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1 Lecture 1: Narrow s-wave resonances

1.1 2-channel model

The two channel model is defined by its Hamiltonian

Ĥ =
∑

k,σ=↑,↓

k2

2m
â†k,σâk,σ+

∑
p

(
ε0 +

p2

4m

)
b̂†pb̂p+

g√
V

∑
k,p

(
b̂p â

†
k+p

2
,↑â
†
−k+p

2
,↓ + b̂†p â−k+p

2
,↓âk+p

2
,↑

)
,

(1.1)

where V is the volume. It describes a physically appealing picture: fermions with spin

which can glue together to form a boson with energy ε0. g is the interconversion rate (or

interaction strength).

The limit g → 0 is very attractive theoretically. Indeed, these are now noninteractive

bosons and fermions.

Let us understand this limit at zero temperature. Even though these are noninter-

acting particles, the fermion and boson numbers are not separately conserved. Only the

combination

N̂ =
∑
k,σ

â†k,σâk,σ + 2
∑
p

b̂†pb̂p (1.2)

which is conserved.

In the spirit of the grand canonical ensemble we need to minimize

Ĥ − µN̂ =
∑
k,σ

(
k2

2m
− µ

)
â†k,σâk,σ +

∑
p

(
ε0 − 2µ+

p2

4m

)
b̂†pb̂p (1.3)

Define εF to be the Fermi energy of the fermions if bosons are not present. Then we find

three regimes:

1) ε0 > 2εF . No bosons, all particles are fermions. µ = εF .

2) 0 < ε0 < 2εF . Some particles are bosons, and some particles are fermions. The

number of fermions is such that the fermion Fermi energy is ε0/2. Consequently, µ = ε0/2.

3) ε0 < 0. All particles are bosons. µ = ε0/2 < 0.

It goes without saying that the bosons, when present, form a noninteracting Bose

condensate.

This is summarized on pictures shown on Figs. 1 and 2.
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Figure 1: An illustration of the BCS-BEC crossover in the limit of a vanishing resonance
width g → 0. The evolution with detuning ε0 is illustrated, with (a) the BCS regime of
ε0 > 2εF , where particles are all free atoms forming a Fermi sea, (b) the crossover regime
of 0 < ε0 < 2εF , where a fraction of atoms between ε0 and εF have converted into BEC of
bosonic molecules, and (c) the BEC regime of ε0 < 0, where only Bose-condensed molecules
are present.

1.2 The meaning of the model

The model, at nonzero g, looks transparent, but to understand the meaning of the inter-

actions in this model, one needs to study how 2 fermions in vacuum would scatter. We

compute the 2-body scattering amplitude. This is an exact calculation, not an approxi-

mation. We find

f(p) =
1

− 1
a

+ r0
p2

2
− ip, (1.4)

where

a =
mg2

4πω0

, r0 = − 8π

m2g2
, ω0 = ε0 − g2mΛ

2π2
. (1.5)

Here Λ is the momentum cutoff (the upper limit of the summation in the interaction term

of (1.1)), or in other words, the maximum momenta k and −k two fermions would have in
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FIG. 19: The normalized density of bosonic molecules n̂b =
2nb/n vs the normalized detuning ω̂0 = ω0/εF in the limit of
a vanishing resonance width, γs → 0 .

These equations can then be used to determine the
normal-superfluid transition temperature Tc(ω0), defined
as a temperature at a given detuning ω0 at which n0 first
vanishes. Setting 2µ = ω0 and n0 = 0, we find an implicit
equation∫

d3k

(2π)3
1

e
k2

2mTc
− ω0

2Tc + 1
+
∫

d3k

(2π)3
1

e
k2

4mTc − 1
=

n

2
,

(6.11)
that uniquely gives Tc(ω0). The numerical solution of
Eq. (6.11) is presented in Fig. 20.

