
Set Theory (MATH 6730)

Models of Set Theory

We will discuss techniques for constructing models of ZFC, provided ZFC is consistent, meth-
ods for checking the axioms, and properties of models expressed by formulas whose ‘meaning’
does not change in going from one model to a larger model or vice versa.

1. The Set-Theoretical Hierarchy

The hierarchy of sets is defined by recursion as follows.

Theorem 1.1. There exists a unique class function V : On → V, α 7→ Vα, satisfying the
following conditions:

• V0 = ∅,
• Vα = P(Vβ) if α = β + 1, and
• Vα =

⋃
β<α Vβ if α is a limit ordinal.

Sketch of Proof. The existence of V can be proved by transfinite recursion. Consider the
class function G : On×V→ V defined as follows:

G(α, x) =


∅ if x = ∅,
P
(
x(β)

)
if x is a function with domain α = β + 1,⋃

β<α x(β) if x is a function with domain α with α a limit ordinal,

∅ otherwise.

By the Transfinite Recursion Theorem1, there exists a class function F : On→ V such that
F(α) = G(α,F�α) for all α ∈ On. It is straightforward to check that V = F has the required
properties.

The uniqueness of V follows easily by transfinite induction. �

Before showing that every set is a member of some Vα (α ∈ On), recall2 that a set s is
transitive if every element of s is a subset of s; i.e., for any sets x, y such that x ∈ y ∈ s we
have that x ∈ s. The next lemma shows that for every set a there is a smallest transitive
set (smallest with respect to ⊆) that contains a as a subset.

Lemma 1.2. For every set a there exists a unique transitive set b such that

• a ⊆ b, and
• b ⊆ t for all transitive sets t such that a ⊆ t.

1Theorem 3.4 in the lecture notes “Ordinals. Transfinite Induction and recursion”.
2See Definition 1.1 in the lecture notes “Ordinals. Transfinite Induction and Recursion”.
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Lemma 1.2. For every set a there exists a unique transitive set b such that

• a ⊆ b, and
• b ⊆ t for all transitive sets t such that a ⊆ t.

Sketch of Proof. Let a be a fixed set. The uniqueness of b satisfying these conditions is clear.
To prove the existence of such a b we let F : ω → V be the function obtained by applying
the Transfinite Recursion Theorem1 (for A = ω) to the function G : ω ×V→ V defined by

G(n, x) =


a if x = ∅, n = 0,

x(m) ∪
⋃
x(m) if x is a function with domain n = m+ 1 where m ∈ ω,

∅ otherwise.

Then F(0) = G(0, ∅) = a and

F(m+ 1) = G(m+ 1,F�(m+ 1)) = F(m) ∪
⋃

F(m) for all m ∈ ω.

It is not hard to check that b =
⋃
m<ω F(m) has the required properties. �

Definition 1.3. For any set a, the unique transitive set b shown to exist in Lemma 1.2 is
called the transitive closure of a, and is denoted by trcl(a).

Theorem 1.4. The set-theoretical hierarchy has the following properties:

(1) For every α ∈ On,
(i) Vα is a transitive set, and
(ii) Vβ ⊆ Vα for all β < α.

(2) Every set is a member of Vα for some α ∈ On.
(3) (i) n ≤ |Vn| ∈ ω for all n ∈ ω, and

(ii) |Vω+α| = iα for all α ∈ On.3

Idea of Proof. (1) Prove (i)–(ii) simultaneously by transfinite induction on α. In the case
when α = γ + 1 is a successor ordinal, show first that Vγ ⊆ Vγ+1.

(2) Assume there is a set a such that a /∈ Vα for every α ∈ On. Consider the set

A = {x ∈ trcl(a ∪ {a}) : x /∈ Vα for every α ∈ On}.
Clearly, a ∈ A, so A 6= ∅. By the Axiom of Foundation there exists x ∈ A such that
x ∩ A = ∅. Show:

• For each y ∈ x we have y /∈ A, so there exists α ∈ On such that y ∈ Vα; let αy be
the least such ordinal.
• For β =

⋃
y∈x αy we have x ∈ Vβ+1, contradiction.

3The cardinals iα (α ∈ On) were defined in Definition 2.12 in the lecture notes “Infinite Combinatorics”.
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Theorem 1.4. The set-theoretical hierarchy has the following properties:
. . .

(3) (i) n ≤ |Vn| ∈ ω for all n ∈ ω, and
(ii) |Vω+α| = iα for all α ∈ On.

(3) Proceed by induction on ω for (i), and by transfinite induction for (ii). �

Theorem 1.4(2) allows us to define an important notion of ‘rank’ for sets.

Definition 1.5. For any set s, the rank of s, denoted by rank(s), is the least ordinal α such
that s ∈ Vα+1.

The following basic properties of the rank function can be proved, in the given order,
by using Definition 1.5, Theorem 1.4(1), and earlier properties. For property (v), apply
transfinite induction.

Theorem 1.6. Let x be a set, and let α be an ordinal. Then

(i) Vα = {y : rank(y) < α};

(ii) rank(y) < rank(x) for all y ∈ x;

(iii) rank(y) ≤ rank(x) for all y ⊆ x;

(iv) rank(x) =
⋃
y∈x(rank(y) + 1);

(v) rank(α) = α;

(vi) Vα ∩On = α.
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2. Models of Set Theory. Checking the Axioms

Recall4 that the language of set theory has a unique relation symbol, ∈, which is binary,
and the language has no function symbols or constant symbols. Therefore5, a structure for
this language (also called a set theory structure) is an ordered pair A = (A,∈A) where A is

a nonempty set and R = ∈A is a binary relation on A (i.e., R ⊆ A× A).
It will be useful to allow ‘class models’ as well, where the ‘universe’ of the model is a class

M, and the interpretation of ∈ is membership. More formally, this is done by relativizing
formulas to M.

