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HOMEWORK 1

RAYMOND BAKER

PROVE THE FOLLOWING STATEMENTS TO BE EQUIVALENT IN ZFC\{FND}

Fnd
¢=-3f(f is a function A dmn(f) =wAVnew(f(n+1)e€ f(n)))

Proof. To prove that these to statments are equivalent under ZFC\{Fnd}, we will see that
ZFC\{Fnd}u{Fnd}=ZFCr ¢ and ZFC\{Fnd}u{¢} rFnd. To prove the former, we will utilize a
proof by contradiction and show that ZFCu{-¢} is inconsistent.

Take the set of premises ZFCu{-¢}. From -¢ it follows that 3f(f is a function A dmn(f) =
wAVn(n ew - f(n+1) e f(n))). But rg(f) is also a set. Since, the domain is w, we know
that rng(f) is non-empty. So, applying the axiom of foundations to f, we see that there is some
x €rng(f) such that x nrng(f) = @. But, we have that z = f(n) for some n € w. By the definition
of f, f(n+1)ex. But f(n+1)erng(f) implying f(n+1) e znrng(f) # @, a contradiction. Since
ZFCu{-¢} is inconsistent, we may conclude that ZFCr --¢, i.e. ZFCr ¢.

Now, to prove that ZFC\{Fnd} u{¢} + Fnd, we will prove the contrapositive, i.e. demonstrating
that ZFC\{Fnd} u {-Fnd} + -¢. So, take the premises ZFC\{Fnd} u {-Fnd}. From -Fnd, it
follows that Jz(z # @A Vy € x(ynz # &)). Denote such a set with the symbol A. Using the
General Recursion Theorem, we will construct a function f with rmg(f) ¢ A satisfying —¢. In order
to construct this function, we will invoke the axiom of choice. We will use the Choice Function
Principle, shown to be equivalent to the axiom of choice. Since A is non-empty, Z(A)\{@} is a
family of non-empty subsets of A. Let C' be a choice function on Z(A)\{@}. Define G:wxV -V
by

A ifn=0
G(n,v)=1C(v(m)nA) if n=m+1,vis a function with dmn =n, and v(m)n A+ @
%) otherwise

By the recursion theorem, there exists an f : w — V such that f(n) = G(n, f1,), for all n € w. Clearly
f is a function and dmn(f) = w. We will prove by induction that f satisfies Vn € w(f(n+1) €
f(n)). Consider the set S ={new: f(n+1)e f(n)}. We have that f(0) = A. Additionally,
f(1)=G(1,f11). Clearly 1=0+1, f1; is a function with domain 1 and f(0)n A = A is non-empty,
so f(1) =C(f11(0)nA)=C(A) € A. Thus f(1) € f(0) and 0 € S. Take n # 0 and assume that

n € S. Since f(n+1) € f(n) # @, we may conclude that f(n) = G(n, fl,) = C(f1,(m)n A),
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where n = m+ 1. Thus f(n) € A. By the selection of A, f(n)n A # @. It follows that f(n+1) =
G(n+1, ftininy) = C(f ey (n)nA). So f(n+1) e A. It follows that f(n+1)nA+# @. Now consider
f(n+2)=G(n+2, fls2). Clearly n+2=(n+1)+1, fl,:2) is a function with dmn=n + 2, and
flasy(n+1)nA# 3. So, f(n+2)=C(fle(n+1)nA). It follows that f(n+2) e f(n+1).
Thus, n+1 € S. By the inductive principle for w, S = w. So, Vn e w(f(n+1) € f(n)). Therefore,
3f(f is a function A dmn(f) =wAVnew(f(n+1)e f(n))), which implies -3 f(f is a function A
dmn(f) =wAaVnew(f(n+1)e f(n))). Thus, ZFC\{Fnd} u {-Fnd} + =¢. So we may conclude
that ZFC\{Fnd}u {¢}+ Fnd.

Consequently, Fnd and ¢ are equivalent under ZFC\{Fnd}. O