The limiting behavior of Tc(ω0) is easy to deduce.
Deep in the BEC regime, for ω0 ¿ −εF , the first in-
tegral is exponentially small, reflecting the fact that in
this regime the fermion chemical potential µ is large and
negative and a number of thermally created fermionic
atoms is strongly suppressed. The second integral then
gives the critical temperature, that in this regime coin-
cides with the BEC transition temperature

Tc(ω0 ¿ −εF ) ≈ TBEC =
π

m

(
n

2ζ (3/2)

)2/3

, (6.12)

that is indeed on the order of εF . As ω0 is increased
through the BEC and crossover regimes, Tc(ω0) de-
creases, as the contribution of thermally created free
atoms from the first integral increases. When detuning
reaches ω0 = 2εF , the solution of Eq. (6.11) drops down
to Tc(2εF ) = 0. Beyond this point, for ω0 > 2εF in the
BCS regime, the bosons are completely converted into
free fermions forming a Fermi sea and Tc(ω0) sticks at 0.

B. Narrow-resonance limit

We extend our study of the s-wave resonant Fermi gas,
described by the Bose-Fermi mixture action to the limit
where γs is small but nonzero. The overall qualitative
picture is quite similar to the gs → 0 limit discussed in
the previous subsection and summarized in Fig.18, with
only a few new features.
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FIG. 20: The normalized critical temperature T̂c = Tc/TBEC

as a function of the normalized detuning ω̂0 = ω0/εF in the
limit of a vanishing resonance width γs → 0.

Because of the φ nonlinearities in Ss[φ], Eq. (6.4), the
functional integral Eq. (6.3) in general cannot be evalu-
ated exactly. However, as discussed in the Introduction
and in Sec. V A, for small gs (γs ¿ 1) the theory can
be analyzed by a controlled perturbative expansion in
powers of γs around the saddle-point (mean-field) ap-
proximation of Zs. To this end, we look for the spatially
uniform field configuration φ(r) = B that minimizes the
action Ss [φ]. We find the following saddle-point equation

1
B

δSs [φ]
δφ̄

∣∣∣∣
φ=B

=

ε0 − 2µ− g2
sT
∑
ωn

∫
d3k

(2π)3
1

ω2
n +

(
k2

2m − µ
)2

+ g2
sB̄B

= 0.

(6.13)
where ωn = πT (2n + 1) are the fermion Matsubara fre-
quencies. The sum over the frequencies can be done in a
closed form, leading to the so-called BCS-BEC gap equa-
tion for the mean field B(T, µ, ε0) (and the corresponding
condensate density |B|2)

ε0 − 2µ =
g2

s

2

∫
d3k

(2π)3
tanh Ek

2T

Ek
, (6.14)

where Ek is given by

Ek =

√(
k2

2m
− µ

)2

+ g2
sB̄B (6.15)

The integral on the right hand side of the BCS-BEC gap
equation is formally divergent, scaling linearly with the
uv momentum cutoff Λ. However, expressing the bare
detuning parameter ε0 in terms of the physical, renor-
malized detuning ω0 using Eq. (5.16), we can completely
eliminate the appearance of the microscopic uv scale
Λ in all physical quantities, and thereby obtain a uv-
convergent form of the BCS-BEC gap equation

ω0 − 2µ =
g2

s

2

∫
d3k

(2π)3

[
tanh Ek

2T

Ek
− 2m

k2

]
. (6.16)

Figure 2: The normalized density of bosonic molecules n̂b = 2nb/n, vs the normalized
detuning ε̂0 = ε0/εF in the limit of a vanishing resonance width, g → 0 .

order to still form a molecule. At higher relative momenta the fermions will pass through

each other without interacting.

We see that the scattering length a turns into infinity when ω0 is 0. This is the value

of detuning at which bound states of fermions (molecules) are about to start to form. It

corresponds to

a =∞ → ε0 =
g2mΛ

2π2
. (1.6)

Thus the detuning is still very positive when bound states of fermions start to form. At

lower value of ε0 there are real bound states. This distinction between ω0 and ε0 is of

course absent in the absence of interactions, such as in (1.3).

Notice that at weak interactions, g → 0, r0 → −∞.

To further understand the meaning of the interactions, it is useful to study the poles of

this scattering amplitude. The analysis has been thoroughly discussed in the Ann. Phys.

paper referred to on the front page of the notes.