Definition 2.1. Let M be a class of sets defined by a formula µ(x).

(i) The relativization of a formula ϕ to M is defined by recursion as follows:
• (x = y)M is x = y;
• (x ∈ y)M is x ∈ y;
• (¬ϕ)M is (¬ϕM);
• (ϕ→ ψ)M is (ϕM → ψM);
• (∀xϕ)M is ∀x (µ(x)→ ϕM), which is abbreviated also by ∀x (x ∈M→ ϕM) or

by ∀x ∈MϕM.
(ii) We say that ϕ holds in M if ZFC ` ϕM. Instead of ZFC ` ϕM we may briefly say

that “ϕM holds”.
(iii) For any set Φ of formulas, let ΦM = {ϕM : ϕ ∈ Φ}.

Theorem 2.2. Let M be a class, and let Γ ∪ {ϕ} be a set of sentences in the language of
set theory. If Γ |= ϕ, then ΓM |= M 6= ∅ → ϕM.

Sketch of Proof. Let M and Γ ∪ {ϕ} be as above, and assume M is defined by the formula
µ(x). Since M 6= ∅ is an abbreviation for ∃xµ(x),

• the statement of the theorem is equivalent to the following:

(†) If Γ |= ϕ, then ΓM ∪ {∃xµ(x)} |= ϕM;

Let A = (A,E) be a set theory structure such that A |= ∃xµ(x), and define a new structure
B = (B,F ) by B = {a ∈ A : µ(a)} (which may be thought of, informally, as A ∩M) and
F = E ∩ (B ×B). Note that B 6= ∅, so B is a set theory structure.

• Claim. For any formula χ and assignment b : ω → B,

A |= χM [b] ⇐⇒ B |= χ [b].

• (†) follows from the Claim.

�

4See p. 3 of the lecture notes “Background in Logic”.
5See Definition 2.5 in the lecture notes “Background in Logic”.
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The following consequence of Theorem 2.2 expresses the basic idea of consistency proofs
in set theory.

Corollary 2.3. Let Γ and ∆ be sets of sentences in the language of set theory. If Γ is
consistent and there is a class M such that

(∗) Γ |= M 6= ∅ ∧ ϕM for all ϕ ∈ ∆,

then ∆ is consistent.

Sketch of Proof. Assume ∆ is inconsistent. Then ∆ |= ¬(x = x) by the Soundness Theorem.
Hence, by Theorem 2.2, ∆M |= M 6= ∅ → ¬(x = x). But then our assumption (∗) implies
that Γ |= ¬(x = x). Hence, by the Completeness Theorem, Γ ` ¬(x = x), which contradicts
the consistency of Γ. �

We will see applications of Corollary 2.3 when Γ = ZFC and ∆ ⊃ ZFC.

Notation 2.4. Let ZF− Inf denote the set of all axioms in ZF, except the Axiom of Infinity.

The next theorem lists some useful sufficient conditions for the axioms in ZF− Inf to hold
in a class M. Recall that x ⊆ y is an abbreviation for ∀z (z ∈ x→ z ∈ y), so its relativization
to M is ∀z ∈M (z ∈ x→ z ∈ y), that is, x ∩M ⊆ y.

Theorem 2.5. Let M be a nonempty class.6

• Ext :≡ ∀x ∀y
(
∀z (z ∈ x ↔ z ∈ y)→ x = y

)
holds in M if M is transitive.

• For every formula ϕ = ϕ(z, w1, . . . , wn) (with free variables among z, w1, . . . , wn),
∀x∀w1 . . . ∀wn ∃y ∀z

(
z ∈ y ↔ (z ∈ x ∧ ϕ(z, w1, . . . , wn))

)
∈ Cmpr holds in M if

ZFC ` ∀x,w1, . . . , wn ∈M
(
{z ∈ x : ϕM(z, w1, . . . , wn)} ∈M

)
.

• Pair :≡ ∀x∀y ∃z (x ∈ z ∧ y ∈ z) holds in M if and only if

ZFC ` ∀x, y ∈M∃z ∈M (x ∈ z ∧ y ∈ z).

• Uni :≡ ∀A∃B ∀x
(
∃A (x ∈ A ∧ A ∈ A)→ x ∈ B

)
holds in M if

ZFC ` ∀A ∈M∃B ∈M
(⋃
A ⊆ B

)
.

• If M is transitive, then Pset :≡ ∀A ∃Z ∀x (x ⊆ A→ x ∈ Z) holds in M if and only if

ZFC ` ∀A ∈M ∃Z ∈M
(
P(A) ∩M ⊆ Z

)
.

• for every formula ϕ = ϕ(x, y, A, w1, . . . , wn) (with free variables among x, y, A, w1, . . . , wn)

∀A∀w1 . . . ∀wn
(
∀x ∈ A ∃!y ϕ(x, y, A, w1, . . . , wn)

→ ∃Y ∀x ∈ A ∃y ∈ Y ϕ(x, y, A, w1, . . . , wn)
)
∈ Repl

holds in M if M is transitive and

ZFC ` ∀A,w1, . . . , wn ∈M
(
∀x ∈ A ∃!y

(
y ∈M ∧ ϕM(x, y, A, w1, . . . , wn)

)
→ ∃Y ∈M

(
{y ∈M : ∃x ∈ AϕM(x, y, A, w1, . . . , wn)} ⊆ Y

))
.

