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HOMEWORK 1

RAYMOND BAKER

ForMmAL PROOF THAT {Cmpr, Pair} + Pair#
Statements Used:
Pair=VaVydz(xeznyez)
Cmpr? = VaVwYwy3zVit(t € z < ((t=wy Vi =wy) At ex))

Premises Used:
I' = {Cmpr, Pair}
I“=Tu{aednrbed}
**=T*u{Vt(teg< ((t=avt=b)ated))}
I"=T"u{veg}
"=r"u{v=a}
" =T*"*u{v=avov=">0}

Proof. Let T' = {Cmpr, Pair}, where Cpmr is all the axioms in the scheme’s form. It follows that
Cmpr? € {Cmpr, Pair}. To apply generalization of constants, define £’ by adding the constant
symbols a and b to the signature of £. Now, in order to apply Existential Instantiation, define £”
by adding a constant symbol d to the language £. Define the set of premises I'* =T'u{a e dAb e d}.
Taking on one more augmentation of the language and premises, let £ = L (o)’ where ¢ is a
constant not in the signature of L”. Let T** =T*u{Vt(teg< ((t=avt=0b)Ated))}. Take L"
and I'** to be our language and our set of premises. We will see first what is provable from ['** in
L" and then look to apply Existential Instantiation. We will then repeat the process with I'* in
the language L.

Let v be a variable. We are looking to show
**+vo(veg< (v=avuv=>))

We will do this with two successive applications of the deduction theorem to conclude that I'** +
veg—>(v=avuv=>), as well as the converse of this statement. To begin the first deduction, take

as premises [V =T"** u{v € g}:
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(1) I"rVi(tege ((t=avit=b)ated)) > (vege (v=avuv=b)rved)) Ax 2
(2) I"+Vt(tege ((t=avt=b)ated)) I

(3) IMrvego ((v=avv=>b)Arved) MP 1,2
(4) [Mrveg I

(5) IMr(v=avv=b)rved MP 3,4
(6) I"((v=avv=b)rved)—> (v=aVvv=>) Ax 1
(7) I"rv=avo=b MP 5,6

An application of the deduction theorem allows us to conclude that
(8) " rveg—>(v=avuv=>) DT

Now, we look to show that I'** proves the converse of this statement. This will involve two subproofs

using the deduction theorem and a few subsequent deductions. Take the premises I'"" = I'"*u{a = v}:

(9) IM+aednbed r

(10) I'Mr(aednbed)>aed Ax 1

(11) IMvraed MP 9,10

(12) I'"MrVz(z=v—>(zed—>ved)) Ax 6

(13) [Mr[Vz(z=v—>(2zed—>ved))]>[a=v—>(aed—>ved)] Ax 2

(14) I[Mra=v—->(aed—>ved) MP 12, 13
(15) IMv+a=v r

(16) I ved MP 15, 11, 14

Applying the deduction theorem, we obtain

(17) "*rv=a—->ved DT 9-16
Repeating the steps 9-16 with the constant symbol b instead of a allows us to conclude that

(18) I +rv=b-ved DT 9*-16*
Now we have

(19) "*ruv=a-ved]>[(v=b-ved)—>((v=avv=>b) >ved)] Ax 1

(20) I"*+(wv=avv=>b)>ved MP 17, 18, 19
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To finally prove the desired converse, take the set of premises I =T"*u{v=aVv v =b}

(21) I +v=avu=> r

(22) I v ed MP 21, 20
(23) " +(v=avuv=b)>(ved—> ((v=avv=>b)Aved)) Ax 1

(24) " +H(v=avv=b)Arved MP 21,22,23
(25) T""+Vt(teg<— ((t=avi=b)ated)) r

(26) T"" +Vt(tege— ((t=avit=b)ated)) - (veg< ((v=avv=b)arved)) Ax?2

(27) T"rvege ((v=avuv=>b)Aved) MP 25, 26
(28) T"+vege ((v=avv=b)rved)]—[((v=avv=b)arved)—-veg] Ax1

(29) I"+((v=avv=b)Arved)>veg MP 27, 28
(30) IMrveg MP 24, 29
Now, discharging our added premise and applying the deduction theorem, we have that

(31) ["*+Hv=avv=b)—>veg DT 21-30
(32) I F(v=avv=b)>veg]->[(veg—(v=avuv=">))

(33) s> (vege (v=avv=">))] Ax 1

(34) ["*+Hvege (v=avv=1D>)) MP 31, 8, 32/33

Since v is a variable not free in any v € ['**, as every -~ is a sentence, it follows from the generalization

theorem that,

(35) I**+VYo(vege (v=avv=">0)) GT

Now we look to establish the existential portion of our statement:

(36) I +[Vz=(YVv(vez o (v=avv=0)))] > [-Vv(veg (v=avv=">))] Ax 2

(37) T** »—[[Vz—'Vv(’u ez (v=avv=>b))]->[-Yv(vege (v=avv= b))]]

(38) = [[--Vo(vege (v=avv=b))] > [-Vz=Vo(vez < (v=avv=b))]] Ax1

(39) T H[=-Yo(veg o (v=avu=b))] = [-¥2=Yo(vez < (v=avv=h))] MP 36, 37/38
(40) I'** FYv(vege (v=avv=0)) > -=-Yo(veg< (v=avv=D>)) Ax 1

(41) T F==Yv(veg e (v=avv="0)) MP 35, 40
(42) T** F=Vz=(Yv(vez < (v=avv=10))) MP 41, 39

But, an abbreviation for the above is just

(43) I r3zvo(vez <o (v=avv="»))
3
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Now, we have just shown that
Mu{Vt(tege ((t=avt=b)ated))}+3IzVo(vez < (v=avv=>))

in the language L. Since d is not in the signature of L”, we may apply the meta-theorem Existential
Instantiation, allowing us to conclude that T* u{32Vt(t ez < ((t=avit=b)Ated))}+ IzVuv(v e
z < (v=avwv=»>)) in the language £”. Thus, the deduction theorem implies that

(44) Ik [32Vi(tezo ((t=avt=b)ated))] - [IzVv(vez o (v=avv="0))]

Now apply (Ax 2) to CmprP with the substitutions d for x, a for wy, and b for w,. This gives us

(45) I* FVaVu Ywy32Vi(t € z < ((t=wy Vi =wy) At ex))] r*

(46) I* EVeVw Vwy3zVit(t e z < ((t=wy VE=wy) Atex))]

(47) - [2Vt(tezo ((t=avt=b)ated))] Ax 2

(48) [ F3z2Vt(tez < ((t=avit=b)Ated)) MP 45, 46/47

Thus, we have shown that
[*=Tu{aedrbed}+IzVv(vez (v=avv="D))

in the language L£”. But, since d is not in the signature of £’, we may apply existential instantiation
to obtain that Tu{3z(ae€zAbez)} + F2Vv(v ez < (v=avwv=">)) in the language L. We may
apply the deduction theorem to obtain

(49) I'r3z(aeznbez) > AzVu(vez < (v=avov=>)) DT

(50) [+VaVydz(zeznyez) r

(51) CH[VaVydz(xeznyez)] > [Fz(aeznbez)] Ax 2, twice
(52) Fr3z(aeznbez) MP 50, 51
(53) FrF3zVo(vez <o (v=avv=»>)) MP 49, 52

But, since a,b are not in the signature of £, we may apply Generalization on Constants to con-
clude that T' + VaVy3zVu(v € z & (v = xvv = y)) = Pair® in the original language £. Thus
{Cmpr, Pair} + Pair#. 0O