1.3 Solution at nonzero but small g

Small g means the problem can be attacked by the mean field theory. We define a param-

eter

γ =
g2

√
εF

(1.7)

which has to be small for g to be small. This is equivalent to demanding that

|r0| ∼ 1

g2
� 1√

εF
∼ l, (1.8)
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where l is the mean separation between the particles and r0 was defined in (1.5). Thus r0

is large and negative.

To use mean field theory we assume that the bosons Bose condensed. We replace

b̂p →
√
V Bδp,0 (1.9)

where B is the condensate density. This gives us a reduced Hamiltonian

Ĥreduced =
∑
k,σ

(
k2

2m
− µ

)
â†k,σâk,σ + (ε0 − 2µ)B∗B +

∑
k

g
(
B â†k,↑â

†
−k,↓ +B∗ â−k,↓âk,↑

)
,

(1.10)

One needs to minimize this at given B over all possible fermion configurations, and calcu-

late the ground state energy E(B). Then one needs to minimize E(B) with respect to B.

This is a standard procedure because (1.10) looks like the usual BCS Hamiltonian studied

in superconductivity. Once E(B) is found, the condition dE/dB∗ = 0 becomes

ε0 − 2µ =
g2

2

∫ d3k

(2π)3

1√(
p2

2m
− µ

)2
+ g2B∗B

(1.11)

This equation (called the gap equation in the theory of superconductivity) has two un-

knowns, µ and B (assuming that ε0 is given). The second equation which relates them is

the equation that
〈
N̂
〉

= N , where the operator N̂ is introduced in (1.2), and N is the

number of initial fermions in the systems. It can be shown that this equation takes the

form

N

V
= 2B∗B +

∫ d3k

(2π)3

1−
k2

2m
− µ√(

p2

2m
− µ

)2
+ g2B∗B

 . (1.12)

Solving these two equations gives the boson density n = B∗B as a function of ω0. The

solution looks very much like the one shown on Fig 2, except the “corners” have been

rounded and ε0 got replaced by ω0. Now even if ω0 > 2εF , there are some (very small)

number of bosons present, while remaining fermions form a BCS superconductor, described

by (1.10). Even at ω0 < 0, there are still some fermions present which also form a

superconductor, however at negative chemical potential. µ approximately follows ω0/2, if

ω0 ≤ 2εF , and µ = εF if ω0 > 2εF . This is just like in the noninteracting case, except

µ follows ω0 instead of ε0 and it does so approximately (deviating from it by an amount

which goes to 0 if g goes to 0) and not exactly.

Notice that this solution works for all ω0, as long as g is small (or |r0| � l). It works

even when a→∞.
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1.4 Large g or small r0 limit

.

If g is large, it can be shown that mean field theory still works at very large ω0 where

(1.1) describes a BCS superconductor, and at very large negative ω0 where it describes

a BEC of weakly interacting molecules. When ω0 is close to zero, this problem is not

solvable except numerically. To elucidate further this limit, we observe that physically

large g means that g → ∞, while a is kept fixed. In other words, according to (1.5), ε0

should also be taken into infinity at the same time so that the ratio ε0/g remains fixed. In

this limit, the two channel model becomes equivalent to a one channel model. This can be

shown, for example, in the following way. Let’s write the equations of motion for b̂p which

follow from (1.1)

i
˙̂
bp = [Ĥ, b̂p] = ε0b̂p +

g√
V

∑
k

âp
2
−k,↓âp

2
+k,↑ (1.13)

At large g and large ε0, the time derivate can be neglected, to give

b̂p = − g

ε0
√
V

∑
k

âp
2
−k,↓âp

2
+k,↑. (1.14)

Substituting it back into the Hamiltonian, we find

Ĥ =
∑

k,σ=↑,↓

k2

2m
â†k,σâk,σ − λ

V

∑
p,k

â†p
2
+k,↑â

†
p
2
−k,↓âp

2
−k,↓âp

2
+k,↑ (1.15)

Here

λ =
g2

ε0
, (1.16)

which remains constant in this limit, and can be expressed in terms of the scattering length

a (given by (1.5)).