• Fnd :≡ ∀x
(
∃z z ∈ x → ∃y (y ∈ x ∧ ¬∃z (z ∈ x ∧ z ∈ y))

)
holds in M if M is

transitive.

6In the formulas x, y, z, w1, . . . , wn, A,B, Y, Z,A denote distinct variables.
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Theorem 2.5. Let M be a nonempty class.
. . .

• If M is transitive, then Pset :≡ ∀A∃Z ∀x (x ⊆ A→ x ∈ Z) holds in M if and only if

ZFC ` ∀A ∈M∃Z ∈M
(
P(A) ∩M ⊆ Z

)
.

Proof. As an example, we prove the statement on Pset. Let M be transitive. Then

PsetM ≡ ∀A ∈M ∃Z ∈M∀x ∈M (x ∩M ⊆ A→ x ∈ Z).

Since M is transitive, x ∈M implies that x ⊆M. Therefore, in ZFC, we have that

for x ∈M: x ∩M ⊆ A→ x ∈ Z is equivalent to x ⊆ A→ x ∈ Z, and

∀x ∈M (x ∩M ⊆ A→ x ∈ Z) is equivalent to P(A) ∩M ⊆ Z. �

Corollary 2.6. Vγ is a model of ZFC \ {Repl} for every limit ordinal γ > ω.

Proof.

• For Ext, Cmpr, Pair, Uni, Pset, Fnd, use Theorem 2.5.

• Vγ |= ACVγ .

• Vγ |= InfVγ , as witnessed by ω ∈ Vγ. �

Recall7 that a cardinal κ is called (strongly) inaccessible if it is uncountable, regular, and
satisfies 2λ < κ for all cardinals λ < κ.

Corollary 2.7. Vκ is a model of ZFC for every inaccessible cardinal κ.

Proof. To show Vκ |= Repl, use Theorem 2.5. Let A,w1, . . . , wn ∈ Vκ, and assume that
∀x ∈ A∃!y

(
y ∈ Vκ ∧ ϕVκ(x, y, A, w1, . . . , wn)

)
. For each x ∈ A let f(x) denote the unique

y ∈ Vκ with ϕVκ(x, y, A, w1, . . . , wn). Now, we have that

• κ = iκ;

• |A| < κ and |f [A]| < κ;

•
⋃
a∈A rank(f(a)) < κ, and so f [A] ⊆ Vβ for some β < κ (as κ is regular);

• f [A] ∈ Vβ+1 ⊆ Vκ.
�

7See page 4 of the lecture notes “Infinite Combinatorics”.
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3. Absoluteness

Definition 3.1. Let M and N be classes such that M ⊆ N. For a formula ϕ = ϕ(x1, . . . , xn)
we say that ϕ is absolute for M,N if

ZFC ` ∀x1, . . . , xn ∈M
(
ϕM(x1, . . . , xn)↔ ϕN(x1, . . . , xn)

)
.

We say that ϕ is absolute for M to mean that ϕ is absolute for M,V.

More formally, the condition defining absoluteness of ϕ for M,N should be written as

ZFC ` ∀x1, . . . , xn
( ∧
1≤i≤n

µ(xi)→
(
ϕµ(x1, . . . , xn)↔ ϕν(x1, . . . , xn)

))
,

where µ(y) and ν(y) are the formulas (with possibly other parameters) that define M and
N, respectively, and ϕµ, ϕν are the relativizations of ϕ to M and N, written without abbre-
viations (see Definition 2.1).

Definition 3.2. Let M be a class, and let S be a set of sentences. We will say that M is a
model of S if ZFC `M 6= ∅ and ZFC ` σM for all σ ∈ S.

Fact 3.3. Let S be a set of sentences, and let M ⊆ N be classes which are models of S. If

S |= ∀x1, . . . , xn
(
ϕ(x1, . . . , xn) ↔ ψ(x1, . . . , xn)

)
,

then ϕ is absolute for M,N if and only if ψ is.

Proof. It follows from the assumptions that

• ZFC ` {M,N 6= ∅} ∪ SM ∪ SN, since M,N are models of S, and
• {M 6= ∅} ∪ SM |= ∀x1, . . . , xn ∈M

(
ϕM(x1, . . . , xn) ↔ ψM(x1, . . . , xn)

)
,

{N 6= ∅} ∪ SN |= ∀x1, . . . , xn ∈ N
(
ϕN(x1, . . . , xn) ↔ ψN(x1, . . . , xn)

)
,

by Theorem 2.2.

Since |= and ` are equivalent by the Soundness and Completeness Theorems, we get that

ZFC ` ∀x1, . . . , xn ∈M
(
ϕM(x1, . . . , xn)↔ ϕN(x1, . . . , xn)

)
if and only if

ZFC ` ∀x1, . . . , xn ∈M
(
ψM(x1, . . . , xn)↔ ψN(x1, . . . , xn)

)
. �

We will usually apply Fact 3.3 for the case when S ⊆ ZFC.
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3.1. ∆0-formulas and Absoluteness.

Definition 3.4. The set of ∆0-formulas is the smallest set Γ of formulas satisfying the
following conditions:

(i) All atomic formulas are in Γ;
(ii) If ϕ, ψ ∈ Γ, then (¬ϕ) ∈ Γ and (ϕ→ ψ) ∈ Γ;

(iii) If ϕ ∈ Γ, then the formulas ∀x (x ∈ y → ϕ) (abbreviated ∀x ∈ y ϕ) and ∃x (x ∈ y ∧ϕ)
(abbreviated ∃x ∈ y ϕ) are also in Γ.

