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1. All the invariants can be constructed out of single particle 
Green’s functions of these insulators

2. It is generally believed that at the boundaries of topological 
insulators there must be zero energy “edge states”. The Green’s 
functions provide a very simple proof of this statement.

3. In the presence of interactions, edge states can disappear 
and get replaced by the “zeroes” of the Green’s functions. 

VG, arxiv:1011.2273
A. Essin, VG, work in progress
Discussions with A.W.W. Ludwig

Topological insulators are free fermion systems characterized 
by topological invariants. 
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Noninteracting topological 
insulators
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Topological insulators 4

Topological insulators are free fermion systems

fermionic creation
and annihilation 

operators

which happen to be band insulators of a special type
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Band insulators 5

Spectrum is essentially the same regardless of 
whether the boundary conditions in the  y-direction 

periodic or hard wall. 
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Integer quantum Hall effect as a topogical insulator 6

Same tight binding 
model but with
2π/3 magnetic flux 
through each plaquette

Periodic boundary conditions 
in the y-direction
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Integer quantum Hall effect as a topogical insulator 6

Same tight binding 
model but with
2π/3 magnetic flux 
through each plaquette

Hard wall boundary 
conditions in the y-direction
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Laughlin’s argument 7

increasing flux though a point

outward current

Outward current deposits charge somewhere.
There must be zero energy edge states to absorb the 

charge
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TKNN invariant 8

Thouless, Kohmoto, Nightingale, Den Nijs, 1982

Bloch waves

This is a topological invariant (always integer times 2πi){
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TKNN invariant 9

Band structure topological invariant →

quantized Hall conductance →

Laughlin argument →

edge states
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Other topological insulators? 10

1. 2D px+ipy superconductor (“insulator” since its 
Bogoliubov quasiparticles have a gap in the spectrum).
Kopnin, Salomaa, 1991. 
Read and Green, 2000.

Thursday, January 6, 2011



Other topological insulators? 10

1. 2D px+ipy superconductor (“insulator” since its 
Bogoliubov quasiparticles have a gap in the spectrum).
Kopnin, Salomaa, 1991. 
Read and Green, 2000.

2. 4D quantum Hall effect. 
Zhang, Hu, 2001

Thursday, January 6, 2011



Other topological insulators? 10

1. 2D px+ipy superconductor (“insulator” since its 
Bogoliubov quasiparticles have a gap in the spectrum).
Kopnin, Salomaa, 1991. 
Read and Green, 2000.

2. 4D quantum Hall effect. 
Zhang, Hu, 2001

3. Solitons in 1D chains. 
Su, Schrieffer, Heeger (1978)

Thursday, January 6, 2011



Other topological insulators? 10

1. 2D px+ipy superconductor (“insulator” since its 
Bogoliubov quasiparticles have a gap in the spectrum).
Kopnin, Salomaa, 1991. 
Read and Green, 2000.

2. 4D quantum Hall effect. 
Zhang, Hu, 2001

3. Solitons in 1D chains. 
Su, Schrieffer, Heeger (1978)

4. Modern 2D and 3D topological insulators. 
Kane and Mele (2005); Zhang, Hughes, Bernevig, (2006);
Moore, Balents, (2007); Fu, Kane, Mele (2007)
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3. Chiral (sublattice)

2. Particle-hole

Symmetries:

1. Time-reversal

7

Table 1. Listed are the ten generic symmetry classes of single-particle
Hamiltonians H, classified according to their behavior under time-reversal
symmetry (T ), charge-conjugation (or particle–hole) symmetry (C), as well
as ‘sublattice’ (or ‘chiral’) symmetry (S). The labels T, C and S represent
the presence/absence of time-reversal, particle–hole and chiral symmetries,
respectively, as well as the types of these symmetries. The column entitled
‘Hamiltonian’ lists, for each of the ten symmetry classes, the symmetric space of
which the quantum mechanical time-evolution operator exp(itH) is an element.
The column ‘Cartan label’ is the name given to the corresponding symmetric
space listed in the column ‘Hamiltonian’ in Élie Cartan’s classification scheme
(dating back to the year 1926). The last column entitled ‘G/H (ferm. NLσM)’
lists the (compact sectors of the) target space of the NLσM describing Anderson
localization physics at long wavelength in this given symmetry class.
Cartan label T C S Hamiltonian G/H (ferm. NLσM)