(1.15) is the Hamiltonian for a one channel model, describing the fermions with short

ranged featureless attractive interactions. It describes the crossover between BCS and

BEC, as the attractive interactions strength gets stronger. Thus this Hamiltonian can be

solved in the far BCS limit (small λ), and far BEC limit (large λ), but hard to study in the

intermediate regime. It is completely equivalent to the two-channel problem if g is large.

This can be summarized by the diagram shown on Fig 3. It shows when, depending on

the values of the scattering length a, r0 and the particle separation l ∼ n−1/3, the problem

can be solved perturbatively and when it cannot.

Finally, we remark that the regime of large g is usually called broad resonance, while

small g is narrow resonance. The origin of this term is the following: g controls the ratio
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5

crossover initiates as the detuning is lowered below 2εF ,
where a finite density of atoms binds into Bose-condensed
(at T = 0) closed-channel quasi-molecules, stabilized
by the Pauli principle. The formed molecular (closed-
channel) superfluid coexists with the strongly-coupled
BCS superfluid of (open-channel) Cooper pairs, that,
while symmetry-identical and hybridized with it by the
Feshbach resonant coupling is physically distinct from
it. This is made particularly vivid in highly anisotropic,
one dimensional traps, where the two distinct (molecu-
lar and Cooper-pair) superfluids can actually decouple
due to quantum fluctuations suppressing the Feshbach
coupling at low energies [30]. The crossover to BEC
superfluid terminates around zero detuning, where con-
version of open-channel atoms (forming Cooper pairs)
into closed-channel molecules is nearly complete. In the
asymptotic regime of a negative detuning a true bound
state appears in the closed-channel, leading to a positive
scattering length and a two-body repulsion in the open-
channel. In between, as the position of the Feshbach res-
onance is tuned through zero energy, the system is taken
through (what would at zero density be) a strong unitary
scattering limit, corresponding to a divergent scattering
length, that is nevertheless quantitatively accessible in a
narrow resonance limit, where γs ∼ 1/(kF r0) plays the
role of a small parameter.

This contrasts strongly with systems interacting via
a featureless attractive (e.g., short-range two-body) po-
tential, where due to a lack of a large potential bar-
rier (see Fig. 11) no well-defined (long-lived) resonant
state exists at positive energy and a parameter γs (pro-
portional to the inverse of effective range r0) is effec-
tively infinite. For such broad-resonance systems, a
gas parameter n1/3 |a(H)| is the only dimensionless pa-
rameter. Although for a dilute gas (n1/3abg ¿ 1) a
controlled, perturbative analysis (in a gas parameter)
of such systems is possible away from the resonance,
where n1/3 |a(H)| ¿ 1, a description of the gas (no
matter how dilute), sufficiently close to the resonance,
such that n1/3|a(H)| > 1 is quantitatively intractable in
broad-resonance systems [31]. This important distinc-
tion between the narrow and broad Feshbach resonances
and corresponding perturbatively-(in)accessible regions
in the kF - a−1 plane around a Feshbach resonance are
illustrated in Fig. 3.

Nevertheless, because of their deceiving simplicity and
experimental motivation (most current experimental sys-
tems are broad), these broad-resonance systems (exhibit-
ing no long-lived positive energy resonance [29]) were a
focus of the aforementioned earlier studies [3–5, 8] that
provided a valuable qualitative elucidation of the BCS-
BEC crossover into the strongly-paired BEC superflu-
ids. However, (recent refinements, employing enlight-
ening but uncontrolled approximations notwithstand-
ing [9, 19, 32, 33]) these embellished mean-field descrip-
tions are quantitatively untrustworthy outside of the BCS
regime, where weak interaction (relative to the Fermi en-
ergy) provides a small parameter justifying a mean-field

k   ~ nF
1/3

−1a

0r −1

0

1/3n     a =1

b
ro

a
d

 F
R

n
a

rr
o

w
 F

R

pertubatively
inaccessible

FIG. 3: Illustration of perturbatively accessible and inac-
cessible (grey) regions in the inverse particle spacing vs in-

verse scattering length, n1/3–a−1 plane around a Feshbach
resonace, where a diverges. Note that outside the grey region,
even for a broad Feshbach resonance there is a small param-
eter that is either the gas parameter or Feshbach resonance
coupling, or both, and hence the system can be analyzed per-
turbative.