Lemma 3.5. If M is a transitive class, then the set Γ of all formulas that are absolute for
M satisfies conditions (i)–(iii) of Definition 3.4.

Idea of Proof. For example, to show (iii) for ∀, it suffices to establish that

∀x, y, w ∈M
(
ϕM(x, y, w) ↔ ϕ(x, y, w)

)
|=

∀y, w ∈M
(
∀x ∈M (x ∈ y → ϕM(x, y, w)) ↔ ∀x (x ∈ y → ϕ(x, y, w))

)
,

and then invoke the Completeness Theorem. �

Theorem 3.6. If M is a transitive class and ϕ is a ∆0-formula, then ϕ is absolute for M.

Proof. This is an immediate consequence of Definition 3.4 and Lemma 3.5. �

Corollary 3.7. The following properties of a set x can be described by ∆0-formulas, and
therefore are absolute for every transitive class:

(i) x is an ordinal;
(ii) x is a limit ordinal;

(iii) x is a successor ordinal;
(iv) x is a finite ordinal;

(v) x is ω;
(vi) x is n (∈ ω).

Proof. E.g. for (i), our definition of ‘x is an ordinal’ can be described by a ∆0-formula:

∀y ∈ x∀z ∈ y (z ∈ x) ∧ ∀y ∈ x ∀z ∈ y ∀w ∈ z (w ∈ y). �

Recall that an n-ary class relation R (on V) is defined by a formula ρ(v0, . . . , vn−1), and
an n-ary class function F (on V) is defined by a formula ϕ(v0, . . . , vn−1, vn) such that, for
some set S (⊆ ZFC) of axioms,

(1) S ` ∀v0, . . . , vn−1 ∃!vn ϕ(v0, . . . , vn−1, vn).
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Definition 3.8. With the notation above, let M be a class such that the sentence in (1)
holds in M, i.e.,

ZFC ` ∀v0, . . . , vn−1 ∈M∃!vn ∈MϕM(v0, . . . , vn−1, vn).

In this case we will say that F is defined in M, and we define the relativization of F to M
as the following class function FM on M: for all x0, . . . , xn−1 ∈M,

FM(x0, . . . , xn−1) = the unique y ∈M such that ϕM(x0, . . . , xn−1, y).

If M and N are classes such that M ⊆ N, we say that F is absolute for M,N if F is defined
in both M and N, and the formula ϕ defining F is absolute for M,N.

Fact 3.9. Let M and N be classes such that M ⊆ N, and let F be a class function that is
defined on both M and N. Then the following conditions are equivalent:

(a) F is absolute for M,N;
(b) for all x0, . . . , xn−1 ∈M we have that FM(x0, . . . , xn−1) = FN(x0, . . . , xn−1).

Fact 3.3, Theorem 3.6, and Definition 3.8 imply the following absoluteness results.

Corollary 3.10. The class relations (i)–(iii), (xii) and class functions (iv)–(xi), (xiii)–(xiv)
below can be defined by formulas that are equivalent, on the basis of ZF− Inf, to ∆0-formulas,
and therefore are absolute for all transitive class models of ZF− Inf:

(i) x ∈ y;
(ii) x = y;

(iii) x ⊆ y;
(iv) {x, y};
(v) {x};

(vi) (x, y);
(vii) ∅;

(viii) x ∪ y;
(ix) x ∩ y;
(x) x \ y;

(xi) x ∪ {x};
(xii) x is transitive;

(xiii)
⋃
x;

(xiv)
⋂
x (with

⋂
∅ = ∅).

Remark 3.11. For each individual class relation/function in Corollary 3.10 a finite subset
S of ZF− Inf suffices

• to prove the uniqueness condition (1) for any class function involved, and
• to prove that the defining formula is equivalent to a ∆0-formula.

Therefore we get the stronger conclusion that the given class relation/function is absolute
for all transitive class models of S.
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3.2. Further Absoluteness Results.

Definition 3.12. Let M and N be classes such that M ⊆ N, and let ϕ(w1, . . . , wn) be a
formula. We say that ϕ is absolute upwards for M,N if

ZFC ` ∀x1, . . . , xn ∈M
(
ϕM(x1, . . . .xn)→ ϕN(x1, . . . , xn)

)
,

and ϕ is absolute downwards for M,N if

ZFC ` ∀x1, . . . , xn ∈M
(
ϕN(x1, . . . .xn)→ ϕM(x1, . . . , xn)

)
.

Clearly, ϕ is absolute for M,N if and only if ϕ is both absolute upwards and absolute
downwards for M,N.

Fact 3.13. If ϕ(x1, . . . , xn, w1, . . . , wm) is absolute for M,N, then

(i) ∃x1 . . . ∃xn ϕ(x1, . . . , xn, w1, . . . , wm) is absolute upwards for M,N, and
(ii) ∀x1 . . . ∀xn ϕ(x1, . . . , xn, w1, . . . , wm) is absolute downwards for M,N.

The next theorem states that absoluteness is preserved under composition.

Theorem 3.14. Let M and N be classes such that M ⊆ N, and suppose that the following
are absolute for M,N:

• a formula ϕ(x1, . . . , xn),
• an n-ary class function F,
• m-ary class functions Gi (1 ≤ i ≤ n).

Then the following are also absolute for M,N:

(i) the formula ϕ
(
G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)

)
;

(ii) the class function (x1, . . . , xm) 7→ F
(
G1(x1, . . . , xm), . . . ,Gn(x1, . . . , xm)

)
.

