1. Let G be a finite group of order n. Every conjugacy class of GG has size dividing n,
and {e} is a l-element conjugacy class. (a) The conjugacy classes have sizes 1 and n — 1
with m —1 | n,son =2 and G = Zy. (b) The conjugacy classes have sizes 1 < ¢ < ¢3
with ¢co,c5 | nand n = 1+ ¢co + ¢3. If G is abelian, then 1 = ¢; = ¢3, so |G| = 3 and
G = Z3. Assume G is nonabelian. Then ¢35 > 1, so ¢3 < n < 3¢z, and ¢z | n implies that
n = 2m for some m € N and c3 =m. Hence co =n—1—c3=2m—1—m =m — 1, and
m—1=c|n=2m=2(m—1)4 2 impliesm — 1|2, so m =2 or m = 3. The case m = 2
is impossible, because then |G| = n = 2m = 4, and G must be abelian. Thus, m = 3 and
|G| =n=2m=06,s0 G= D3 =53, and S5 indeed has exactly 3 conjugacy classes.

2. (a) See Lec.Notes 04/28. (b) Since Sy = HV, HNV = {id}, and H = S5 we get from the
Diamond Isomorphism Theorem that S;/V = HV/V = H/(HNV) = H/{e} = H = 5.

3. (a) For every a € G, Og(a) ={ha: h € H} = Ha. (b) By the Orbit-Stabilizer Theorem,
|Op(a)| = |H|/|H,| for every a € G where H, = {h € H : ha = a}. Since ha = a implies that
h = haa ' = aa™' = e, we get H, = {e}. Thus, |Ha| = |Oy(a)| = |H|/|H,| = |H|/1 = |H|.
(¢) Since the orbits of H partition G, part (a) implies: the right cosets of H partition G. Part
(b) says: all right cosets of H have the same size as H. Thus, we get Lagrange’s Theorem

for the right cosets of H: |G| = |H| - (number of right cosets of H).

4. Let |H| = phmy, K = p"mg with p{ my, mg; so |H x K| = p"* *mymyg with pt mygmy.

By Sylow’s 1st Thm, H, K have Sylow p-subgroups Py, Pk, respectively. Since Py X Pk is
a subgroup of H x K and |Py| = p", |Px| = p®, we see that Py x Py is a Sylow p-subgroup
of H x K. Every other Sylow p-subgroup P of H x K is conjugate to Py X Pg by Sylow’s
2nd Thm. Hence, P = (a,b)(Py x Pk)(a,b)™! = (aPga™') x (bPgb™!) for some a € H,
b € K, where aPga~t and bPgb~! are Sylow p-subgroups of H and K, respectively.

5. (a) p(R) is a subring of S for every homomorphism ¢: R — S. Thus, if ¢ is unital, then
ls = ¢(1g) € p(R), so 1g is an identity element in p(R), because it is an identity element
in S. Conversely, if 1g is an identity element in ¢(R), then it must be that 1g = ¢(1g),
because ¢(1g) is also an identity element in ¢(R) (as ¢(1g)e(r) = ¢(1gr) = ¢(r) and
o(r)p(1r) = @(rlg) = ¢(r) for all r € R), and hence 1g = 15p(1g) = ¢(1g). (b) Follows
from part (a), because p(R) = S implies that 1g is an identity element in ¢(R).

6. (a) f = (2> +1)* and f t 2% + 1, therefore 2> + 1 + (f) is a nonzero element of
R = Zs[z]/(f), but (22 + 1+ (f)(@*+ 1+ (f) = f+ (f) = 0+ (f) is the zero element
of R. (b) Let g = 2*> + 2 — 1(€ Zs[z]). Tt can be checked by the Euclidean Algorithm
that ged(f,g) = 1. Hence, there exist s,t € Zs[x] such that fs+ gt = 1. Thus, 1+ (f) =
fs+gt+(f)=gt+ (f) = (g+ (f)(t+ (f)) which shows that ¢ + (f) is a multiplicative
inverse of g+ (f) (cf. proof of Thm 2 in Lec.Notes 4/26). (c) s and ¢ can be computed from
the results of the Euclidean Algorithm on f,g: s = 2z + 1 and t = 2® + 2% 4 2. Hence the
multiplicative inverse of 22 +x — 1+ (f) € Ris 23 + 22 + 2z + (f) € R.

7. (a) G = S5, H = {id, (12)}. (b) D, and its subgroups (r) and (r? ;). (c) No such
example exists, since 77 = 7 - 11, 7 and 11 are primes, and 11 # 1 (mod 7). (d) No such
example exists, because G acts transitively on itself by left multiplication. (e) No such
example exists, because 121 = 112, and every group of order p? (p prime) is abelian. (f) No
such example exists. Since p is odd, |D,| = 2n and [(r)| = n are divisible by the same
powers of p. Hence a Sylow p-subgroup P of (r) is a Sylow p-subgroup of D,,. For every
other Sylow p-subgroup P of D, we have P = gPg~! for some g € D,, (by Sylow’s 2nd
Thm). Since (r) < D, we get P = gPg~* < g(r)g~! = (r). But the cyclic group (r) has a
unique subgroup of order | P|, therefore P = P. (g) See Lec.Notes 4.28.