.

treatment – and outside of the BEC regime where, al-
though mean-field techniques break down, a treatment
perturbative in n1/3|a| ¿ 1 is still possible [6]. The in-
ability to quantitatively treat the crossover regime for
generic (non-resonant) interactions is not an uncommon
situation in physics, where quantitative analysis of the
intermediate coupling regime requires an exact or numer-
ical solution [34]. By integrating out the virtual molec-
ular state, systems interacting through a broad (large γ)
resonance can be reduced to a nonresonant two-body in-
teraction of effectively infinite γ, and are therefore, not
surprisingly, also do not allow a quantitatively accurate
perturbative analysis outside of the BCS weak-coupling
regime [31].

The study of a fermionic gas interacting via a broad
resonance reveals the following results. If a < 0 (the in-
teractions are attractive but too weak to support a bound
state) and n1/3|a| ¿ 1, such a superfluid is the stan-
dard BCS superconductor described accurately by the
mean-field BCS theory. If a > 0 (the interactions are
attractive and strong enough to support a bound state)
and n1/3a ¿ 1, the fermions pair up to form molecular
bosons which then Bose condense. The resulting molecu-
lar Bose condensate can be studied using n1/3a as a small
parameter. In particular, in a very interesting regime
where a À |r0| (even though a ¿ n−1/3) the scattering
length of the bosons becomes approximately ab ≈ 0.6a
[35], and the Bose condensate behaves as a weakly inter-

Figure 3: Illustration of perturbatively accessible and inaccessible (grey) regions in the
inverse particle spacing vs inverse scattering length, n1/3–a−1 plane around a Feshbach
resonace, where a diverges. Note that outside the grey region, even for a broad Feshbach
resonance there is a small parameter that is either the gas parameter or Feshbach resonance
coupling, or both, and hence the system can be analyzed perturbatively.
.

of a to ω0, according to (1.5). The experimentalists tune ω0 by changing magnetic field

H, so that ω0 ∼ µB∆H. Here µB is the Bohr magneton, and ∆H is the deviation of the

magnetic field from the “resonance”. They then plot 1/a as a function of ∆H. The bigger

g, the more slowly a−1 changes with changing ∆H or ω0. Thus the plot of a−1 vs ∆H

becomes more broad.

Typically most of the experiments are carried out in the regime of a broad resonance.

One reason is that reducing the particle density always takes us into the regime of a broad

resonance, corresponding to l� |r0|. It is easy experimentally to reduce the density (while

increasing it may lead to instabilities and is problematic).

2 Lecture 2: p-wave resonances

2.1 p-wave 2-channel model

If all fermions are identical (in the identical atomic or spin state), they cannot interact

via s-wave interactions. The minimal coupling is p-wave, and the corresponding resonant
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model takes form

Ĥ =
∑
k

k2

2m
â†kâk+

∑
p,α

(
ε0 +

p2

4m

)
b̂†p,αb̂p,α+

g√
V

∑
k,p

kα

(
b̂p,α â

†
k+p

2
â†−k+p

2
+ b̂†p,α â−k+p

2
âk+p

2

)
.

(2.1)

Now the molecuesl have structure, expressed by the index α in the creation operator b̂†.

They have angular momentum (spin) 1.

The interactions are weak when g is small. The corresponding dimensionless parameter

is

γ = g2√εF � 1. (2.2)

This parameter is small at low density. Thus experiments (when they are done) will

typically be in the regime of weak interactions, which can be understood using mean field

theory.

Why would one want to study these p-wave systems?

1. The transition between BCS and BEC is a transition, not a crossover. Indeed, in the

mean field theory we will replace b̂p,α →
√
V Bαδp,0 and plug it back into the Hamiltonian.

