained a CLT for U-statistics of degree k =2 when
E(qﬁg(Zi, Z;)) = o(n)and {Z;};— »,... is ID. Under the same conditions, Martins-Filho and
Yao (2006) showed that U and V statistics of degree k are 4/n asymptotically equivalent.
Their result, together with a lemma in Lee (1988), implies the \/n asymptotic equiva-
lence in probability of a U-statistic projection and a V statistic. These results, however,
provide little guidance on analyzing the asymptotic properties of higher degree U-statistic
whose magnitude are different from /n. These situations occur frequently in nonpara-
metric statistics/econometrics, as with test statistics in Zheng (1996), Fan and Li (1996),
Li (1999), Lavergne and Vuong (2000), Gu et al. (2007), and Su and Ullah (2013) which
converge to a normal distribution at a rate of nhy'?, where h, is a bandwidth sequence used
in estimation.

Weber (1980) and van Zwet (1984) obtained Berry-Esseen bounds when {Z;};—; » ... is
IID and the third-order moment of ¢, exist and Hall (1984), de Jong (1987), and Fan and
Li (1999) have been obtained CLTs for degenerate U-statistics with kernels that have fixed
variance.

Applications of the extant results to characterize non/semiparametric estimators or test
statistics requires the verification of the order for the variance V (u,) of their associated
U-statistic. It is, therefore, convenient to use Hoeffding (1961) H-decomposition and write
u, as a linear combination of k uncorrelated U-statistics of degree 1,2, -- -, k. Once the
order of the variance of the component U-statistics are obtained, the order of V(u,) can
easily be established. Furthermore, since H-decompositions are exact representations of
the U-statistic of interest, contrary to the projections used in Hoeffding (1948) or Weber
(1983), it is possible to focus on the component terms of u, with leading variances.
Obtaining the order of magnitude of each components in the H-decomposition easily
enables us to ignore the degenerate terms and the terms whose orders are negligible, so
we can focus on the exact expression of the leading term to perform further asymptotic
analysis.

In this article, following Hoeffding (1961) and Lee (1990), we provide a convenient
expression that determines the order of each component of an H-decomposition for a
U-statistic of degree k with n-dependent kernel. As expected, since the U-statistic kernel
depends on #n, the order of each component depends on n explicitly. Furthermore, it depends
on the leading variance of the conditional expectation of the U-statistic kernel, which also
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depends on n. We illustrate the use of our result by applying it to previously studied
estimators and test statistics considered by Li (1996) and Lavergne and Vuong (2000). In
addition, we propose and apply our result to the study of a novel test statistic for the overall
significance of a regression model based on a nonparametric R2.! Besides this introduction,
we provide our main result in Sec. 2 and illustrate its use in Sec. 3. A brief conclusion is
provided in Sec. 4. All proofs and technical assumptions are relegated to the Appendix.

2. The Order of Magnitude of U-statistics

Let {Z;}7_, be a sequence of independent and identically distributed (IID) random variables
and ¢,(Zy, - - -, Zy) be a symmetric function with k < n. We call ¢,(Zy, - - -, Z;) a kernel
function that depends on n and a U-statistic u,, of degree k is defined as

-1
tn = (’,Z) D nZiv s Zi), (1)

(n.k)

where }_ ., denotes the sum over all subsets 1<ij <ip<---<ix<n of
{1,2, -, n}. Now, let ¢en(z1, -+, 20) = E(Pu(Zy, -+ Zey, Zeyr, -+ Z)Zy = 21, 22 =
22,y Le = Ze)s Uczn =Var(¢pe(Z1, -+, Z;)) and 6, = E(p,(Z1, -+, Z;)). In addi-
tion, recursively define h\V(z1) = ¢1,(z1) — Op, -+, BOz1, -+, 20) = Penl@r, -+ 2¢) —
Z‘l;ll Z(C,j) h,(f)(z,-l, -++,2;,) — 6, forc =2, ---, k, where the sum Z(C’j) is over all sub-
sets 1 <ij <---<i; <cof{l,---,c}. By Hoeffding’s H-decomposition we have

k

—1 .
_ n § : n—j E )
Mn—9n+(k> <k_J> th(ZUp'.'ﬁzU,‘)

j=1 (n.j)
k

== en + Z <§> Hrfl)(zvly ] Zl)j)y
j=1

where H,ij)(Zvl, e Zy) = (;'.)‘l Z(n,j) h,(f)(Zvl, “++, Zy,). Since u, can be written as a

finite sum of H\, its magnitude can be determined by studying HY. The following result
shows that the magnitude of H,E’ ) is determined by n and the leading variance U]-Zn defined
above.

