Set Theory (MATH 6730)

Clubs and Stationary Sets

Definition 1. Let a be an ordinal, and let C' C o. We say that

e C is unbounded in « if for every 8 < a there exists v € C such that 8 < ;!
e (' is closed in « if for every limit ordinal § < « such that C'N B is unbounded in £
we have that 8 € C;

e (' is club in «a if it is closed and unbounded in a.

Example 2. Let a be an ordinal.

(i) « is club in «; in particular, () is club in 0.

(ii) If «v is a successor ordinal, say o« = 8 + 1, then {8} is club in a.

(iii) If v is a limit ordinal, then the set [3,a) = {7y < a : v > B} is club in « for every
B < a.

(iv) If «v is a limit ordinal of countable cofinality, then for every strict order preserving
function f: w = cf(a) — a such that C' = rng(«) is unbounded in o we have that C
is club in a.?

(v) If a is a limit ordinal of uncountable cofinality and C' C « is club in «, then so are
the following subsets of C"

D = {~ € C : v is a limit ordinal},
E ={y < a:~is alimit ordinal and C' N~ is unbounded in v} (C D).

(vi) A non-example: Under the assumptions of (v), X = {y € C': v is a successor ordinal}
is not club in a.

Clubs in an ordinal o are most interesting if « is a limit ordinal of uncountable cofinality.

If o has no largest element (i.e., o is not a successor ordinal), then this definition coincides with our earlier
definition; see Definition 4.8 in the handout “The Axiom of Choice. Cardinals and Cardinal Arithmetic”.
2Cf. Theorem 4.11 in the same handout and Corollary 6 below.
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Before stating our first result on clubs, the following observation on subsets of ordinals
will be useful. Recall® that for every well-ordered set (B, <) there exists a unique ordinal 3
such that (3, <) is isomorphic to (B, <). We will refer to this ordinal § as the order type of
(B, <)

Fact 3. If a is an ordinal, I' C «, and I has order type 3, then p < «.

Theorem 4. Let a be a limit ordinal, and let C' C . Then C' s club in a if and only if

(1) C is unbounded in o, and
there exist 3 € On and a normal function* f: 8 — « such that C = rng(f).

Idea of Proof.
=: Let C be club in a, let 5(< «) be the order type of C' and let f be an isomorphism
B — (C, <), considered as a function f — a.

e Clearly, C' = rng(f) is unbounded in « and f is strict order preserving.
e To prove that f is also continuous, let 6 < [ be a limit ordinal. Using that C' is
closed in «, show that (J._; f(¢) € C, and conclude that f(5) = .5 f(e).

<: Assume that f:  — « is a normal function such that C' = rng(f) is unbounded in «.

e To show that C is closed in «, let v < « be a limit ordinal such that C' N~ is
unbounded in 7. Verify that § := (J f~*[C'N~] is a limit ordinal < 3, and prove that

o) =UJre=Uecny=x

e<d

Hence v € rng(f) = C. O

3See Theorem 4.4 on the handout ‘Ordinals. Transfinite Induction and recursion’.
4Gee Definition 5.1 on the same handout.
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Corollary 5. Let k be a reqular cardinal, and let C' C k. Then C' is club in k if and only if
(1) there exists a normal function f: k — k such that C' = rng(f).

Proof. By Theorem 4, it suffices to show the following:
(1) holds for o = & if and only if () holds.

To prove this observe that

in =: since C' is unbounded in , it must be that § > |B| = |C| > cf(k) = K, so 8 = k;
and

in «<: C is unbounded in &, because (i) forces |C| = k. O

Corollary 6. Fvery limit ordinal o has a club of order type cf(«).

Proof. We saw earlier” that there exists a strict order preserving function f: cf(a) — « such
that rng(f) is unbounded in . Now we define a function g¢: cf(o0) — « by recursion as
follows:

0 if 6 =0,
9(8) =  max(f(0),g(e) +1) if § =&+ 1 for some ordinal e, (6 < cf(a)).
U.s9(e) if ¢ is a limit ordinal

It follows that

e g is a normal function cf(a) — a;°

e rng(g) is unbounded in «, since g(§) > f(0) for all § < cf(«). 0

Theorem 7. If « is a limit ordinal of uncountable cofinality, then the intersection of fewer
than cf(a) clubs of a is a club of .

Example 8. If, in Theorem 7, we drop the assumption cf(a) > w or the assumption that
the number of clubs intersected is < cf(«), then the conclusion of the theorem may fail.
(i) Let @« = w (so cf(a) = w). Then Cy = {n € w: neven} and C} = {n € w : n odd}
are clubs in w, 2 < cf(w), but Co N Cy = 0.
(ii) Let f: cf(a) = a (o a limit ordinal) be s.o.p. such that rng(f) is unbounded in a.
Then each interval C¢ = [f(£), @) (€ < cf(@)) is club in a, but e_.a) Ce = 0.

