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HOMEWORK 1

RAYMOND BAKER

Prove the Following Statements to be Equivalent in ZFC/{Fnd}

Fnd

φ ≡ ¬∃f(f is a function ∧ dmn(f) = ω ∧ ∀n ∈ ω(f(n + 1) ∈ f(n)))

Proof. To prove that these to statments are equivalent under ZFC/{Fnd}, we will see that

ZFC/{Fnd}∪{Fnd}=ZFC⊢ φ and ZFC/{Fnd}∪{φ} ⊢Fnd. To prove the former, we will utilize a

proof by contradiction and show that ZFC∪{¬φ} is inconsistent.

Take the set of premises ZFC∪{¬φ}. From ¬φ it follows that ∃f(f is a function ∧ dmn(f) =

ω ∧ ∀n(n ∈ ω → f(n + 1) ∈ f(n))). But rng(f) is also a set. Since, the domain is ω, we know

that rng(f) is non-empty. So, applying the axiom of foundations to f , we see that there is some

x ∈ rng(f) such that x ∩ rng(f) = ∅. But, we have that x = f(n) for some n ∈ ω. By the definition

of f , f(n + 1) ∈ x. But f(n + 1) ∈ rng(f) implying f(n + 1) ∈ x ∩ rng(f) /= ∅, a contradiction. Since

ZFC∪{¬φ} is inconsistent, we may conclude that ZFC⊢ ¬¬φ, i.e. ZFC⊢ φ.

Now, to prove that ZFC/{Fnd} ∪ {φ} ⊢ Fnd, we will prove the contrapositive, i.e. demonstrating

that ZFC/{Fnd} ∪ {¬Fnd} ⊢ ¬φ. So, take the premises ZFC/{Fnd} ∪ {¬Fnd}. From ¬Fnd, it

follows that ∃x(x /= ∅ ∧ ∀y ∈ x(y ∩ x /= ∅)). Denote such a set with the symbol A. Using the

General Recursion Theorem, we will construct a function f with rng(f) ⊆ A satisfying ¬φ. In order

to construct this function, we will invoke the axiom of choice. We will use the Choice Function

Principle, shown to be equivalent to the axiom of choice. Since A is non-empty, P(A)/{∅} is a

family of non-empty subsets of A. Let C be a choice function on P(A)/{∅}. Define G ∶ ω ×V → V

by

G(n, v) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

A if n = 0

C(v(m) ∩A) if n =m + 1, v is a function with dmn = n, and v(m) ∩A /= ∅

∅ otherwise

By the recursion theorem, there exists an f ∶ ω → V such that f(n) = G(n, f↾n), for all n ∈ ω. Clearly

f is a function and dmn(f) = ω. We will prove by induction that f satisfies ∀n ∈ ω(f(n + 1) ∈

f(n)). Consider the set S = {n ∈ ω ∶ f(n + 1) ∈ f(n)}. We have that f(0) = A. Additionally,

f(1) = G(1, f↾1). Clearly 1 = 0+ 1, f↾1 is a function with domain 1 and f(0) ∩A = A is non-empty,

so f(1) = C(f↾1(0) ∩ A) = C(A) ∈ A. Thus f(1) ∈ f(0) and 0 ∈ S. Take n /= 0 and assume that

n ∈ S. Since f(n + 1) ∈ f(n) /= ∅, we may conclude that f(n) = G(n, f↾n) = C(f↾n(m) ∩ A),
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where n = m + 1. Thus f(n) ∈ A. By the selection of A, f(n) ∩A /= ∅. It follows that f(n + 1) =

G(n+1, f↾
(n+1)) = C(f↾(n+1)(n)∩A). So f(n+1) ∈ A. It follows that f(n+1)∩A /= ∅. Now consider

f(n + 2) = G(n + 2, f↾
(n+2)). Clearly n + 2 = (n + 1) + 1, f↾

(n+2) is a function with dmn= n + 2, and

f↾
(n+2)(n + 1) ∩ A /= ∅. So, f(n + 2) = C(f↾

(n+2)(n + 1) ∩ A). It follows that f(n + 2) ∈ f(n + 1).

Thus, n + 1 ∈ S. By the inductive principle for ω, S = ω. So, ∀n ∈ ω(f(n + 1) ∈ f(n)). Therefore,

∃f(f is a function ∧ dmn(f) = ω ∧ ∀n ∈ ω(f(n + 1) ∈ f(n))), which implies ¬¬∃f(f is a function ∧

dmn(f) = ω ∧ ∀n ∈ ω(f(n + 1) ∈ f(n))). Thus, ZFC/{Fnd} ∪ {¬Fnd} ⊢ ¬φ. So we may conclude

that ZFC/{Fnd} ∪ {φ} ⊢ Fnd.

Consequently, Fnd and φ are equivalent under ZFC/{Fnd}. �
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