1. Since f is surjective and the assumption ‘g o f is injective’ implies that f is injective, we
get that f is bijective. Hence, f has an inverse functionf~!: B — A, which is also bijective.
This implies that g = go (fo f71) = (go f) o f! is injective (as both go f and f~! are).
2. Call the given statement S(n). S(0) holds, because if A and m € N are such that there
exist (i) an injective f: A — 0 = ) and (ii) a bijective g: A — m, then A = () from (i) and
hence m = () = 0 from (ii), so m = 0 < 0 = n. Assume now that S(n) holds. To prove S(n’),
consider any A and m € N, and injective f: A — n/ and bijective g: A — m. If A =0,
then m = 0 as before, and m = 0 < n/. Assume A # (), and fix a € A. Hence m # 0, and
therefore m = k' for some k € N. By HW2,Prl, we may assume (by replacing f by f and
g by g) that f(a) =n (€ n') and g(a) = k(€ k’). Applying the induction hypothesis to the
restrictions of the functions f and g to A\ {a}, we get that k£ < n. Hence, k' <n/'.

3. Let d = p™py...p™r. Clearly, d | a, because a = dq for ¢ = p&'~ mlpgg_m LLpkrmme
where ¢ € Z (as all k; —m; € N). Similarly, d | b. Assume now that ¢ | a,b (¢ € Z). Then
¢ # 0 and —c | a,b, so we may assume ¢ € N\ {0}. Thus, ¢ has a prime factorization
c=pi'py’ ... pirglt ... g where qq,. .., qs are distinct primes different from py, ..., p,, and
all u;,v; € N. Since ¢ | a, we have a = ¢ for some ¢ € N\ {0}. Replacing ¢ and ¢ by
their prime factorizations, we get a new prime factorization for a, which may differ from the
original one only in the order of its factors. Thus, v; = --- = vy = 0 and u; < k; for all ¢
(1 <i <r). The same argument for b yields also that u; < ¢; for all i (1 < i < r), and hence
u; <m; for all i (1 <i <r). Thus, ¢ | ep]™ “py2 "2 pr—t =d.

4. (a) Since o(a) = 1932, (a?**) = (ascd(294,1932)) — <a42>, and similarly, (a'®°) = (qged(189,1932)) —
(a®'). Now a*? = (a?')? € (a®') implies a*® € (a?'), and hence (a*) = (a??) C (a®!) = (a'®?).
Note: It follows also that o(a'®) = o(a*') = 132 = 92.

(b) a®* = (a'®)* (k € Z) iff 1932 | 189k — 294 iff 189k + 1932(—q) = 294 for some ¢ € Z.
Since 21]189, 1932, 294, this equation is equivalent to 9k +92(—¢q) = 14. Using the Euclidean
algorithm, one can ﬁnd s,t € Z satisfying 9s + 92t = ged(9,92) = 1: say, s = 41, t = —4.
Hence k = 14 - 41 = 574 and ¢ = —14(—4) = 56 satisfy 9k + 92(—q) = 14. Thus, k = 574
works, but so does any integer = 574 (mod 92) (where 92 = o(a'®?)), say k; =22.

5. (a) (ab)? = a2b* < abab = aabb < ba = ab where = is obtained in <> by multiplying

both sides by a~! on the left and ! on the right, while < is obtained in & by multiplying
both sides by a on the left and b on the right.

(b) If g> = e for all g € G, then for any a,b € G we have (ab)? = e = ee = a*b*, and hence
ab = ba (by part (a)). Thus, G is abelian.

6. Let m = 1172 ...7m be the cycle decomposition of . Since V1,72, - - YV are disjoint
cycles, they commute and hence for every integer k, 7 = v¥~5 .. 4% We saw in Pr3,Wsh2
that o(v;) is the length ¢; of the cycle 4; for every i, so % =id and ¥ = id whenever ¢; | k;
however, if ¢; 1 k, then ¥ fixes none of the elements that occur in 7;. Therefore, 7% = id iff
l; | k for all ¢ iff lem(€y, lo, ..., 0y) | k. Hence, o(m) = lem(ly, la, ..., Ly).

7. (a) No such example exists. If a surjective, non-injective function g: A — A existed for
a finite set A, then by assigning to each a € A a b € A such that g(b) = a, we would get an
injective, non-surjective function A — A, contradicting Cor.1.5(6) in Lec.Notes 02/03.

(b) No such a, b exist. See Pr2 HW3 if a,b # 0. If 0 € {a, b}, say a = 0, then 0 = lem(a, b).
(c) Example: {id, (1 2)(34), (13)(24), (14)(23)}.

(d) Example 1: m =0 = (1 2), 7o =id. Example 2: 7 = (123 4) =(132), 70 =(14).
(e) No such G = (a) exists, because a*a’ = a*** = aa* for all a*,a* € (a).

(f) No such 7 € S, exists. Indeed, if o is odd, i.e., it is a product of an odd number of
transpositions, say m, then for every k € Z, ¢* is a product of mk transpositions. Hence,
o% is odd if k is odd. Since id is even, o # id if k is odd.

1