5See Theorem 4.11(i) on the handout “The Axiom of Choice. Cardinals and Cardinal Arithmetic”.
6Use Theorem 5.2 on the handout “Ordinals. Transfinite Induction and Recursion”.
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Theorem 7. If a is a limit ordinal of uncountable cofinality, then the intersection of fewer than
cf(a) clubs of « is a club of .

Idea of Proof of Theorem 7. Let (Ce : € < ) (B < cf(a)) be a system of clubs in «, and let
D =Ny Ce.
e D is closed in a.
e D is unbounded in a: Let 7 < a. Show that
— there exists a sequence (g, : n € w) of ordinals < « such that ¢y = v and for
each n € w and { < 8 we have that €,1; > 0, ¢ for some 0,, ¢ € C¢ with e, < 0,,¢.
—Let =1, ,en Theny<d <aand € C¢ forall £ < 5,509 € D. O

necw
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Definition 9. Let a be a limit ordinal. The diagonal intersection of a system (C¢ : £ < )
of subsets of « is defined by

ANecoCe i ={f € a:peCforall £ < B}

Example 10. If, in Example 8(ii), « is a regular cardinal (hence, cf(a) = o) and f is normal,
then check that for a limit ordinal 8 < a we have 8 € As,Ce = Ao [f(§), @) iff f(5) = 5.

Theorem 11. Let o be a limit ordinal with cf(o) > w, and let (Ce : £ < ) be a system of
clubs in «.

(1) If Newp Ce is unbounded in o for all B < a, then A¢caCy is club in a.

(i) If o is a regular cardinal, then A¢coCe is club in a.

Idea of Proof. (ii) follows from (i) by Theorem 7. To prove (i), let D = A Ce.
e D is closed: If § < « is a limit ordinal and D N is unbounded in 3, then for each
£E<B,Cenp (Q E+1,8)Nn (DN 5)) is unbounded in 3, so 8 € Ck.
e D is unbounded in a: Let 7 < a. Show that
— there exists a sequence (g, : n € w) of ordinals < « such that ¢y = v and for
each n € w, €,11 is an element of ﬂg e, C¢ greater than g,.
— As before, let § :=J, ., &n, and show that v < § € D. O

new



Definition 12. Let A be a set. A finitary partial operation on A is a function f with
dmn(f) C ™A for some m € w and with rng(f) C A. A subset B of A is closed under such
an operation f if for every b € ™ B Ndmn(f) we have that f(b) € B.

Notation 13. For any set A and any cardinal k, let
[A]* ={X e P(4) : [X]| = &},
[A]=" ={X e P(4) : |X] <k},
[A]=" = {X € P(A) : |X| < K}
Theorem 14. Let k be an uncountable reqular cardinal. If X € [k]<" and F is a set of
finitary partial operations on X with |F| < k, then the set
C={a<k: X Caanda is closed under each f € F}

1s club in k.
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Definition 15. Let o be a limit ordinal. A subset S of « is said to be stationary if S has a
nonempty intersection with every club of a.

Example 16. Let a be a limit ordinal with cf(«) > w. Then

e every club in « is stationary;
e every subset of a containing a club is stationary.

Theorem 17. If a is a limit ordinal and k is a reqular cardinal such that r < cf(«), then

S={f < a:cf(p) =k}

1s a stationary subset of a.

Idea of Proof. Let C be a club in a. To show that C' NS # (), argue that

e there exists a normal function f: cf(a) — « such that rng(f) is club in «;

e there exists a normal function g: cf(a) — C such that g(8 + 1) > max{g(8), f(5)}
for all 5 < cf(a); hence, rng(g) is club in «;

e gk) eCNS. O
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Lemma 18. Let a be a limit ordinal with cf(a) > w. If B < cf(a), then for any system
(Ne : € < B) of nonstationary sets in «, the union | J_4 N¢ is also nonstationary in c.

Definition 19. Let S be a set of ordinals. A function f € °On is called regressive if
f(y) <~ forall y € S\ {0}.

Theorem 20. (Fodor’s Lemma or “Pressing Down Lemma”) Let a be a limit ordinal with
cf(a) > w, let S be a stationary subset of a, and let f: S — « be a regressive function.
(i) Then there exists 3 < a such that f~1[3] is stationary in «.
(i) Moreover, if a is a regular cardinal, then there exists v < a such that f~'[{v}] is
stationary in «.

Idea of Proof. (i) Assume there is no such . Then there exists a system (Cjs : f < «a) of
clubs in a such that CsN f71[8] = 0 for all 8 < a. Let D be a club in « of order type cf(«)
(cf. Corollary 6), and for each f < « let 7(5) denote the least member of D greater than £.
For every 8 < « let
Es= [) Ce
£€eDN(r(B)+1)
Use Theorems 7, 11, and Example 2(v) to show that

e for each 8 < «, Ej is club in « and satisfies Eg N f~1[3]
o "= A¢o By is club in a;
e G ={p € F:pisalimit ordinal} is club in a.

