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Logarithmic operators
Logarithmic pair C, D
r (CY_(» 0\(C
"\D) ~ \1 X \D

Correlation functions consistent with (and following from)
the Jordan block structure for Lo

(C(2)C(w)) =0 > |C must have zero norm
(C(z) D(w)) = 1 — — C and D correlate like
(z —w) “normal” operators
(D(z) D(w)) = 2()1:(_2;);}\) - -2 IS enforced by
conformal invariance




Self-avoiding random walks (SARW) “

Wiener-Feynman, z(t)=z 2
30-40s: P(tr $) = E / D‘T(t) 8_%}- Jo dt T

(0)=0
The probability of observing a
particle undergoing Brownian

2
motion atapoint xatatimet  P(t,x) ~ e Dt <$2> ~ Dt

SARW/polymers: Polymers are penalized energetically when they intersect themselves
(Flory, de Gennes & others, 60s-70s)

z(t)=z
P(t, .’L") — / ng(t) e % f{it dtii_% f dtdt’ 5(E(t)_fl(t))
x(0)=0

Hard to solve, but the following scaling ansatz helps

e "t ~f ;A 1 W — We
’ ten { ? k 2—mn 2—n
ey T A -ler
9 2 These are messy details, but the bottom line is clear: P(t,x)
<$ > ~J t 2—m is some sort of a Green's function of an interacting critical
theory, with w (Fourier of t) a relevant perturbation



SARW: Effective field theory 5

z(t) =z
P(t, ) = / Da(t) = s dtal—§ J deat’ 6(3()-&' ()
z(0)=0

Perturbative expansion

L O & 00

IS reproduced by the expansion of this Green’s function with a random imaginary
potential / V{x) in powers of V(x)
1

iw + D25 — iV (z) (V(2)V(y)) = gé(z —y)

f quDq_b o(x) ¢_5(0) ef dzﬂ?tﬁ(ﬂfm%—w“w)cﬁ
[ D¢Do e dz §( D 25 ~iV+iw) $

Plw,z) =



Random potentials: replica approach

f DQ&D‘E’ ¢(z) ‘5(0) Ef Tad (D %_WH“") ® Random potential
— I"'DQ{;DQ_S J dﬂzqﬁ(ﬂﬂ—iVHm)qﬁ (V(m)V(y)) — 5(:5 i y)
e dz2

P(w, )

Introduce n replicas

— - - . Em _i —‘a-%—i 55 ’
[ T, D$:D: 1(z) 31(0) =i f 28 (Piia —iViw)s

P(w,:.ﬂ') == € z | . N .
[DgDGel P=#(Dgez—iVHin)9

take n to zero

n—0

Bles, =)= T f [1D6:03: 61(a) 1(0) E7 T &2 (D&a=iv4is)o,
=1
and finally average over random potential

P(LLJ,,.T) e T{E}] / Hﬂ(ﬁbtﬂtﬁ_ﬁi 01 (;1;) ﬁgl ({]) E_Idzm [Z?ﬂ D8, ¢:8,¢i—iwdidi+ L (o7, didi) ]
i=1

This is the famous O(n) model in the n—0 limit




Random potentials: “supersymmetry 7

approach”

[ DD b(z) $(0) &f €2 #(P ez =iV +iw)s
[ D¢Dpe’ ©* (D25 —iV+iw)o

Pw,z) = (V(z)V(y)) = gdé(z —y)

Introduce fermionic fields
P(w,z) = | D¢DdDYDep () $(0) e Gt ["’T’(D %_""‘V“L‘“)’“J’(D %_"{";*"'“)”"’]

Average over random potential, to find
effective field theory with the action

S = /d2 (0,9 0 + 0,3 0,3b) + g (80 + ¥) 2]

We would like to study CFTs corresponding to the
field theories of this type. All have c=0.




“Supersymmetric” critical theories

e Supersymmetric effective field theories describe a variety
of interesting critical behavior in 2 dimensions. Most have
not been understood.

® -xamples include self-avoiding random walks and
percolation (mostly understood, although not completely)
and quantum motion in random potentials under various

conditions (mostly not understood).

® Most famous example, the quantum Hall transition, has
pbeen extensively studied, and yet is not understood.