The resulting superconductor Hamiltonian has a spectrum (this is derived in the BCS

theory)

E =

√√√√( p2

2m
− µ

)2

+BαB∗β pαpβ. (2.3)

If µ > 0, we will have gapless excitations with the appropriate choice of pα (such that

p2/(2m) = µ and Bαpα = 0). If µ < 0, there are no gapless excitations. Conclusion: there

is a phase transition at µ = 0. As we saw in the previous lecture, varying ε0 changes µ

and makes it go through zero, thus allowing to observe the transition.

2. The condensate density Bα is a vector. Choosing different directions of this vector

chooses different phases of such p-wave condensate. Thus there is a possibility of observing

different phases and transitions between them in addition to the BCS-BEC transition.

3. If we are in 2 dimensional space, and if Bα = uα + ivα where vαuα = 0, then this

leads to a superfluid which is called a chiral p-wave 2D superconductor. Such a superfluid,

if µ > 0, has excitations which obey nonabelian statistics. Observing such excitations

would be a milestone achievement.

Notice that in 2D, g is dimensionless, so in 2D it is not as straightforward to see if

mean field theory works. It depends on how large g is regardless of particle separation.
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2.2 The meaning of the model

As before, we need to compute the 2-body (two fermion) scattering amplitude to under-

stand the meaning of the model. This is given by

f(p) =
p2

− 1
v

+ k0
p2

2
− ip3

. (2.4)

Here

v−1 = − 6π

mg2
(ε0 − c1) , k0 = − 12π

m2g2
(1 + c2) . (2.5)

Here

c1 =
m

9π2
Λ3g2, c2 =

m2

3π2
g2Λ. (2.6)

Here v is called the scattering volume and can be controlled via changing detuning ε0

making it go through infinity in a manner similar to the scattering length in case of s-wave

resonances. k0 is a parameter equivalent to r0 in the case of s-wave, but having dimensions

of momentum.

We see that at small momenta ip3 can be completely neglected, and the poles of the

scattering amplitude are given by

p2

2m
=

1

mk0v
. (2.7)

At positive v, this is the bound state (with negative energy) (remember that k0 < 0!).

At negative v, this is a resonance (a long lived bound state with positive energy, which

eventually decays back into nonbound fermions). −v−1 ∼ ε0, thus we tune between these

two regimes with the detuning, as before.

2.3 Phases of the condensates

Once the condensation takes place, b̂p,α →
√
V Bαδp,0. Bα is a complex vector and can

take two different forms.

We can always write

Bα = uα + ivα (2.8)

where uα and vα are two real vectors. Moreover, they can always be chosen orthogonal to

each other (changing the angle between them is equivalent to multiplying B by a phase,

which is not obvious, but can be checked by explicit algebra).

If v = 0, then

Bα = uα (2.9)
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and is real. This is called the px phase of the condensate (or sometimes called the polar

phase). This describes the molecules whose angular momentum has projection zero on the

axis formed by uα.

If v 6= 0, let us consider u = v (their lengths coincide). Then

Bα = uα + ivα (2.10)

and can never be real. This is called the chiral, or ferromagnetic, or px + ipy phase of the

superconductor. This describes molecules whose angular momentum has projection +1 on

the axis parallel to ~u× ~v.

By choosing u to point along the x-direction, and v along the y-direction, the two

situations are described by

Bα =

 1
0
0

 : px, Bα =

 1
i
0

 : px + ipy. (2.11)

The important question is which one is realized in the 2-channel model.

2.4 Mean field theory and the choice of the phase

To understand which situation is realized in a system governed by the 2-channel model,

we implement the mean field scheme, just as in the s-wave case (except in this case this

scheme is reliable as long as the system is dilute enough). We substitute b̂p,α →
√
V Bαδp,0

to find by analogy with (1.10)

Ĥreduced =
∑
k

(
k2

2m
− µ

)
â†kâk+

∑
α

(
ε0 − 2µ+

p2

4m

)
B∗αBα+

g√
V

∑
k

kα
(
Bα â

†
kâ
†
−k +B∗α â−kâk

)
.