Theorem 2.1. Let {Z;}!_, be an IID sequence and u,, be defined as in Eq. (1) such that

k
k ,
Up :Gn"' E <J->H,£])(Zv1a"'azvj)-
j=1

Then,
a. Var(H,gj)) =0m/ Z'Z:l Oczn) = O(n_jajzn) and H,gj) = OI,((n_jojzn)%); and

!As pointed out be a referee, it is possible to generalize Eq. (5.13) and Theorem 5.1 in Hoeffding
(1948) to sample size dependent kernels to study the asymptotic magnitude of the variance of
U-statistics. However, in this case one could not determine the specific component expressions which
determine the order of magnitude of the underlying U-statistic.
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7 .

b. for1 <c¢ <c <k, we have

Theorem 2.1 establishes that provided the H,Ej »s are of different magnitudes, the
magnitude of u,, can be determined by the largest term among H\s and 6,. Instead of a
laborious case by case component analysis, the magnitude of u,, can easily be determined
using H,Ej) = OP((n‘jojzn)%) for j =1, ---, k. Since in most instances k is relatively small,
our theorem provides a convenient manner to determine the magnitude of u,, by analyzing
the leading variance szn.

We expect that, in general, the order of degeneracy determines the asymptotic dis-
tribution of U-statistics. For example, when the U-statistic is degenerate of order d, i.e.,
O=o0f =---=o0;, <02 15> then H@*D will determine its asymptotic distribution. We
can draw a similar observation for U-statistics whose kernels are independent of sample

size. However, we note that since ovjzn’s all depend on n, we need to argue separately that
H,Ej) = Op((n_-"aj%i)%) for j =d + 2,---,k is of smaller order than H,gd“), so that we
can focus on H!“*V to study the asymptotic distribution of u,,. This could entail additional
regularity conditions, for example, assumptions on the bandwidth to decay to zero in the
examples studied in Sec. 3. There will be, of course, no additional work in U-statistics
whose kernel does not depend on n, since o7’s do not depend on n, HY ™! is automatically
of smaller order than H/).

Theorem 2.1 is useful in a variety of settings. As mentioned in the Introduction, Lemma
3.1in Powell et al. (1989) is a special case with k = 2. Alternatively, if the U-statistic kernel
does not depend on n then our theorem reproduces classical results in Hoeffding (1961)
and Lee (1990) which give Hy’ = 0,((n"/)?).

Theorem 2.1 is also useful in establishing the magnitude of some symmetric statistics.
In particular, if S,(Zy, Z», - - -, Z,) is asymmetric statistic of finite order k, then by Theorem
1 in Lee (1990, p. 164), S, is a U-statistic of degree k with n-dependent kernels given by

k

-1
Wn(zla"'»zk)zz<’;)<l;> Zsr(Lj)(Zilv"'in;)’
Jj=0

(k, j)
where s (z1, -+ 2)) = E(Su(Z1, Za, -+ Z)Zy = 21, -, Zj = 2))— Yhog Sy s
(ziys > 25) and s = E(S,(Z1, Zy, -+ -, Zy))- Thus, Theorem 2.1 can be used to establish

bounds and orders for the variance of these symmetric statistics. As such, our Theorem 2.1
aides the verification of bounds on second moments assumed, for example, in Rubin and
Vitale (1980).

Lenth (1983) showed that symmetric statistics that satisfy

1 n
Si(Zy  Za) == Sui(Xps e X Xirs oo Xo) )
n i=1

are U-statistics of degree k < n. Hence, Theorem 2.1 can also be applied to establish the
magnitude of symmetric statistics that satisfy condition (2).

Although there exists a rich literature on asymptotic characterizations of symmetric
statistics based on H-decompositions (Efron and Stein, 1981; Karlin and Rinott, 1982;
Dynkin and Mandelbaum, 1983; Takemura, 1983; Mandelbaum and Taqqu, 1984; van Zwet,
1984; Friedrich, 1989; Pecatti, 2004), all of these articles assume a priori the existence
of higher-order moments for the symmetric statistic, failing to provide a route for the
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determination of the magnitude of u, as in Theorem 2.1. To our knowledge, the most
promising result in this regard is Theorem 4.1 in Vitale (1992). He provided a useful
representation for the variance of conditional expectations of symmetric statistics, but
gives no additional insight on how to establish their magnitude as n — oo.