0;

Now let 6 € GN S, and argue that

e there exists £ < ¢ such that f(0) < &;
e 0 € F' and hence § € E¢;
e 5 & f1¢], which contradicts f(d) < &.

(ii) With the 8 from part (i) we have that f~'[8] = (J, _; f~'[{7}] is stationary in a. By
Lemma 18 at least one of the sets f~'[{7}] (v < ) must be stationary in a. O

We will soon see an application of Fodor’s Lemma.”

See also Theorems 19.10-12 in Lectures on Set Theory by J. Donald Monk.
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Next we introduce an important combinatorial principle, called ¢ (diamond), which can
be proved to be consistent with ZFC (if ZFC is consistent). We will show that ZFC together
with ¢ implies CH and the existence of a Suslin tree.

Definition 21. ¢ is the following statement:
There exists a sequence (A, : o < wy) of sets with the following properties:

e A, C a for each a < wy, and
o For every subset A of wy, the set {a < wy: ANa = A,} is stationary in w;.

A sequence (A, : a < wp) with these properties is called a {-sequence.

A {-sequence may be thought of as an w;-sequence of subsets of w; which — in a sense
— captures all subsets of ws.

Theorem 22. ZFCU {{} implies CH.

Proof. Let (Aq : a < wy) be a O-sequence. We prove (|P(w)] =) 2% < ¥, by showing that
there exists an injective function f: P(w) — w;.

o If A€ P(w), then — since {o < wy : AN = A,} is stationary in w; — there exists
an infinite 8 < w; such that AN B = Ag. Since A Cw C 3, we get A = Ag.
e Therefore, the assignment

A — the least 8 < wy such that A = Ag

defines a function f: P(w) — wy, which is clearly injective. 0

Our goal now is to prove that ¢ implies the existence of a Suslin tree. Since a Suslin tree
has cardinality wy, we will construct a Suslin tree 7' = (w1, <) with w; as its set of elements.
We will use the following notation.

Notation 23. If T = (wy, <) is an w;-tree and o < wy, let

Tloa={f <w; :ht(B) < a}.
We will also use the notation T[T« for the (normal) subtree of T" with underlying set T'[cv.
Lemma 24. If T = (w1, <) is an wy-tree and A is a mazimal antichain in T, then the set
(1) C={a<w :Tla=a«aand AN« is a mazimal antichain in T'[a}

s club in wy.
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Lemma 24. If T = (w1, <) is an wi-tree and A is a mazximal antichain in T, then the set
(1) C={a<w :Tla=aand AN« is a mazimal antichain in T[a}

18 club in wq.

Proof. To prove that C'is closed, let @ < w; be a limit ordinal such that C'N« is unbounded
in a. Our goal is to show that o € C'. The following observation will be used repeatedly:
(1) For each v < « there exists § € C'N « such that v < §, so we have that
e ve€d=T[) CTla, and
e AN§ is a maximal antichain in T'[4.

Now a € C' can be verified as follows.

e Tla C o If B € Tla, then § € Ty for some v < «, so for any § from (7),
BeTlyCTlo=10Ca.

o Tla D a: If 4 € v, then for any ¢ from (f) we get that v € 6 =T C T'[a.

e ANais a maximal antichain in T'[a: Clearly AN« is an antichain in T'[a, so we need
to show only that every 3 € T'|a is comparable (in T) to some element of A N a.®
Choose 7 < «a such that 5 € T'[y. For any ¢ from (}) we have that ANJ is a maximal
antichain in T[4, so (3 is comparable (in T") to an element of ANJ C AN a.

To prove that C'is unbounded in wy, consider the following unary functions f, g, h on wy:

for each f < wy, let f(B) = ht(B), g(B) = ULevg(T), and let h(3) be an element of A
comparable (in 7') to . By Theorem 14,

D = {a < w; : «ais closed under f, g, h}

is club in wy. It suffices to show that D C C. Let o € D.
o I'la C o If p€Ta, then v :=ht(5) € a, so f € Lev,(T) and 8 < g(v) € a.
e Tla D a: If p € a, then ht(5) = f(B) € a, s0 B € T|a.
e AN« is a maximal antichain in T'fa: If 8 € T'|«, then h(f) € AN « is comparable
(in T') to B. O

8We call two elements u,v of a tree (T, <) — or, more generally, of a partially ordered set (T, <) —
comparable if u < v or u=wvorv < u.
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Lemma 25. (Assumes () Let T = (w1, <) be an eventually branching wi-tree, and let
(Aa @ < wy) be a O-sequence. Assume that
(%) for every limit ordinal o < wy, if Tla = a and A, is a maximal antichain in T'|a,
then for each x € Lev,(T) there exists y € A, such that y < x.
Then T is a Suslin tree.