Idea of Proof. Since G1, . . . ,Gn are class functions, there exist two formulas for each one
of (i), (ii), one obtained from a formula absolute for M,N (by Lemma 3.5) by existential
quantification, the other one from a similar formula by universal quantification. For example,
for (i), the two formulas are

∃y1 . . . ∃yn
( n∧
i=1

(
yi = Gi(x1, . . . , xm)

)
∧ ϕ(y1, . . . , yn)

)
and

∀y1 . . . ∀yn
( n∧
i=1

(
yi = Gi(x1, . . . , xm)

)
→ ϕ(y1, . . . , yn)

)
.

Therefore, the desired absoluteness result follows from Fact 3.13. �
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Theorem 3.15. Let M and N be classes such that M ⊆ N, and suppose that the following
are absolute for M,N:

• a formula ϕ(y, x1, . . . , xn, w1, . . . , wm),
• n-ary class functions F and G.

Then the following are also absolute for M,N:

(i) z ∈ F(x1, . . . , xn);
(ii) F(x1, . . . , xn) ∈ z;

(iii) ∃y ∈ F(x1, . . . , xn)ϕ(y, x1, . . . , xn, w1, . . . , wm);
(iv) ∀y ∈ F(x1, . . . , xn)ϕ(y, x1, . . . , xn, w1, . . . , wm);
(v) F(x1, . . . , xn) = G(x1, . . . , xn);

(vi) F(x1, . . . , xn) ∈ G(x1, . . . , xn).

Idea of Proof. Use the same trick, combined with Lemma 3.5, as in the preceding proof. �

Corollary 3.16. The following class relations and class functions are absolute for all tran-
sitive class models of ZF− Inf:

(i) x is an ordered pair;
(ii) A×B;

(iii) R is a relation;

(iv) dmn(R);
(v) rng(R);

(vi) R is a function;

(vii) R(x)
(
∅ if R is not a function

or x /∈ dmn(R)
)
;

(viii) R is a one-to-one function.

Idea of Proof. Combine Theorem 3.15 with earlier absoluteness results. For example, (i) can
be described by the formula

∃y ∈
⋃

x ∃z ∈
⋃

x
(
x = (y, z)

)
,

where
⋃
x and x = (y, z) are absolute for any transitive model M of ZF − Inf, by Corol-

lary 3.10. Hence (i) is absolute for M, by Theorem 3.15. �
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3.3. Applications.

Theorem 3.17. If M is a transitive class model of ZF − Inf and ω ∈ M, then Inf (the
Axiom of Infinity) holds in M.

Proof. ω ∈M implies that

ZFC ` ∃x ∈M
(
∅ ∈ x ∧ ∀y ∈ x (y ∪ {y} ∈ x)

)
.

By earlier absoluteness results, the sentence here is equivalent to

InfM ≡
(
∃x
(
∅ ∈ x ∧ ∀y ∈ x (y ∪ {y} ∈ x)

))M
.

Thus we get that ZFC ` InfM, that is, Inf holds in M. �

Theorem 3.18. If M is a transitive class model of ZF, then

• ∅, ω ∈M;
• M is closed under the following set-theoretic operations:

(i) ∪,
(ii) ∩,

(iii) (a, b) 7→ a \ b,

(iv) (a, b) 7→ {a, b},
(v) (a, b) 7→ (a, b),

(vi) x 7→ x ∪ {x},

(vii)
⋃

,
(viii)

⋂
;

• ω + 1 ⊆M; and
• [M]<ω ⊆M.
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3.4. Absoluteness of Recursive Definitions.

Theorem 3.19. Let A be a class, let R be a class relation that is well-founded and set-like
on A, and let G be a class function A×V→ V. By the general Recursion Theorem8 there
exists a unique class function F : A→ V such that

F(a) = G
(
a,F�predA,R(a)

)
for all a ∈ A.

If M is a transitive class model of ZF such that

(i) A, R, and G are absolute for M,

(ii) ZFC ` (R is set-like on A)M, and

(iii) ZFC ` ∀x ∈M ∩A
(
predA,R(x) ⊆M

)
,

then F is absolute for M.

Proof. By absoluteness, ZFC proves the following:

• AM = A ∩M and RM = R ∩ (M×M); so
• every nonempty subset of AM has an RM-minimal element; i.e.,
• (R is well-founded on A)M.

Now the Recursion Theorem for AM, RM, and GM : AM ×M→M yields the existence of
a unique class function H : AM →M such that

H(x) = GM
(
x,H�predAM,RM(x)

)
for all x ∈ AM.

It follows (cf. Fact 3.9) that F is absolute for M if we show that H(x) = F(x) for all
x ∈ AM. Assume H(x) 6= F(x) for some x ∈ AM, and choose x to be RM-minimal. Then,
by absoluteness and assumption (iii),

H(x) = GM
(
x,H�predAM,RM(x)

)
= G

(
x,F�predA,R(x)

)
= F(x),

a contradiction. �

82.7 in the lecture notes “Ordinals. Transfinite Induction and Recursion”.
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Theorem 3.19. Let A be a class, let R be a class relation that is well-founded and set-like on
A, and let G be a class function A ×V → V. By the general Recursion Theorem9 there exists a
unique class function F : A→ V such that

F(a) = G
(
a,F�predA,R(a)

)
for all a ∈ A.

If M is a transitive class model of ZF such that

(i) A, R, and G are absolute for M,
(ii) ZFC ` (R is set-like on A)M, and
(iii) ZFC ` ∀x ∈M ∩A

(
predA,R(x) ⊆M

)
,

then F is absolute for M.