3. Applications: Nonparametric Estimator and Test Statistics

3.1 Previous Literature

We consider the application of Theorem 2.1 to semiparametric estimation of partially
linear models. Li (1996) showed that a \/n consistent estimator for the coefficients of the
parametric part of the regression function can be obtained by using a nonnegative second-
order kernel if the dimension of the variables in the nonparametric part is less than or equal
to five. The result is obtained by, among other things, determining the order of magnitude of
a sum of squared differences between a nonparametric conditional mean estimator and the
true conditional mean, which is a U-statistic of finite degree. A specific result is provided in
his Lemma 2 for S; o = 3 Y (& — g)*1(Ji > b), where & = o=z 2 Kij&)/ Jis

n
fi= m Z#i K;jand K;; = K(@). K is assumed to be a v'" order kernel function,

a is a bandwidth, I(-) is an indicator function and » € R. We show below that the order
of magnitude of S;_, can be determined conveniently by applying our theorem. Using the
assumptions and notations in Li (1996) we have

2

1 n 1 n
Sie =D P Y Kijgj—g) | I1(Ji > b)

i=1 i

1 n
n(n — 12a2b? Z Z Z Kij(gj — g Kiulgr — &)

=
i=l j#i 1
_ 1! L o )
T onn— 12 Z;éz 22952 (8 — &)
i#]
wn[j
1 1

e 22 D g KiKutes — 8)e — &)

nn—1) oyt a2ab

Yniji
= Sln + S2n-

nSi, = ﬁ Zgl:] Z;=1i<j(w"” + i) = %(0(”_3) + (;)_1)22;1 Zj’:lkj d)nij and
Dnij
(O Z;=1i<j ¢nij is a second degree U-statistic u,. For an arbitrary
constant ¢, a*’b*oj, < ca3"b4E(1ﬁfij) = G%E(Kfj(gj - g)hH=0(Q), thus H® =
0,((n2a™%b=*)1) and HV = 0,((n"'a=%b~*)?). By his assumption Al for v > I,
|g(Z; + ayr) — g(Z;)| < Hg(Z;)ayy, where H,(-) has finite fourth moment. Hence,
On = 2oz [ KXW)G(Zi+av)—g(Z) f(Z)) f(Zi+ay)dydZ; = O(a~4+?b~2). Comb-
ing the results, we have nSy, = 0,(a~4"*b~2), and consequently Sy, = O,(n"'a=12p72).
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Now, S, = é(O(n —4) + (: )—1) Z Z Zi<j<l( %ilnjft,j‘,/-/m” + Ynjir + Ynjti + Vi ) and we

Dniji

have that (5)7' >33, ¢uj is a third degree U-statistic. a*bo3, <
ca®b*E(¢; i) = o7 E(KZK 1(g; — 8)(g — g)) = O(a?). Hence, 03, = O(a™12b™*)
and H,$3) = 0,,((n‘3a_2"+2b 4) 2). Furthermore, we have 022n < cE(Ez(xpm'jl|Z,~, Z;)+
E2(1/f,,,~jl|Z,~, Z) + Ez(wnunzj, Z;)) and given his assumption Al we have
EWnijlZi, Z;) = l,bz(gj — gi)anE(Kil(gl - 8lZ) = a{%(é’j — 8)0(@") uni-
formly over Z;. Thus, E(E*(YnijlZi, Z;)) = O(a~92""2p~*). Similar arguments
give E(E*(YnijilZi, Z1)) = O(a™4+*"*2b™*) and E(Ez(l/fnij”Zia Zj) = O(a™ ™).
Thus, o}, = 0@ ™b™*) and H® = 0,((n"* a=9**p=)3). In addition, ol <
CE(E2(%:/1|Z)+E2(1ﬂmjz|z )+E2(1/fmjllzl)) E(lﬁmMZ): & fK(lﬂl)K(%)(g(Z -
ayn) — g(Z)Ng(Z; —ayn) — g(Z; ))f(Z —ay) f(Zi — alﬁz)dlﬂldlﬁz O(a*b™?) uni-
formly over Z;. Consequently, E(E*(Y,ij1|Z:)) = O(a*b™*). Similarly, E(E*(Yij11Z;))
and E(E?(Y:j11Z;) are of the same order. Thus, we have H{ = O(m~1a*b~2) and
0p = cEYrnj1 = O(@*b~?). In all,

_O(nzwﬂﬂa)+0(w*—#%4y+mﬁzf% 2+ 0@@®b7?).