A (unitary) 0 0 0 U(N ) U(2n)/U(n) × U(n)

AI (orthogonal) +1 0 0 U(N )/O(N ) Sp(2n)/Sp(n) × Sp(n)

AII (symplectic) −1 0 0 U(2N )/Sp(2N ) O(2n)/O(n) × O(n)

AIII (ch. unit.) 0 0 1 U(N + M)/U(N ) × U(M) U(n)

BDI (ch. orth.) +1 +1 1 O(N + M)/O(N ) × O(M) U(2n)/Sp(2n)

CII (ch. sympl.) −1 −1 1 Sp(N + M)/Sp(N ) × Sp(M) U(2n)/O(2n)

D (BdG) 0 +1 0 SO(2N ) O(2n)/U(n)

C (BdG) 0 −1 0 Sp(2N ) Sp(2n)/U(n)

DIII (BdG) −1 +1 1 SO(2N )/U(N ) O(2n)

CI (BdG) +1 −1 1 Sp(2N )/U(N ) Sp(2n)

The only case when the behavior under the combined transformation S = T · C is not determined
by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 × 3 − 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N × N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N × N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
generic Hermitian matrix and the time-evolution operator is a generic unitary matrix, so that
exp(itH) is an element of the unitary group U(N ) of unitary N × N matrices. By imposing
time-reversal symmetry (for a system that has, e.g., no other degree of freedom such as, e.g.,
spin), there exists a basis in which H is represented by a real symmetric N × N matrix. This,
in turn, can be expressed as saying that the time-evolution operator is an element of the coset

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

From
: R

yu, S
chnyder, Furusaki, Ludw
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3. Chiral (sublattice)

2. Particle-hole

Symmetries:

1. Time-reversal

IQHE

spin-orbit coupling coupling: modern top. ins.

Su-Schrieffer-Heeger solitons

p-wave spin-polarized superconductors

s-wave superconductors

3He, phase B
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by the behavior under T and C is the case where T = 0 and C = 0. In this case, either S = 0
or S = 1 is possible. This then yields (3 × 3 − 1) + 2 = 10 possible types of behavior of the
Hamiltonian.

The list of ten possible types of behavior of the first quantized Hamiltonian under T , C
and S is given in table 1. These are the ten generic symmetry classes (the ‘tenfold way’),
which are the framework within which the classification scheme of topological insulators
(superconductors) is formulated.

Let us first point out a very general structure seen in table 1. This is listed in the column
entitled ‘Hamiltonian’. When the first quantized Hamiltonian H is ‘regularized’ (or ‘put on’)
a finite lattice, it becomes an N × N matrix (as discussed above). The entries in the column
‘Hamiltonian’ specify the type of N × N matrix that the quantum mechanical time-evolution
operator exp(itH) is. For example, for systems that have no time-reversal or charge-conjugation
symmetry properties at all, i.e. for which T = 0, C = 0, S = 0, which are listed in the first row
of the table, there are no constraints on the Hamiltonian except for Hermiticity. Thus, H is a
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Classification table of topological 
insulators and superconductors
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Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation

symmetries) are imposed on it; the symmetry classes are ordered in such a way

that a periodic pattern in dimensionality becomes visible [27]. (See also the

discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that

the topologically distinct phases within a given symmetry class of topological

insulators (superconductors) are characterized by an integer invariant (Z) or a

Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no

topological insulator (superconductor), i.e. when all quantum ground states are

topologically equivalent to the trivial state.

d

Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .

D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .

AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .

CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .

CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

IQHE

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation
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insulators (superconductors) are characterized by an integer invariant (Z) or a

Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
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d
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dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

IQHE
Su, 

Schrieffer,
Heeger

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation
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Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no
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topologically equivalent to the trivial state.

d

Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .
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CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .
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dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

IQHE
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Schrieffer,
Heeger

2D p-wave 
supercond

uctor

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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real cases, depending on whether the Hamiltonian is complex or whether one
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CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .

CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

IQHE
Su, 

Schrieffer,
Heeger

2D p-wave 
supercond

uctor

3He, phase B

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010
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Classification table of topological 
insulators and superconductors

12

11

Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation

symmetries) are imposed on it; the symmetry classes are ordered in such a way

that a periodic pattern in dimensionality becomes visible [27]. (See also the

discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that

the topologically distinct phases within a given symmetry class of topological

insulators (superconductors) are characterized by an integer invariant (Z) or a

Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no

topological insulator (superconductor), i.e. when all quantum ground states are

topologically equivalent to the trivial state.

d

Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .

D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .

AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .

CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .

CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

IQHE
Su, 

Schrieffer,
Heeger

2D p-wave 
supercond

uctor

3He, phase B

space dimensionality

symmetry
classes Kitaev, 2009;

Ludwig, Ryu, Schnyder, Furusaki, 2009.

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

New Kane-Mele topological insulators

Thursday, January 6, 2011



Chiral symmetry 13
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Chiral symmetry 13

Often realized as hopping on a bipartite lattice
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Chiral symmetry 13

Often realized as hopping on a bipartite lattice

Properties of chiral systems

All levels come in pairs
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Chiral symmetry 13

Often realized as hopping on a bipartite lattice

{ right zero modes
left zero modes

Properties of chiral systems

All levels come in pairs
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Chiral symmetry 13

Often realized as hopping on a bipartite lattice

{ right zero modes
left zero modes

Properties of chiral systems

All levels come in pairs

#R-#L is a topological invariant (index theorem)
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Chiral vs nonchiral systems 14

Non-chiral systems

can be characterized by 
an integer topological 

invariant 
in even spacial 

dimensions only

Chiral systems

can be characterized by 
an integer topological 

invariant 
in odd spacial 

dimensions only
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Chiral vs nonchiral systems 15

11

Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation

symmetries) are imposed on it; the symmetry classes are ordered in such a way

that a periodic pattern in dimensionality becomes visible [27]. (See also the

discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that

the topologically distinct phases within a given symmetry class of topological

insulators (superconductors) are characterized by an integer invariant (Z) or a

Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no

topological insulator (superconductor), i.e. when all quantum ground states are

topologically equivalent to the trivial state.

d

Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .

D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .

AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .

CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .

CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

Chiral Nonchiral
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Topological invariants
via 

single particle Green’s functions
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Topological invariants for nonchiral insulators 17

Thursday, January 6, 2011



Topological invariants for nonchiral insulators 17

space-time space

Thursday, January 6, 2011



Topological invariants for nonchiral insulators 17

space-time space
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Topological invariants for nonchiral insulators 17

space-time space

Translational invariance
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Topological invariants for nonchiral insulators 17

space-time space

Translational invariance

map

{

D-dim space-time
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Topological invariants for nonchiral insulators 17

space-time space

Translational invariance

map

{

D-dim space-time

Notes: 
1. d must be even. If d=2 this coincides with the TKNN invariant
Niu, Thouless, Wu (1985)
2. Subsequently used by Volovik in a variety of contexts (80’s and 90’s)
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The meaning of the invariant at d=0, D=1 18

Some parameter

As long as the system remains gapful, N1 is an invariant
Thursday, January 6, 2011



Topological invariants for chiral insulators 19

space-time space

VG, 2010
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Topological invariants for chiral insulators 19

space-time space

Translational invariance

VG, 2010
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Topological invariants for chiral insulators 19

space-time space

Translational invariance

Skyrmion number
pi

c.
 b

y 
N

. C
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pe
r

VG, 2010
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Topological invariants for chiral insulators 19

space-time space

Translational invariance

Skyrmion number
pi

c.
 b

y 
N

. C
oo

pe
r

VG, 2010
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The meaning of the invariant at D=0 20

{ right zero modes
left zero modes

Properties of chiral systems

All levels come in pairs

#R-#L is a topological invariant (index theorem)

I0 = trQ = trΣ = #R −#L
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Simplest d=1 chiral topological insulator 21

t1

t∗1

t2

t∗2

t1

t∗1

Ĥ =
�

x even

�
t1â

†
x+1âx + t2 â

†
x+2âx+1

�
+ h.c.