Supersymmetry
A typical action

S = / @ | D (9,6 0,6 + 0, 8,0) + 5 (69 + ¥¢)”|

()= (% o) ()
Uy € ag) \¢
Superunitary (more precisely, in this example,
orthosymplectic) group is the symmetry group of this
action
Strange reducible but indecomposable representations

of the superunitary group

scalar at the bottom
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Logarithms and the indecomposable reps

¢ o Y T~ L ogarithmic operators love
S e C indecomposable multiplets

/. Masarani, D. Serban, 1996

(O(Z) C(’LU)) — () Used to be mysterious, now natural o) <C(Z)O(‘LU)> =— ()

1 ) _
(C(Z) D(‘IU)) — (z — w)g)\ 0 (D(z)g('w)) = (C(Z)C(W» — (D(2)C(w)) =0
So T are just usual primary fields
. 1
<C(Z)C(‘IU)> - (z © ‘LU)2A
Finally:
<D(Z) D(*w)) — : ln(z . ’LU) pecause why not??

(z — w)2A



Stress-energy tensor at c=0: CFT perspective

Any primary operator with a
nonvanishing norm in a CFT satisfies

A(2)A(0) = Z% (1 1 il o +)

C
Thus the direct limit c—=0 Is problematic.
Any c=0 CFT must contain operators with

dimension 2 distinct from the stress-energy tensor.
At least one of them, called t, must satisty

Then  A(2)A(0) = e (1 + —t(z) + CT(0) + .. )
VG, 1999
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Stress-energy tensor at c=0: supersymmetry

perspective
Stress-energy tensor is always a

¢ L S part of a reducible but
i T -t Indecomposable multiplet
Possible consistent OPE: Pl thess e S0 pgsable
consistent OPE:
27(0)
Tiz)T(D) = ... 27°(0
(2)T00) = — T(2)T(0) = zi(ﬂ) -
ies b 208 b 2t(0) + T(0)
TR0 = 3+~ +-- | TH0) = o + 2T
2t(0 —2bln 2
tH(2)t(0) = 3(2) - H(2)t(0) = ——— + ...
Realized in supergroup-based WZW Makes t logarithmic. Realized in ¢=0 minimal mode!.

models.



Nonlogarithmic t: free field theory

S ~ / dzl/ [(8’&@ a,u(;b T a,uﬂ?E 8ﬂr{’b)]
| 30sons  Fermions

Stress-tensor multiplet T(2)T(0) = QTS’) :
T = 00O + 0P U b 210
. - (z)t(0) = i ?(2) |
t = 0p0¢ — OO " -
¢ = 06 (0 = 22 4.

b In this case Is the central charge of the

b=2
pbosonic part of the theory

|13



Nonlogarithmic t: Kac-Moody algebras ’

U(1]1) Kac-Moody algebra with the generators J, j, n, i

sort of like U(2), but with different:

i [ =7 J commutes with  C. Chamon, C. Mudry, X.-G.
'{’ '_} ; everybody Wen, 1996
ity
K 4 —k; ]
T =2 (Jj+nii—im) + k2 —2J] 1610 = 25
k., . 4 —k; b 2t(0
c= 7 mj+jn)+k—g “nJ TZ30) =27 5 32)+--
k .. 4—k; . _
t= 23+ & —= (Ji+ 07— {(2)t(0) = 21;(20) e v
VG, 1999
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Logarithmic t: supersymmetry emerges

T(2)t(0) = f,_l | zt(o);'rm) | HEO) S

eI = HQbigz 10 11410;120) log = + 2log? 2]
E)E0) = TTEIT(0) + 5o + ST 82
t(2)€(0) = %T(H)E(O) — T'(2)€(0) log z - g;(g) =4

These follow from the assumption of logarithmic t by
conformal invariance only

t :
: L \5 .th they autorglancally forT :[[.he
T~ - R iIndecomposable representation

shown on the left
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Example of a derivation

£(2)€(0) = aT'(2)T(0) 4 224 I f(0)+z;(0) In 2

Don’t know o at the moment. .= =58 — %)

(21 — 23)(22 — 24)
G = (€(21)€(22)€(23)€(z1))  Let’'s compute it
This Is a rational function:

Gmnd — <§(zl)£(22)f(33)5(24)> ™ % <T(ZI)T(ZQ)E(ZS)£(Z4)> Inx

Reconstruct it by its singularities!

G = 1 {(I +1)(22% + b(z —1)°(1 +2%))  2?(1 — =z +2°) 111:1*]

(21 — 22)*(23 — 24)* 4(x — 1) B (1 —x)2

Only works if x=1/4.
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Extended algebra?

In the same way how Virasoro algebra can be derived
from the OPEs (as well as extended W-algebras), can an
extended algebra of dimension 2 operators follow from
the logarithmic OPES"?