Combining results for Sy, and S5,, we conclude S;_, = OP(n_la_q”b_z) + OP(azvb_z)
as in Li (1996).

As a second example, consider the nonparametric significance test proposed in
Lavergne and Vuong (2000). The test statistic is similar to that in Fan and Li (1996),
but it places less restrictive conditions on the smoothing parameters. The test is properly
centered and has smaller bias in finite sample. The asymptotic distribution of the test is
studied with eleven terms provided in the proof of their Theorem 2.1. Here, we focus
exclusively on the term /; 3 as all other terms are of similar nature. Following their assump-
tions and notations, we take g and & as bandwidths and L(-) and K(-) as kernel functions.
ri(Xy) = E(Y|X1:), n(Xy) = E(Y|Xy) = ri(Xy;) + 8,d(Xy;) indicating the local alter-
native for §, € [0, 1]. The regressors X;, X»; are of dimensions p; and p,, respectively,
with p; < p, and the components of X; are a subset of the components of X»;:

(X)) XD —ri(Xu)g "L (X“;X”)

(n — 3)! (¥i —
Lz = py ZZZ <hP K (XZ[;XZ/)

i
I//nijl
N
= (3) Z Z Z Yiji + Ynitj + Ynjit + Yajii + Yuij + Yuji |
i<j<l
Dniji

which is a U-statistic of degree 3. We determine its order of magnitude using Theorem
2 1. F]rst gPlhng < CgPlh[’ZE m}l — gplhpz E(uzu%fl (XIZ)LZ(XII XII)KZ(XZJ X )) —

O(1) and consequently we have 0, = O(g™"'h=F*) and H® = 0((n*3g*1’1h P2)3),
Second, o5, < cE (Ez(wmjllziv Z)+ E2Wuiji Zi, Z1) + E*(Yuiji| Z;, Zl))-

Since  E(u/|Xy) =0, we have  EWuilZi,Z;))=0.  EWnijlZi, Z) =

uiﬁulE(L,,lenij|X2i, X]l) = M,‘ﬁbt[O(l) uniformly over Xu, and X2i- E(wm']ﬂzj', Z[) =
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wLnji E(u; fi Kpij| X2j) = 8qui Lyji E(d(X2i) f; Knij| X2j) = 8,u;L,j; O(1) uniformly over
X,j, where the second to last equality follows from u; = §,d(Xy) + Y; — ra(X2;)
and E(Y; — r(Xy)|X2)=0. Consequently, 022n = 0(8,2,g_”l ) and H,(2)=
0,((n282g7")2).

Third, ol S cE(E*WnijilZ))  +  E*WwplZ) 4+ E*(YwijilZ).
EWnijglZi) = E0nijilZ;)) =0  and  EWyijulZ) = w E(u; fi(X1;)Lpji Knij| X1) =
81 E(d(X2:) f1(X1i)LyjiKpij| X11) = 8,u;0(1) uniformly over Xy;. Consequently,
02 = 0(82)and H = 0,((n"'62)2).

Finally, given that 6, =0 we have ;3 = 0,((n"'62)%) + 0,((n"282g™")?) +
(0] p((n_3 g’ lh_”zﬁ ). Under the assumptions in Theorem 1 of Lavergne and Vuong (2000)
we obtain nh% I 13 =296, ﬁh% O,(1) + 0,(1), which coincides with their Proposition 2.

3.2 A New Test for Overall Significance of a Nonparametric Regression

Here, we use Theorem 2.1 to establish the asymptotic distribution of a new test for overall
significance of a nonparametric regression. For simplicity of exposition we consider the
standard univariate nonparametric regression model

yi=m(x;)+ ¢, withtr =1,2,.--,n, 3)

where m(x;) = E(y;|x;), E(e;|x;) = 0, V(€/|x,) = 0>(x,). Pearson’s correlation ratio for
this model is given by V(%;’;)) =1- E(y;f”;gx))z and can be interpreted as a nonparametric
R? (Doksum and Samarov, 1995). Under the null hypothesis Hy : P(E(y;|x;) = ) = 1 we
have R? = 0 with alternative hypothesis given by H; : P(E(y,|x;) = u) < 1, where u € %

is some constant. Thus, we define

R2—1_ LY G — (x))?

