1. Let G be a finite group of order n. Every conjugacy class of G has size dividing n, and $\{e\}$ is a 1-element conjugacy class. (a) The conjugacy classes have sizes 1 and $n-1$ with $n-1 \mid n$, so $n=2$ and $G \cong \mathbb{Z}_{2}$. (b) The conjugacy classes have sizes $1 \leq c_{2} \leq c_{3}$ with $c_{2}, c_{3} \mid n$ and $n=1+c_{2}+c_{3}$. If G is abelian, then $1=c_{2}=c_{3}$, so $|G|=3$ and $G \cong \mathbb{Z}_{3}$. Assume G is nonabelian. Then $c_{3}>1$, so $c_{3}<n<3 c_{3}$, and $c_{3} \mid n$ implies that $n=2 m$ for some $m \in \mathbb{N}$ and $c_{3}=m$. Hence $c_{2}=n-1-c_{3}=2 m-1-m=m-1$, and $m-1=c_{2} \mid n=2 m=2(m-1)+2$ implies $m-1 \mid 2$, so $m=2$ or $m=3$. The case $m=2$ is impossible, because then $|G|=n=2 m=4$, and G must be abelian. Thus, $m=3$ and $|G|=n=2 m=6$, so $G \cong D_{3} \cong S_{3}$, and S_{3} indeed has exactly 3 conjugacy classes.
2. (a) See Lec.Notes $04 / 28$. (b) Since $S_{4}=H V, H \cap V=\{i d\}$, and $H \cong S_{3}$ we get from the Diamond Isomorphism Theorem that $S_{4} / V=H V / V \cong H /(H \cap V)=H /\{e\} \cong H \cong S_{3}$.
3. (a) For every $a \in G, O_{H}(a)=\{h a: h \in H\}=H a$. (b) By the Orbit-Stabilizer Theorem, $\left|O_{H}(a)\right|=|H| /\left|H_{a}\right|$ for every $a \in G$ where $H_{a}=\{h \in H: h a=a\}$. Since $h a=a$ implies that $h=h a a^{-1}=a a^{-1}=e$, we get $H_{a}=\{e\}$. Thus, $|H a|=\left|O_{H}(a)\right|=|H| /\left|H_{a}\right|=|H| / 1=|H|$. (c) Since the orbits of H partition G, part (a) implies: the right cosets of H partition G. Part
(b) says: all right cosets of H have the same size as H. Thus, we get Lagrange's Theorem for the right cosets of $H:|G|=|H| \cdot($ number of right cosets of H).
4. Let $|H|=p^{h} m_{H}, K=p^{k} m_{K}$ with $p \nmid m_{H}, m_{K}$; so $|H \times K|=p^{h+k} m_{H} m_{K}$ with $p \nmid m_{H} m_{K}$. By Sylow's 1st Thm, H, K have Sylow p-subgroups P_{H}, P_{K}, respectively. Since $P_{H} \times P_{K}$ is a subgroup of $H \times K$ and $\left|P_{H}\right|=p^{h},\left|P_{K}\right|=p^{k}$, we see that $P_{H} \times P_{K}$ is a Sylow p-subgroup of $H \times K$. Every other Sylow p-subgroup P of $H \times K$ is conjugate to $P_{H} \times P_{K}$ by Sylow's 2nd Thm. Hence, $P=(a, b)\left(P_{H} \times P_{K}\right)(a, b)^{-1}=\left(a P_{H} a^{-1}\right) \times\left(b P_{K} b^{-1}\right)$ for some $a \in H$, $b \in K$, where $a P_{H} a^{-1}$ and $b P_{K} b^{-1}$ are Sylow p-subgroups of H and K, respectively.
5. (a) $\varphi(R)$ is a subring of S for every homomorphism $\varphi: R \rightarrow S$. Thus, if φ is unital, then $1_{S}=\varphi\left(1_{R}\right) \in \varphi(R)$, so 1_{S} is an identity element in $\varphi(R)$, because it is an identity element in S. Conversely, if 1_{S} is an identity element in $\varphi(R)$, then it must be that $1_{S}=\varphi\left(1_{R}\right)$, because $\varphi\left(1_{R}\right)$ is also an identity element in $\varphi(R)$ (as $\varphi\left(1_{R}\right) \varphi(r)=\varphi\left(1_{R} r\right)=\varphi(r)$ and $\varphi(r) \varphi\left(1_{R}\right)=\varphi\left(r 1_{R}\right)=\varphi(r)$ for all $\left.r \in R\right)$, and hence $1_{S}=1_{S} \varphi\left(1_{R}\right)=\varphi\left(1_{R}\right)$. (b) Follows from part (a), because $\varphi(R)=S$ implies that 1_{S} is an identity element in $\varphi(R)$.
6. (a) $f=\left(x^{2}+1\right)^{2}$ and $f \nmid x^{2}+1$, therefore $x^{2}+1+(f)$ is a nonzero element of $R=\mathbb{Z}_{3}[x] /(f)$, but $\left(x^{2}+1+(f)\right)\left(x^{2}+1+(f)\right)=f+(f)=0+(f)$ is the zero element of R. (b) Let $g=x^{2}+x-1\left(\in \mathbb{Z}_{3}[x]\right)$. It can be checked by the Euclidean Algorithm that $\operatorname{gcd}(f, g)=1$. Hence, there exist $s, t \in \mathbb{Z}_{3}[x]$ such that $f s+g t=1$. Thus, $1+(f)=$ $f s+g t+(f)=g t+(f)=(g+(f))(t+(f))$ which shows that $t+(f)$ is a multiplicative inverse of $g+(f)$ (cf. proof of Thm 2 in Lec.Notes 4/26). (c) s and t can be computed from the results of the Euclidean Algorithm on $f, g: s=2 x+1$ and $t=x^{3}+x^{2}+2 x$. Hence the multiplicative inverse of $x^{2}+x-1+(f) \in R$ is $x^{3}+x^{2}+2 x+(f) \in R$.
7. (a) $G=S_{3}, H=\{\mathrm{id},(12)\}$. (b) D_{4} and its subgroups $\langle r\rangle$ and $\left\langle r^{2}, j\right\rangle$. (c) No such example exists, since $77=7 \cdot 11,7$ and 11 are primes, and $11 \not \equiv 1(\bmod 7)$. (d) No such example exists, because G acts transitively on itself by left multiplication. (e) No such example exists, because $121=11^{2}$, and every group of order p^{2} (p prime) is abelian. (f) No such example exists. Since p is odd, $\left|D_{n}\right|=2 n$ and $|\langle r\rangle|=n$ are divisible by the same powers of p. Hence a Sylow p-subgroup P of $\langle r\rangle$ is a Sylow p-subgroup of D_{n}. For every other Sylow p-subgroup \bar{P} of D_{n} we have $\bar{P}=g P g^{-1}$ for some $g \in D_{n}$ (by Sylow's 2nd Thm). Since $\langle r\rangle \unlhd D_{n}$, we get $\bar{P}=g P g^{-1} \leq g\langle r\rangle g^{-1}=\langle r\rangle$. But the cyclic group $\langle r\rangle$ has a unique subgroup of order $|P|$, therefore $\bar{P}=P$. (g) See Lec.Notes 4.28.