(2.12)

Here the conserved particle number is now

N̂ =
∑
k

a†kak +
∑
p,α

b†p,αbp,α. (2.13)

We now need to find the ground state energy E(Bα) and minimize it with respect to Bα.

In contrast with the s-wave case, there could be now different minima and maxima of E,

so one needs to look for a global minimum. A calculation to look for the ground state

energy of (2.12) gives the following expression

E

1 + c2
=
(
u2 + v2

)
[ω0 − 2µ+ a1 ln {a0 (u+ v})]+a1

u3 + v3

u+ v
+a2

[(
u2 + v2

)2
+

1

2

(
u2 − v2

)2
]
.

(2.14)
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Here it is assumed that uαvα = 0, that is, the two vectors are perpendicular, and u, v

are their respective lengths. a0, a1, and a2 are three coefficients which can be expressed

in terms of g, εF , and µ, and whose explicit form is unimportant. The only important

information about it is that a1 is an increasing function of µ if µ > 0. If a1 < 0, then a1

vanishes.

Now we distinguish two possible regimes. In the BCS regime, ω0 is large positive. We

expect that u and v are going to be small. If so, then the quartic terms with a2 coefficient

in front can be neglected. The large ω0 will be compensated by the large logarithm if u

and v are small. We need to minimize the term proportional to a1. It can be shown that

the minimum is achieved if u = v. Thus in the BCS regime u = v and the phase is px+ ipy.

As ω0 is decreased, µ decreases with it (recall the discussion at the beginning of Lecture

1. Then we enter the BCS regime. In this regime, a1 becomes zero (when µ < 0). Then

the ω0 − 2µ term is balanced by the quartic term, while the terms proportional to a1

vanish. Now we need to minimize the quartic terms proportional to a2. Obviously this is

achieved if u = v (since that’s when u2−v2 = 0). Thus in the BEC regime the appropriate

phase is also px + ipy. One way to interpret it is to say that the interactions between the

molecules, described by the quartic term, are ferromagnetic and their angular momenta

want to align.

This shows that the BCS-BEC condensate described by the 2-channel model is always

in the chiral px + ipy phase.

This argument goes through in 2D as well (assuming that the mean field theory ap-

plies). Thus when confined to 2D, this BCS-BEC condensate will form a chiral 2D p-wave

superconductor, which has non-Abelian excitations at µ > 0. The idea is now to tune

µ by tuning ε0 so that µ > 0 but not too large so that to maximize the gap (and allow

for stable quasiparticles with which to do quantum computations using their non-Abelian

statistics).

2.5 Stability of the p-wave superfluid

This section follows the paper J. Levinsen, N. Cooper, V. Gurarie, PRL 99, 210402 (2007).

Since it deals with estimates, this section features explicit h̄, which was set to 1 previously.

The experiments done to try to create p-wave molecules showed that they are unstable,

with the lifetime of the order of 2ms. This so far prevented the experimentalists from

creating a p-wave superfluid in the lab. Let us understand why this is so.

The main process which leads to decay of the molecules is the following. All of the

10



atoms interact with attractive but relatively short ranged van der Waals interactions which,

at very short distances of Re ≈ 2.5nm, lead to formation of a strongly bound molecule

with a very large binding energy (of the order of h̄2/(mRe2). Here Re ∼ h̄/Λ, where Λ

is the cutoff introduced earlier. These are not the same as the weakly bound molecules

discussed here. Once these strongly bound molecules are formed, large amount of energy

is released in the form of a nearby atom which flies out carrying away this energy. This

leads to the destruction of the molecules nearby.

We can estimate the rate for this process in the following way. Suppose two weakly

bound molecules collide and one of them becomes a strongly bound molecule while the

other decays and its constituent atoms fly out carrying away the large binding energy of

the strongly bound molecule. The rate of this process is given by

Γ = nvσin. (2.15)

Here n is the density, v is the molecular velocity, and σin is the inelastic cross section of

such a collapse process. Suppose the weakly bound molecules have size l, and an average

separation between the particles is also a (we are close to resonance where all distances

are roughly the same). Then we can estimate the inelastic cross section by

σin ∼ ld−1 l

v

h̄

mR2
e

P. (2.16)

Here ld−1 is the elastic cross section, d is the dimensionality of space, l/v is the time the

molecules spend close by, and h̄/(mR2
e) is a characteristic rate of the collapse (the only

parameter of dimension of rate which depends on Re only). Finally, P is the probability

that as two molecules of size l collide, at least 3 of the four atoms which formed these two

molecules will find themselves at a distance Re to be able to carry out the collapse process.