“4)

55
where s} = oy e =y% ¥ =n"" Y1 yr and A(x) is the local linear estimator (Stone,
1977; Fan, 1992) for m(x). Specifically, 7i1(x) = & where (&, B) = argming g Z;’zl(yt —

a— B(x; — x))zK(x’h;x), K():R — R is a kernel function and 0 < 4, — 0 as n — 00

is a bandwidth. Values of R? in the vicinity of zero are an indication of poor model fit,
i.e., an indication that x; is not a regressor. The following lemma provides the asymptotic
distribution of a suitably centered and normalized R2. We note that, as is common with
these types of test statistics, a bias correction is needed. However, we do not explore this
correction here as our purpose is simply to illustrate the use of Theorem 2.1.

Lemma 3.1. Under Hy and assumptions AI-A7 in the Appendix, we have that

. Ay + Iy -
nh,/? <R2 M ; : ) £ NO. E@(x) V).
;

where V = 2E(%)f(21((u) — [K(x)K(u + x)dx)*du, Iy, = # Yo

n 2 xi=xy_€ _ 2 n €?
Zi:lt;&iK (xh”x )fz(xr) and Aln = —m Zt:l K(O)m
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In essence, the proof of Lemma 3.1 (see the Appendix) requires the analysis of the
asymptotic behavior of s§ and % S — 71(x;))?. Theorem 2.1 is used repeatedly. First,
77 is a second degree U-statistics whose kernel does not depend on n, thus a straightforward
application of Theorem 2.1 gives y* = u” + % >, ue + O (n~1). Hence, under Hy we
Illave 1 Zt (=P =W+ 230 e+ 130 16? —n(u2 +230 ne +10p(nn“)) =
th:I €2 + 0,(n"). Also under Hy we have > ' (y, — iﬁ(xt))2 = ;Z::1€{2 +
23— m(x))e + Zt (0 — 7(x,))*. The second and third terms on the right
side of the last equality can be represented as U-statistics of order up to three. We ap-
ply Theorem 2.1 repeatedly to determine their order of magnitude and obtain converge in

1
distribution at the rate nh? .

4. Summary and Conclusion

We provide a simple result that permits the determination of the magnitude of a U-statistics
of finite degree k with kernel that depends on n. The order of magnitude depends on the
leading variance of the conditional expectation of the kernel function, which depends on
n. Our result permits researchers to easily obtain the magnitude of nonparametric and
semiparametric estimators and test statistics where high dimensional sums are involved.

Appendix

Proof of Theorem 2.1. Let G,(-) be the distribution function of a single point mass at x,
and let F'(-) be the distribution of the random variable Z;. As in Lee (1990) we have O

h9(zy, e z)) :/ /d’n(”l’ . uk)l_[(dGz, (u;) — dF (u;)) l_[ dF (u;).

i=j+1

Deﬁne hEJ%(Zh" 7Zc)=E(h}(’lj)(Zl5”'9ZC’ ZC+17""Zj)|Zl :Zl7"'7ZC:ZC)
and y2, =Var(hly (Z.---,Z;)). Then, from Theorem 2 in Sec. 1.6 in
Lee (1990) we have hy)ln(zl’...’zj_l)zo and for any 1<c<j — 1,
E(h(j’)l 22026, Zeyr, o+, Zj—1)) = 0. By the Law of Iterated Expectation, we
have E(h(C{,),(Zl, e Ze)) = E(h,(f)(Zl, -+, Z;)) =0. Hence, we have.: chjn =0 for all
I<c<j—1 and the only nonzero yZ2, is v}, =y, = Var(ﬁ;{;(Zl, e Z)) =
Var(h(z,,---, Z;)). Now, consider the covariance between R Zy,, - Z,,) and
hE,’)(Zu], <+, Zy;)with¢; =0, - -+, j variables in common. Then,

cov (W(Zus -+ Zo) W (Zuy, -+, Zo) = E ()21, -+ Zph)

X (Zla ) Z(,'la Zj+1’ o 'Zijcl)) =

2j—c

/ /h(])(zl, azj)h(])(zlv s Zeys Zjls 22—y 1_[ dF(zi) =

f /(/ /h(ﬂ(zl, 5 25) 1_[ dF(Zz)X(f fh(j)

i=c;+1
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X(Zla”'azclvzj«l»],”'ZZj*C])
i=j+1 c

< |1 dF(zl»]"[dF(zl)— / / D@1, 2] [dF @) =
2j—ci i=1

EhI) (21, 20)

=V (21, 2e) = yfljn # O only when ¢; = j.