Corollary 3.20. The class functions below are absolute for all transitive class models of ZF:

(i) α + β, α · β, αβ (ordinal addition, multiplication, and exponentiation);
(ii) rank(x);

(iii) trcl(x).

Idea of Proof. (ii): A = V, R = {(x, y) : x ∈ y}, and G : V ×V→ V defined by

G(x, f) =

{⋃
y∈x(f(y) ∪ {f(y)}) if f is a function with domain x,

∅ otherwise.

satisfy the assumptions of Theorem 3.19, and yield the class function F = rank.

(i), (iii): The classes A, R, G used earlier for the definition satisfy the assumptions of
Theorem 3.19. �

Corollary 3.21. If M is a transitive class model of ZF, then

VM
α = Vα ∩M for all ordinals α ∈M.

Proof. Let α be an ordinal in M. By Corollary 3.7, α is an ordinal (in V). Since x ∈ Vα iff
rank(x) < α (see Theorem 1.6(i)), and rank(x) is absolute for M (by Corollary 3.20(ii)),

x ∈ VM
α iff x ∈M and rankM(x) < α iff x ∈M and rank(x) < α iff x ∈ Vα ∩M.

�

92.7 in the lecture notes “Ordinals. Transfinite Induction and Recursion”.
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4. Consistency of ‘There Exist No Inaccessible Cardinals’

Recall that a cardinal λ is called (strongly) inaccessible if it is uncountable, regular, and
satisfies 2µ < λ for all cardinals µ < λ.

Theorem 4.1. If ZFC is consistent, then so is ZFC+[There exist no inaccessible cardinals].

Idea of Proof. Consider the class

M = {x ∈ V : ∀α
(
(α is an inaccessible cardinal)→ x ∈ Vα}

)
.

Our goal is to show that M is a model of ZFC + [There exist no inaccessible cardinals].
Case 1: M = V. Clearly, V is a model of ZFC. In this case it is also a model of

[There exist no inaccessible cardinals]: Otherwise, if α is an inaccessible cardinal in V, then
V = M ⊆ Vα; this is impossible, since α ∈ V \ Vα (by Theorem 1.6(vi)).
Case 2: M 6= V. If x ∈ V \M, then x /∈ Vα for some inaccessible cardinal α. Thus, V

contains inaccessible cardinals. Let κ be the least inaccessible cardinal in V. Now argue:

• M = Vκ.

By Corollary 2.7, M = Vκ is a model of ZFC. To prove that [There exist no inaccessible cardinals]
also holds in M = Vκ, we proceed by contradiction. Assume that

ZFC `
(
∃x (x is an inaccessible cardinal)

)Vκ
.

Fix an x ∈ Vκ such that

(2) (x is an inaccessible cardinal)Vκ ,

and prove that ZFC also proves the following:

• x is an ordinal and ω ∈ x; this is by absoluteness, applied to the consequence
(x is an ordinal and ω ∈ x)Vκ of (2);
• x is a cardinal; otherwise, ∃y < x ∃f (f is a bijection y → x) where

f ∈ P(x× x) ∈ Vκ,

so by absoluteness,
(
∃y < x ∃f (f is a bijection y → x)

)Vκ
, contradicting (2);

• x is regular; otherwise, ∃y < x ∃injection f : y → x (rng(f) is unbounded in x) where
f ∈ P(x× x) ∈ Vκ, so by absoluteness again, we have that(
∃y < x ∃injection f : y → x (rng(f) is unbounded in x)

)Vκ
, contradicting (2);

Thus x is an uncountable regular cardinal. By the choice of κ, 2y ≥ x for some cardinal
y < x, so ZFC ` ∃y < x∃g (g is an injection x → P(y)). Here, again, g ∈ Vκ. Hence,

by absoluteness results, we get that ZFC `
(
∃y < x ∃g (g is an injection x → P(y))

)Vκ
,

contradicting (2). �
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5. The Mostowski Collapse

The Mostowski Collapse is a procedure for obtaining from models (A,R) of ZFC (or certain
subsets of ZFC) where R is not real membership, isomorphic models (M,∈) where the relation
is membership.

Theorem 5.1. Let R be a class relation that is well-founded and set-like on a class A.
There exists a unique class function F : A→ V such that

F(a) = {F(b) : b ∈ A, (b, a) ∈ R} for all a ∈ A.

Sketch of Proof. For the existence, use the Recursion Theorem for the class function
G : A×V→ V defined for all a ∈ A and x ∈ V by

G(a, x) =

{
rng(x) if x is a function with domain predA,R(a),

∅ otherwise.

For the uniqueness, proceed by contradiction, and consider an R-minimal element10 of the
class where the two class functions differ. �

Definition 5.2. For A and R as in Theorem 5.1, the class function F from the theorem
will be referred to as the Mostowski collapsing function for A, R, and the range of F will be
called the Mostowski collapse of A, R.

Definition 5.3. A class relation R is said to be extensional on a class A if the following
analog of the Extensionality Axiom holds:

ZFC ` ∀x, y ∈ A
(
∀z ∈ A ((z, x) ∈ R↔ (z, y) ∈ R))→ x = y

)
.

Lemma 5.4. Let R be a class relation that is well-founded and set-like on a class A, and
let F, M be the Mostowski collapsing function and the Mostowski collapse of A, R, resp.

(i) For all x, y ∈ A, if (x, y) ∈ R then F(x) ∈ F(y).
(ii) M is transitive.