Estimating P is not obvious since the atoms are all strongly interacting. If atoms

were not interacting at all, then P ∼ (Re/l)
2d. Indeed, the probability that one atom

approaches the other is (Re/l)
d, and that has to be multiplied by the probability that the

third atom approaches the first two. However, it was demonstrated by Petrov, Salomon,

and Shlyapnikov, that strongly interacting fermions have a wave function which goes as

ψ ∼ rγ, where r represents coordinates of all three particles (rescaling their coordinate by

a factor of λ rescales the wave function by a factor of λγ). γ is an exponent which has to

be calculated separately for each case. Then

P ∼
(
Re

l

)2d+2γ

. (2.17)
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This is obtained by integrating |ψ|2 over the coordinates of the two particles with the third

one being kept fixed. Putting it all together using n ∼ 1/ld gives

Γ ∼ h̄

ml2

(
Re

l

)2d+2γ−2

. (2.18)

Noting that h̄/(ml2) is of the order of εF/h̄, we find

Γ ∼ εF
h̄

(
Re

l

)2d+2γ−2

. (2.19)

In order to have enough time to observe the resonant superfluids before they decay, we

need, at least, to have Γ� εF/h̄.

Now we distinguish several cases:

1. 3D s-wave ferimons. γ was calculated by Petrov, Salomon, and Shlyapnikov, to be

γ ≈ −0.22. This gives

Γ ∼ εF
h̄

(
Re

l

)2d+2γ−2

=
εF
h̄

(
Re

l

)3.56

. (2.20)

Typically Re/l ∼ 1/200. This gives

Γ ∼ εF
h̄

(
1

200

)3.56

� εF
h̄
. (2.21)

The decay is indeed very slow. The system has plenty of time to be created and observed

before it decays.

2. 3D s-wave bosons. γ was calculated by Efimov, to be γ = −2. Then

Γ ∼ εF
h̄
. (2.22)

This is very fast. The system will decay before anything can be observed with it.

3. 3D p-wave fermions. Unlike the s-wave case, this needs to be rethought. The p-

wave molecules are very small because their wave function behaves as 1/r2 (in general, the

angular momentum s wave function goes as 1/rs+1 according to the standard results in

quantum mechanics). Thus the probability of seeing atoms close by goes as 1/r4, which

is not integrable over d3r at small r. Thus the molecule has a typical size Re, and not l.

This leads to σin ∼ R2
e(Re/v)h̄/(mR2

e) and

Γ = nvσin =
h̄

ml2
Re

l
∼ εF

h̄

Re

l
. (2.23)
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This is better than 3D s-wave bosons, but not as good as 3D s-wave fermions. The decay

rate can be estimated as (taking into account that εF/h̄ ∼ 10KHz in a typical experiment)

Γ ∼ 10KHz · 1

200
∼ 1/(20ms). (2.24)

Thus the lifetime of the molecules is expected to be 20ms, which is about 10 times larger

than observed. Yet it is known that this formula tends to overestimate the lifetime,

presumably due to some numerical factor of the order of 10 neglected in its derivation.

The origin of the relatively short lifetime of the p-wave molecules is the following. In

the s-wave case, a molecule decays if a third atom approaches it (to take away its binding

energy so that it could collapse into a deeply bound state). But the third atom is identical

to one of the atoms which made up the molecule and the Pauli principle will prevent it

from coming close.

In case of p-wave, a molecule has an angular momentum, say +1. A third atom will

approach this molecule with the angular momentum −1, thus beating the Pauli principle.

Then the molecule will collapse and the atom will carry away its energy.

Therefore, new fresh ideas are needed if a stable p-wave superfluid is to be created.

13