The total number of pairs of h(])(Zvl, -+, Zy,) and hg,j)(Zu], <+, Zy;) with ¢ elements
in common such that cov(h(’)(Zvl, e Zy), hg,j)(Zul, e Zy)) = chljn is (j X ;."1 )(::fl )
because there are ("} i ) ways to choose the variables in hﬁ,’ ) (Zy,s -+ Zy,), and there are ( C’l )
ways to choose ¢ variables among the j variables in hﬁlj )(Z,,l , =+, Zy,) so that they appear
in h(")(Z,,l, +++, Zy,). Also, the different variables in R(Zy, - Z,;) can be chosen

in(; ", ) number of ways. Hence, Var(H) = ‘! ilzo(cjl )(,:’__Ck1 Wein=C""v}
since yc]jn =0VO0 < ¢, < j — 1. Furthermore, for j > j we have

cov (h;ﬂ(zv,, e Zy M L Lo zvj_,)) -
E (W) (Zuys s Zo)EGD Zays . Zags Zays oo Zag g = 2y
Z,, =2,)) =0.
Thus,
J
op = Var@a(Zy, -+, Z.)) = Var ZZh<”<z,,, L Zi)) + 6y

j 2 c
_ZVar Zh(”(zm L Zi) =;<5> Var(HCgJZ')):Z(;)y]?n.

) /=
Here, HS) = (;)_1 Z(c,j) hf,j)(Zil, -+, Z;;) and by following similar arguments as above
we obtain Var(HS)) = (DY
Since
d L& e d
£(¢) - ££0) ()
c=1 c=1 j=1
d d
_ Cc d d—c
=X (5) () v
j=1c=j
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' d—j\(d d—c'—j 2
(45) ()
. +j d _(d—] d
o ()4 (7))
d [d—j .
d—j ¢ _ifd
=Zl</_0( c, )(—1> )(—ndf(j)a/fn

where the last equality follows from Z‘:,_:{)(d;j =1 = Zf,_{)(d;j =1 =0

except when j=d. Hence, we obtain result (a) that Var(H\’) = (D7l =
(‘H! I ()(=1)/=¢a2,. Second, since 62, = Var(@m(Z, -+, Zc)) = ijl(;)yfn >
0, for ¢ < ¢/, we have co?, — o2 =c ijl(cj Wi = ¢ X5y, = 25 (e(5) =
c’(;))yjzn+25.zc+l c(‘j'. )ijn > (, since c(‘j'. )—c’(;) > Oforc’ > ¢ > j > 1, which verifies
result (b). The proof of Lemma 1 depends on the following assumptions.

Al. {x;, y;};_, is an independently and identically distributed sequence.

A2. E(¢|x;) =0, V(&|x;) = 0*(x,) > 0, o>(x) is continuous at x and E ((oz(x,))z) < 00.

A3. Denote the marginal density of x; by f. We have: (1) 0 < B, < f(x) < By < oo for
allx € G, G acompact subset of R; (2) forall x, x" € G, | f(x) — f(x")| < my|x — x|
for some 0 < m ¢ < oo; (3) f(x) is uniformly continuous in G.

A4.0 < B, <m(x) < B,, < ooforallx € G, where m(x) : R — R is a measurable twice
continuously differentiable function in R, |[m®(x)| < B,, < oo forall x € G.

A5.nh? — oo.

A6. K(-) : S — 9 is a symmetric density function with bounded support S C R such that
[xKx)dx =0, [x*K(x)dx = 0%, |K(x)] < By < ooforall x € R and |u’ K (u) —
v/ K()| < cxlu —v|,for j =0,1,2,3.

AT7. E(e,“|x,) < 00, fyle(x) < 00, f(x, €)is continuous around x.

Proof of Lemma 3.1. Given Al and A2 we have (1) %Zle(y, - y)? =
IS €+ 0,(n™Y). Under Hy 137 (v, — m(x)? =130 &2 + 23" (u —
m(x,))e; + %Z:’Zl(/x — (x,))?. Letting ¢’ = (1,0) we follow Fan (1992) and write

n A n n /I O— Xi—X; 1 J—

X = e = e YL Y €S, (0K (i€ (s ) where S, (x) =
(§70 §e) where S, (x,) = == Y0 K(S524)(%4%)7, j = 0, 1, 2. Under AS and A6 we
can use Lemma 1 in Martins-Filho and Yao (2007) to obtain sup, < |S;(x;) — ES;n(x,)| =