(iii) The following conditions are equivalent:
(a) R is extensional on A;
(b) F is one-to-one, and for all x, y ∈ A we have that (x, y) ∈ R iff F(x) ∈ F(y).

Sketch of Proof. (i)–(ii) are straightforward. (iii) (b)⇒ (a) follows, because by the assump-
tion in (b), F is a class isomorphism from (A,R) onto (M,∈).

(iii) (a)⇒ (b): The statement follows easily if F is one-to-one. Assuming F is not one-to-
one, choose x R-minimal so that F(x) = F(y) for some y 6= x. Then {F(z) : (z, x) ∈ R} =
F(x) = F(y) = {F(u) : (u, y) ∈ R} yields a counterexample to (a). �

10It exists by Theorem 2.6(iv) in the lecture notes “Ordinals. Transfinite Induction and Recursion”.
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Theorem 5.5. Let R be a class relation that is well-founded, set-like, and extensional on a
class A. Then there exist unique F and M such that M is a transitive class and F is a class
isomorphism from (A,R) onto (M,∈).

Sketch of Proof. Existence: Let F and M be the Mostowski collapsing function and the
Mostowski collapse, respectively, and use Lemma 5.4. Uniqueness: Proceed by contradiction,
and consider an R-minimal element of the class where the two functions differ. �

6. Reflection Theorems

Our main goal in this section is to prove that if ZFC is consistent, then it has a countable
transitive (set) model. This requires studying the following question: Given a (class) model
Z of a finite set of formulas, how can we find a ‘small’ subset A of Z such that the given
formulas are absolute for A,Z ?

Definition and Notation 6.1. Let Φ = {ϕ0, . . . , ϕm−1} be a finite set of formulas. We will
say that Φ is subformula-closed if for each i < m, if ψ is a subformula of ϕi, then ψ = ϕ`
for some ` < m. We will use the following notation for any finite, subformula-closed set
Φ = {ϕ0, . . . , ϕm−1} of formulas:

• J is the set of all i < m such that ϕi starts with the symbol ∀;
• for i ∈ J we write ϕi in the form ∀xϕj(x, y1, . . . , yt) where x, y1, . . . , yt are exactly

the free variables of ϕj (∈ Φ) (j, t, x, y1, . . . , yt depend on i).

Lemma 6.2. Let M and N be classes such that M ⊆ N, and let Φ be a finite, subformula-
closed set of formulas. The following conditions on Φ are equivalent:

(a) Each ϕi ∈ Φ is absolute for M,N.
(b) For each i ∈ J with corresponding formula ϕi ≡ ∀xϕj(x, y1, . . . , yt),

ZFC ` ∀y1, . . . , yt ∈M
(
∀x ∈M ϕN

j (x, y1, . . . , yt)→ ∀x ∈ N ϕN
j (x, y1, . . . , yt)

)
.

Sketch of Proof. (a) ⇒ (b): This can be proved by showing that{
∀x, y ∈M

(
ϕM
j (x, y) ↔ ϕN

j (x, y)
)
, ∀y ∈M

(
∀x ∈MϕM

j (x, y) ↔ ∀x ∈ NϕN
j (x, y)

)}
` ∀y ∈M

(
∀x ∈MϕN

j (x, y)→ ∀x ∈ NϕN
j (x, y)

)
.

(b) ⇒ (a): Since Φ is subformula-closed, one can proceed by induction on the lengths of
formulas in Φ. �
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The following equivalent formulation of condition (b) in Lemma 6.2 will be useful:

(b)∗ For each i ∈ J with corresponding formula ϕi ≡ ∀xϕj(x, y1, . . . , yt),
ZFC ` ∀y1, . . . , yt ∈M

(
∃x ∈ N ¬ϕN

j (x, y1, . . . , yt)→ ∃x ∈M ¬ϕN
j (x, y1, . . . , yt)

)
.

Theorem 6.3. Let Z : On→ V, α 7→ Zα be a class function such that

• Zγ ⊆ Zα if γ < α, and
• Zα =

⋃
γ<α Zγ if α is a limit ordinal.

Let Z =
⋃
α∈On Zα. Then for any finite sequence ϕ0, . . . , ϕn−1 of formulas,

ZFC ` ∀α ∈ On ∃β ∈ On
(
β > α ∧

∧
i<n

[ϕi is absolute for Zβ,Z]
)
,

where [ϕi is absolute for Zβ,Z] is the formula in the definition of “ϕi is absolute for Zβ,Z”.

Proof. Let Φ be the smallest subformula-closed set of formulas containing ϕ0, . . . , ϕn−1.
Clearly, Φ is finite. Let α ∈ On. Our task is to prove the existence of an ordinal β > α such
that condition (a) of Lemma 6.2 holds with M = Zβ and N = Z. Actually, we will work
with the equivalent condition (b)∗.

For each i ∈ J with corresponding formula ϕi ≡ ∀xϕj(x, y1, . . . , yt), define class functions

• Gi : Z× · · · × Z→ On for y1, . . . , yt ∈ Z by

Gi(y1, . . . , yt) =

{
least η ∈ On such that ∃x ∈ Zη ¬ϕZ

j (x, y1, . . . , yt) if such η exists,

0 otherwise;

• Fi : On→ On for ξ ∈ On by

Fi(ξ) =
⋃
{Gi(y1, . . . , yt) : y1, . . . , yt ∈ Zξ};

• γ : ω → On, p 7→ γp, using recursion, by γ0 = α + 1 and for any p ∈ ω by

γp+1 = max
(
γp + 1,

⋃
{Fi(ξ) : i ∈ J, ξ ≤ γp}+ 1

)
.