The answer to this question is not known. But there exist
partial examples which show that this may work.

| b 2t(0) + T(0) (0
I(2)i(0) =  + 220 L)
2blnz t(0)[1 —4lnz] —7(0) [Inz + 2 In* z|
t(2)H(0) = ———— - —
. b t(0) +T(0)Inz + 3 7T(0)
§(2)6(0) = 55 - 2 -

2£(0) ~ %(O)lnz | 3¢'(0) —4¢'(0)Inz

z 4z




Attempts to construct extended algebra

Conformal invariance predicts:

A
iPlz) Alun JAle ) = (z — w1)?(z — wa)?(w; — wg)2r—2
| )\]11 [(;_ﬁ?i)é’g wg)] -+ const
((z)A(wr)A(wz)) =

—

\
—log(z —wq ) (T'(2)A(wy ) A(ws))

We recognize that this must be true:

t(z)A(w) = —T(z)A(w)log(z — w) + regular stuff

((z- wl_)f’ (= — w2)*(w; —u 11:2)3)*_2

8
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Logarithmic algebra

Logarithms in the OPE of t and A (A - arbitrary primary
operator with nonzero dlmen8|on) can be removed:
t(z)A(0) = —T(2)A(0)In z + Z A

Lﬂgarlthrﬂs are =
captured by this term

d
_z(t

£, A(0) 2) + In(z)T'(z)) 2"+t A(0)

271

100
[ﬁng Lm} — jé.dzdw (f(Z) -+ ln(g)T(z)) T(,w) Zn—t—lfw'm+l

} b :
[éﬂﬂ L"’”} — én(nz - 1)5'!/1-!-???-10 + (ﬂf T 'ﬂl)gﬂ—l-m = mL'n—l-'m.

Logarithmic commutation relations

Generalization of these 1o other components of the stress tensor multiplet were not yet found.
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Logarithmic t: minimal model at c=0
5

AT

9
s|12)1s |0
1
‘e v (2n—3m) -1
3|3 | = |3 LT 24
2 0|5 |1|%]|5 ; D
o= | 2| 2|7 6
1 2 3 4 5 m
Differential equations give
1 :
(A(21)A(22)A(23)A(24)) = o =22 (7 — ) (14 az?In(z) +...)
A 212234
(fy — — i =
b 213<24
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Algebraic approach to compute b

G— 1 {[; FiM2e® bz 11+ 2%)) 2t~z el JW
" (21— 22) (2 — 2) 4 —1) (1—x)°
Satisfies appropriate equations at the appropriate values of b
\ (2n — 3m)* — 1
(Vi 24
5 ) 5
7 §
1 2 3 4 5 m

D
(L_g — L%,) §> Null vector
= 5 Monwnhea Jeng: correct
9 J up to at least the
lo (L—2 — L 1) §> =0 > D= 6 degeneracy level 15




Operators with vanishing dimension

An operator of dimension O at ¢c=0 which is primary and
not identity plays a special role in Cardy’s theory of
percolation...

(T'(2)O(w1)O(ws)) =0

A(w; — wa)?

(z — wy)?(2 — wa)?

(t(2)O(wq)O(ws)) =

t(z)O(0) = —(1 — €)T'(2)O(0) In z 4 regular stuft

3 5(7¢ — 5
s (L_Q + §L1) 0) =0 . p= E— R



23

Difficulties if one tries to go further

® Commutation relations depend on what the operators
act on (but isn’t it similar to the parafermions)?

® \\Vhat if the operators that the stress-tensor multiplet acts
on are themselves parts of multiplets?

® Substracting logarithms may or may not be possible in
all the cases.

e \Vhat if gluing left and right sector is not a trivial task?
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Cardy’s explanation of the logarithms

e /ﬂ:ﬁ{p {—5’“— /.dg.rrf[.rlE(:r)] F — /exp —Z So.n+ 9 [EEELE;, ) Ep(2) | .

. a=]
(E(x)E(0)) = AIE}] (E1(z)E(x)) = Z E,
a=]
8 1
Eﬂ; == Eﬂ- o _E
T

Aln A hn,
L (B@)BO) = (B@E0) + (1 - 1) (Bu()Ea0)) = Ao phT

- B(n) ‘reasonable”
I E‘” T E‘H > E E —AE(x\E N e conformal
— (Ba@)Ea(0)) = (Bx(2) 1 (0) ~ (Ea(2) Bo(0)) = —rp5 oonfom
B - Aln) . B(n) ln(z)
<E(‘I E(U)> Illl] <E1(I)E1(U)> }FI_IH-] ; (.’IT‘E&{”) : (H = 1)1:25{?”) i j.J_"MfIE

Logarithms at disordered critical points are inevitable!
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Conclusions

Logarithmic operators at critical points with quenched
disorder are inevitable, control the structure of the CFT,
and are not understood. The need to be understood if we
are to develop a general theory of such critical points.
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