Ous.(M2)=2), In addition, under A3, E(S;,(x)) = [KWY! f(x;, + hap)dy —

Inn
f(x;) [ K()¥/dy uniformly over x, € G. Hence, supxleclSj_nl(x,) - Sj_l(xt)| = 045.(1)
and

2
n2h,

xK (Xi — -xt) €€ (xll)a )
ha i

DY (S ) = ST ) + S )

t=1 i=1

2 n .
=) (= mx)e = —
n t=1
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2 n 1 2 n n 1 X —x
= Zf( 5 ()T_Wt;;f(x,)](( i )e,»e, (1 + 0,45 (1)

t#i

= (Aln + AZn)(] + Oa.&(]))-

Using similar arguments we have 1 Zt ((n = m(x))? = L,(1 + 0,5 (1)) where

I, 3h2 ZZZ fZ(X) <Xil/l_’ZXI) K (x'il/;Xt)Giej.

noi=1 i=1 j=1

The magnitude of I, is obtained by considering the following cases (@) whent =i =
we have the corresponding terms in [, being /1, = 5> h2 Z, | f2(x 5 K 2(0)6 which by A2,

A3, and A5, we have I}, = O,((nh,)” ) = op(n~ ; (b) whent = i (ort = j) we have the
corresponding terms in /, being

n n

—;ZZWK«))K (xfhl) o= 2 S vz 2)

2
3hy =1 j=1 hiy =1 j=1
1#]j 1#j

1211 -

where Z; = (x;, €;). Then,

nhi by, = ZZZ Vn(Zi, Z)) + Yn(Z), Z1)) = 222%%2)—

t=1 j=1 t=1 j=1
1#] 1#]

n n

5 ZZ«bn(z,, Z)),

t=1 j=1
t<j

which is U-statistic of degree 2. Its magnitude is easily obtained applying Theorem 2.1.
We have H) =0, 6, = O as E(¢u(Z:, Z)|Z,) = 0 and E(¢,(Z,, Z;)) = 0. Hence, by A2

and A7 we have that nh; I, = 0,((n"202)?) = 0,(n"(E(X(Z,, Z;)))?) and

c 1 Xi— X;
E(¢;(Z1. Z))) < cE (V(Z,, Z))) = EKZ(O)E (f4(x,)K2< jhn ) x 6262)

S SRA0E (ot /K%ﬁ)dw <00
4 foay ‘
3
Thus, nh; I, = O,(n~") and I, = 0,(n~'); (c) when i = j butt # i, we have the corre-
sponding terms in 1, being I3, = %hz Z?:l Yo oy fz(X!)K2("’ —X)e2: (d) when 7, and j

1

are distinct we put ¥,,(Z,, Z;, Z;) = hz (e

terms in /,, are

K(% —x, )K(x/ —Xt )6, €; and the COI‘I‘CSpOIIdlng

n n n

L= Y Yz 2. 2) = Y

t=1 i=1 j=1 t=1 i=1 j=1
1#i] 1#i]
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X ‘//n(Ztizl'ij)—I—I/f}’l(zivZt’Zj)_{—wn(Zj’Zi?Zt)

¢"(Z,,Z,‘,Zj)

1
=3 Z Z Z 2¢0,(Z, Z;i, Zj), where ¢,(Z;, Z;, Z)is symmetric.

l=t<i<j=n

SICRORONE

I=t<i<j=n

Note that & — (5)™' = 0(n™*) and u, = (’;)—IZZZ]ZKRJ.ZH%(Z,, Zi,Zj) is a
U-statistic of degree three. Again, its magnitude can be easily obtained from Theorem
2.1. In this case 6, = E(¢,(Z;, Z;, Z;)) = H{" = 0 since the conditional expectation of
¢n(Z;, Z;, Zj) is zero conditioning on Z;, Z;, or Z;. Now,

E(d’n(zt: Ziv Zj)|Zt’ Zl) = E(‘pn(zt’ Ziv Zj) + I/fn(Zh Ztv ZJ)+ 1Aﬁl’l(zj’ Zi7 Zt)|ZZ‘7 Zl)

€€ 1 Xi — Xj Xt — Xj
= E K K |Zl" Z[ =
hy o \ o f2(x)) h, h
¢21’l(Z17 Zl)a
and  u, = ﬁ S i Pm(Z Z) + Op(HP), where  Var(HY) =
O~ (o}, + 03, + 03,). Now, o}, = Var(E@,(Z;, Zi, Z))|Z)) =0 and o3, =