Sketch of Proof. By our earlier sufficient condition® we have to show only that every maximal
antichain A in T is countable.
e By Lemma 24, the set C in (1) is club in wy.
e There exists a € C such that ANa = A,; fix such an «.
e Claim. For all 8 in T, if ht(B) > «, then B ¢ A.
e Therefore, if 8 € A, then ht(f) < a, so € T'[a = «; this proves that A C «, hence
A is countable. O

9See Theorem 15 on the handout “Trees”.
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Theorem 26. ZFCU {Q} implies the existence of a Suslin tree.

Sketch of Proof. Let (A, : a < wip) be a {-sequence. Using this sequence, we will construct
a Suslin tree T' = (wy, <) such that Levg(T) = {w- 5+ m : m € w} for each § < wy. The
construction proceeds by recursion, completely defining the normal subtree T := (w- 3, <p)
of T (up to level ) for each f < wy, all in such a way that the ‘union” T' = (wy, <) of
these trees — i.e., the tree T := (w7, <) where the relation < is defined on w; = w - w;y by
<= Uz, <p — satisfies the hypotheses of Lemma 25.

In more detail, we want to construct relations <z on w - 3 for all 5 < wy, by recursion, so
that the following conditions are satisfied:

(15) Ts := (w- B, =<p) is a tree.

(23) For each v < 3, T, is a subtree of Ts; that is, <, = <z[(w - 7).
(33) For each v < 3, Lev,(13) ={w-v+m:m € w}.
(43) For all v < § < 8 and m € w there exists n € w such that w-vy+m <gw-J +n.
(53) Whenever ¢ < (5 is a limit ordinal satisfying w-d = 0, and As is a maximal antichain

in T, we have that for each x € Levs(T}) there exists y € As such that y <5 .

Conditions (15)—(33) (8 < wq) here just say that the tree T = (wy, <) <With <= Uscu, —</3>

has the form outlined at the beginning of the proof, conditions (43) (5 < w;) make sure that
T is well-pruned from each root up (7" will have infinitely many roots!), and conditions
(53) (B < wy) have the effect of forcing T to satisfy assumption () in Lemma 25.

Now we describe the construction of the relations <, on w -« (o < wy) by recursion.
e For o < 1, we define <,:= (). Clearly, conditions (1,)—(5,) hold.
Notice that the set Levy(77) of roots of 77 (and hence of T) is w -1 = w.
From now on let o > 1, and assume that the relations <z on w - 8 have been constructed for
all § < a so that all conditions (15)—(55) are met.
e If v is a limit ordinal, we define <, on w - a by <,:= U5<a =3
It is easy to see that conditions (1,)—(5,) are satisfied.
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e If @ = ¢+ 2 for some ordinal ¢, then we define <, on w - a by
<o == U{(§ w-(e+1)+2m): {2 w-e+m, m € w}
U{w-(e+1)+2m+1): {2 w-e+m, mew}.
Again, it is easy to check that conditions (1,)—(54) hold.

e Finally, let @« = ¢ + 1 where ¢ is a limit ordinal. In this case, the definition of <,
requires several steps. The goal of the first four steps is to assign a(n appropriately
chosen) branch of T to every element of T.. So, for steps 14 below, let x € w - € be
an arbitrary element of 7.

1. First, we choose an element y§ of T, as follows:
— If w-e =¢ and A, is a maximal antichain in 7., and hence there exists
z € A. such that z is comparable to z, then fix such a z and let y§ be an
element of 7, such that =,z <. y§.
— Otherwise, let y§ = .
2. Let (&, : n € w) be a strictly increasing sequence of ordinals < ¢ such that
o := ht(y§,T.) and {J, o, & = €. (Such a sequence exists, because cf(e) = w.)
3. Use the conditions (4¢,) (n < w) to extend y, by recursion on w, to a sequence
(y* : n < w) such that ht(yZ, T.) = &, for all n < w.
4. Let B(x) be the unique branch of 7. containing all elements y* (n < w); that is,
let
B(z):={u€w-e:u<y> for some n < w}.
5. Now, choose and fix a bijection w — w - €, n — x,, and define <, as follows:
<o =< U{(u,w-e+n):ue B(z,)}
It is not hard to verify that conditions (1,)—(5,) hold.
This finishes the construction of the trees Tz (8 < wq) so that all conditions (15)—(5p)

(B < wy) are satisfied. Hence, T" = (w1, <) (With <= Upew, <5> is an wi-tree. The

construction at levels v = ¢ + 2 shows that 7" is eventually branching, and conditions (5p)
(8 < wy) ensure that T satisfies assumption () of Lemma 25. Hence, T is a Suslin tree. [



