
1. Let G be a finite group of order n. Every conjugacy class of G has size dividing n,
and {e} is a 1-element conjugacy class. (a) The conjugacy classes have sizes 1 and n − 1
with n − 1 | n, so n = 2 and G ∼= Z2. (b) The conjugacy classes have sizes 1 ≤ c2 ≤ c3
with c2, c3 | n and n = 1 + c2 + c3. If G is abelian, then 1 = c2 = c3, so |G| = 3 and
G ∼= Z3. Assume G is nonabelian. Then c3 > 1, so c3 < n < 3c3, and c3 | n implies that
n = 2m for some m ∈ N and c3 = m. Hence c2 = n − 1 − c3 = 2m − 1 −m = m − 1, and
m− 1 = c2 | n = 2m = 2(m− 1) + 2 implies m− 1 | 2, so m = 2 or m = 3. The case m = 2
is impossible, because then |G| = n = 2m = 4, and G must be abelian. Thus, m = 3 and
|G| = n = 2m = 6, so G ∼= D3

∼= S3, and S3 indeed has exactly 3 conjugacy classes.

2. (a) See Lec.Notes 04/28. (b) Since S4 = HV , H ∩V = {id}, and H ∼= S3 we get from the
Diamond Isomorphism Theorem that S4/V = HV/V ∼= H/(H ∩ V ) = H/{e} ∼= H ∼= S3.

3. (a) For every a ∈ G, OH(a) = {ha : h ∈ H} = Ha. (b) By the Orbit-Stabilizer Theorem,
|OH(a)| = |H|/|Ha| for every a ∈ G where Ha = {h ∈ H : ha = a}. Since ha = a implies that
h = haa−1 = aa−1 = e, we get Ha = {e}. Thus, |Ha| = |OH(a)| = |H|/|Ha| = |H|/1 = |H|.
(c) Since the orbits of H partition G, part (a) implies: the right cosets of H partition G. Part
(b) says: all right cosets of H have the same size as H. Thus, we get Lagrange’s Theorem
for the right cosets of H: |G| = |H| · (number of right cosets of H).

4. Let |H| = phmH , K = pkmK with p - mH ,mK ; so |H×K| = ph+kmHmK with p - mHmK .
By Sylow’s 1st Thm, H, K have Sylow p-subgroups PH , PK , respectively. Since PH × PK is
a subgroup of H ×K and |PH | = ph, |PK | = pk, we see that PH ×PK is a Sylow p-subgroup
of H ×K. Every other Sylow p-subgroup P of H ×K is conjugate to PH × PK by Sylow’s
2nd Thm. Hence, P = (a, b)(PH × PK)(a, b)−1 = (aPHa

−1) × (bPKb
−1) for some a ∈ H,

b ∈ K, where aPHa
−1 and bPKb

−1 are Sylow p-subgroups of H and K, respectively.

5. (a) ϕ(R) is a subring of S for every homomorphism ϕ : R→ S. Thus, if ϕ is unital, then
1S = ϕ(1R) ∈ ϕ(R), so 1S is an identity element in ϕ(R), because it is an identity element
in S. Conversely, if 1S is an identity element in ϕ(R), then it must be that 1S = ϕ(1R),
because ϕ(1R) is also an identity element in ϕ(R) (as ϕ(1R)ϕ(r) = ϕ(1Rr) = ϕ(r) and
ϕ(r)ϕ(1R) = ϕ(r1R) = ϕ(r) for all r ∈ R), and hence 1S = 1Sϕ(1R) = ϕ(1R). (b) Follows
from part (a), because ϕ(R) = S implies that 1S is an identity element in ϕ(R).

6. (a) f = (x2 + 1)2 and f - x2 + 1, therefore x2 + 1 + (f) is a nonzero element of
R = Z3[x]/(f), but (x2 + 1 + (f))(x2 + 1 + (f)) = f + (f) = 0 + (f) is the zero element
of R. (b) Let g = x2 + x − 1 (∈ Z3[x]). It can be checked by the Euclidean Algorithm
that gcd(f, g) = 1. Hence, there exist s, t ∈ Z3[x] such that fs + gt = 1. Thus, 1 + (f) =
fs + gt + (f) = gt + (f) = (g + (f))(t + (f)) which shows that t + (f) is a multiplicative
inverse of g + (f) (cf. proof of Thm 2 in Lec.Notes 4/26). (c) s and t can be computed from
the results of the Euclidean Algorithm on f, g: s = 2x + 1 and t = x3 + x2 + 2x. Hence the
multiplicative inverse of x2 + x− 1 + (f) ∈ R is x3 + x2 + 2x + (f) ∈ R.

7. (a) G = S3, H = {id, (1 2)}. (b) D4 and its subgroups 〈r〉 and 〈r2, j〉. (c) No such
example exists, since 77 = 7 · 11, 7 and 11 are primes, and 11 6≡ 1 (mod 7). (d) No such
example exists, because G acts transitively on itself by left multiplication. (e) No such
example exists, because 121 = 112, and every group of order p2 (p prime) is abelian. (f) No
such example exists. Since p is odd, |Dn| = 2n and |〈r〉| = n are divisible by the same
powers of p. Hence a Sylow p-subgroup P of 〈r〉 is a Sylow p-subgroup of Dn. For every
other Sylow p-subgroup P̄ of Dn we have P̄ = gPg−1 for some g ∈ Dn (by Sylow’s 2nd
Thm). Since 〈r〉 E Dn, we get P̄ = gPg−1 ≤ g〈r〉g−1 = 〈r〉. But the cyclic group 〈r〉 has a
unique subgroup of order |P |, therefore P̄ = P . (g) See Lec.Notes 4.28.
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