Var(E(u(Zi, Zi, Z)IZ1, Z0)) < E(E@u(Zi, Zi, Z) Zi, Z))* < E(9p(Z1, Zin Z))) =
032n < 3cE(1ﬁf(Z,, Z;, Z;)). Now, under assumptions A3 and A7

W EW(Z,. Zi. Z;)) = h—12E< e (x,;x,) K> (xf}:x’)az(x,-)az(xj)>

n f4(xt)
) P (o)
- (/ « (‘”)d‘”> £ (f2<x,>> =
Hence, Var(H®) = 0(n=3h;?) = o(n™?), and thus Ly, =

ﬁ Yot ity WD2(Ze, Z) 4 b2n(Zi, Z1)) + o(n™"). Therefore, we can con-
clude that

n n

1 « . ) - ! |
- g(u — ) = L1+ 00s (D) = o5 0D (@l Z0)

t=1 i=1
t<i

+2n(Zi, Z0) + o)1 + 0,45.(1)

1 ‘ ‘ €€ 1 Xi — Xj Xy — Xj
= — —F K K Z:, Z;
o 2k (e () < (5) 1202

t<i

€€ 1 Xp — X Xi —Xj ' _1
#5k (e (7)€ (5.) 1202) Ja v oy

= A3, (1 + 04,5.(1)) + Op(nil)’
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and, consequently, we can write

1 « Lo
=D = ) = (3 + A1+ oo (D) =~ ) €

t=1 t=1
+(Agy + Az + 045 (D) +0,(n7h).

The terms A, and A;, are bias terms and we focus on A,, and Aj, to determine the
asymptotic distribution. Note that

1 1 1) = —
Az, = (— =+ ;) Z Z(cbzn(zt, Z)+ ¢u(Z;, Z,))

T
nn—1) n — =

t<i

1 n n
(O(n—3) + ;) DO @l Zi Zi) + $ou(Zis Z)))
t=1 i=1

n n

1
=32 2 19n(Zi, Zo) + $an(Zi, Z01 + 0p(n™1) = Asi + 0, (n7 ).
t=1 i=l1

Since A3y, = nl—z Yo Yot Dm(Ze, Z) + ¢2n(Z;, Zy)) is a U-statistic of degree 2 we

i=lr<i

have using Theorem 2.1 and given A2 that A3y, = O,(n~'(E(¢3,(Z;, Z:)))?). Furthermore,

4
hn E(@3,(Z1, Zi)) — /Kz(l/fl)dK/ﬁE <c}((xx:))> < 00

where «(x) = [ K)K@u + x)du, hence (E(¢3, (Z;, Z)): = O(h;%) and As, =
0,((n%h,)"7). Now,

| 1 X; — Xy 1 X — X
Ay + Az = —— -2 K €, —2 K :
2+ Aal nzhnzz[( )f(x,) < hy, )EE’ fx) ( hy, )Gte

t=1 i=1
t<i

rec E 1 % Xi — Xj K Xp — Xj 7.7

€€ s Lij

Tk f2(x)) hy R '

t €6 F L g (M=) g () 2.2
T\ f2(x)) hy hy o

1 n n
= —— Y > WalZe, Z0) + YulZis Z0) + Yy Ze, Zi) + Vo Zi, Z0)

2
n*h
=1 i=1

t<i

= Y0z 2.

=1 i=1
t<i

Since ¢,(Z;, Z;) is symmetric and E(¢,(Z;, Z;)|Z;) =0 we have that Ay, +
Az, is a degenerate U-statistic of degree 2. It is easy to show that: (i)
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LE@GXZi, ) > 2QE(SE) A [ KXW)dy+[ 2 ()dy—4 [ KW @)dy) =2V
(ii) For G,(Z1, Z2) = E($pu(Zs, Z))pu(Zs, Z2)| Z1, Z,), we have E(G(Zy, Z,)) = O(h);
and (iii) E¢*(Z,, Z:) = O(hy). From (i)~(ii), we have (ggg;(g{g;;;z - ggf;
5E(f;}(z,,z,~))2 = %0(’;”) — 0. Hence, by the central limit theorem in Hall (1984) nh,% (Ay, +
(E(9;(Z:,Z))) O(h;) 1

Asin) 4 N(0, V) and given that s; L E(0*(x,)) > 0 we have nh? (R? + () (U3 +

A1+ 045 (1)) 5 N(O, (E@@*()) V). o

— 0, and
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