Let β =
⋃
p∈ω γp. Then:

• β > α, β is a limit ordinal, and Zβ =
⋃
p∈ω Zγp .

• If i ∈ J , y1, . . . , yt ∈ Zβ, and ∃x ∈ Z¬ϕZ
j (x, y1, . . . , yt), then

– there exists p ∈ ω such that y1, . . . , yt ∈ Zγp ,

– Gi(y1, . . . , yt) ≤ Fi(γp) < γp+1 < β, so

– ∃x ∈ Zβ ¬ϕZ
j (x, y1, . . . , yt), proving (b)∗ with M = Zβ and N = Z.

�
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By applying Theorem 6.3 to Z = V (hence, Zα = Vα for all αOn) we get the following.

Corollary 6.4. (Reflection Theorem) For any finite sequence ϕ0, . . . , ϕn−1 of formulas,

ZFC ` ∀α ∈ On ∃β ∈ On
(
β > α ∧

∧
i<n

[ϕi is absolute for Vβ]
)
.

Theorem 6.5. For any class Z and for any finite sequence ϕ0, . . . , ϕn−1 of formulas,

ZFC ` ∀X ⊆ Z∃A ⊆ Z
(
X ⊆ A ∧ |A| ≤ max(ω, |X|) ∧

∧
i<n

[ϕi is absolute for A,Z]
)
.

Proof. Let Φ be as before. For each γ ∈ On let Zγ = Z ∩ Vγ. Consider a set X ⊆ Z.
Since X ⊆ Vα for some α, we get X ⊆ Zα. By Theorem 6.3, there exists β > α such that
condition (b)∗ holds with M = Zβ and N = Z. Our goal is to find A ⊆ Zβ with X ⊆ A and
|A| ≤ max(ω, |X|) such that (b)∗ also holds with M = A and N = Z.

Choose a well-ordering ≺ of Zβ, and for each i ∈ J with corresponding formula ϕi ≡
∀xϕj(x, y1, . . . , yt), define a function Hi : Zβ × · · · × Zβ → Zβ for y1, . . . , yt ∈ Zβ by

Hi(y1, . . . , yt) =

{
the ≺-least x ∈ Zβ such that ¬ϕZβj (x, y1, . . . , yt) if such x exists,

the ≺-least element of Zβ otherwise.

Let A be the least subset of Zβ such that X ⊆ A and A is closed under all functions Hi

(i ∈ J). It is easy to see that

• |A| ≤ max(ω, |X|), and

• (b)∗ holds with M = A and N = Z.

�
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Theorem 6.6. For any transitive class Z and for any finite sequence ϕ0, . . . , ϕn−1 of sen-
tences (!),

(†) ZFC ` ∀ transitiveX ⊆ Z ∃ transitiveM ⊆ Z
(
X ⊆M

∧ |M | ≤ max(ω, |X|) ∧
∧
i<n

(ϕMi ↔ ϕZ
i )
)
.

Proof. We may assume that Ext (= Extensionality Axiom) is among ϕ0, . . . , ϕn−1. Consider
a transitive set X ⊆ Z. By Theorem 6.5, there exists a set A ⊆ Z which satisfies the
condition in (†) (with A in place of M), except that A may not be transitive.

Let F and M be the Mostowski collapsing function and the Mostowski collapse of A,∈.
By Lemma 5.4, M is transitive and F is an isomorphism from (A,∈) onto (M,∈).

Thus,

• ZFC ` ϕMi ↔ ϕAi for all i < n, and hence ZFC ` ϕMi ↔ ϕZ
i for all i < n.

Since X is transitive, it follows that

• F (x) = x for all x ∈ X, so X = F [X] ⊆ F [A] = M .

This completes the proof of (†). �

Corollary 6.7. If S is a set of sentences containing ZFC, then for any ϕ0, . . . , ϕn−1 ∈ S,

S ` ∃M
(
M is transitive ∧ |M | = ω ∧

∧
i<n

ϕMi

)
.

Proof. Apply Theorem 6.6 with Z = V and X = ω. �



21

Corollary 6.7. If S is a set of sentences containing ZFC, then for any ϕ0, . . . , ϕn−1 ∈ S,

S ` ∃M
(
M is transitive ∧ |M | = ω ∧

∧
i<n

ϕMi

)
.

Theorem 6.8. Let S be a consistent set of sentences in the language of set theory such that
S contains ZFC. In the language expanded by a new constant symbol M, the following set
of sentences is consistent:

S ∪ {M is transitive} ∪ {|M| = ω} ∪ SM.

Proof. Suppose it is not consistent. As S is consistent, S ∪ {M is transitive} ∪ {|M| = ω}
has a model, and is therefore also consistent. But, when we add the formulas in SM to this
set, the new (larger) set is not consistent. Therefore, since formal proofs have finite lengths,
it follows that there exist finitely many sentences ϕ0, . . . , ϕn−1 ∈ S such that the set

S ∪ {M is transitive} ∪ {|M| = ω} ∪ {ϕMi : i < n}
is not consistent. Thus,

S |= ¬
(
M is transitive ∧ |M| = ω ∧

∧
i<n

ϕMi

)
,

and therefore
S |= ¬∃M

(
M is transitive ∧ |M | = ω ∧

∧
i<n

ϕMi

)
,

which contradicts Corollary 6.7. �

Corollary 6.9. If ZFC is consistent, then it has a countable transitive model (c.t.m.).

This allows us to work with countable transitive models of ZFC when we prove next that
CH is independent of ZFC.