Su, Schrieffer, Heeger (1978)
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Simplest d=1 chiral topological insulator 21

t1

t∗1

t2

t∗2

t1

t∗1

Ĥ =
�

x even

�
t1â

†
x+1âx + t2 â

†
x+2âx+1

�
+ h.c.

t1 + t2e
ik

t1 < t2

I2 ∼
� π

−π

dk

2πi
∂k ln

�
t1 + t2e

ik
�

I2 = 1

Su, Schrieffer, Heeger (1978)
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Simplest d=1 chiral topological insulator 21

t1

t∗1

t2

t∗2

t1

t∗1

Ĥ =
�

x even

�
t1â

†
x+1âx + t2 â

†
x+2âx+1

�
+ h.c.

t1 + t2e
ik

I2 ∼
� π

−π

dk

2πi
∂k ln

�
t1 + t2e

ik
�

I2 = 0
t1 > t2

Su, Schrieffer, Heeger (1978)
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Simplest d=1 chiral topological insulator 21

t1

t∗1

t2

t∗2

t1

t∗1

Ĥ =
�

x even

�
t1â

†
x+1âx + t2 â

†
x+2âx+1

�
+ h.c.

t1 + t2e
ik

I2 ∼
� π

−π

dk

2πi
∂k ln

�
t1 + t2e

ik
�

I2 = 0
t1 > t2

Zero mode (edge state) satisfy

If x>0, exist only if t1<t2. 

t1ψx + t2ψx+2 = 0

ψx =
�
− t1

t2

� x
2

Su, Schrieffer, Heeger (1978)
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Topological invariants
and 

the edge states
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d=2; Classes A, D, C 23

G. Volovik, 1980s

11

Table 3. Classification of topological insulators and superconductors as a

function of spatial dimension d and symmetry class, indicated by the ‘Cartan

label’ (first column). The definition of the ten generic symmetry classes of single

particle Hamiltonians (due to Altland and Zirnbauer [29, 30]) is given in table 1.

The symmetry classes are grouped into two separate lists, the complex and

real cases, depending on whether the Hamiltonian is complex or whether one

(or more) reality conditions (arising from time-reversal or charge-conjugation

symmetries) are imposed on it; the symmetry classes are ordered in such a way

that a periodic pattern in dimensionality becomes visible [27]. (See also the

discussion in subsection 1.1 and table 2.) The symbols Z and Z2 indicate that

the topologically distinct phases within a given symmetry class of topological

insulators (superconductors) are characterized by an integer invariant (Z) or a

Z2 quantity, respectively. The symbol ‘0’ denotes the case when there exists no

topological insulator (superconductor), i.e. when all quantum ground states are

topologically equivalent to the trivial state.

d

Cartan 0 1 2 3 4 5 6 7 8 9 10 11 . . .

Complex case:

A Z 0 Z 0 Z 0 Z 0 Z 0 Z 0 . . .

AIII 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z . . .

Real case:

AI Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 . . .

BDI Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 0 . . .

D Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z 0 . . .

DIII 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 Z . . .

AII 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 Z2 . . .

CII 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 Z2 . . .

C 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z 0 . . .

CI 0 0 0 2Z 0 Z2 Z2 Z 0 0 0 2Z . . .

dimensions if and only if the target space of the NLσM on the d̄-dimensional boundary allows

for either (i) a Z2 topological term, which is the case when πd̄(G/H) = πd−1(G/H) = Z2, or

(ii) a WZW term, which is the case when πd(G/H) = πd̄+1(G/H) = Z. By using this rule in

conjunction with table 2 of homotopy groups, we arrive with the help of table 1 at table 3 of

topological insulators and superconductors
24

.

A look at table 3 reveals that in each spatial dimension there exist five distinct classes of

topological insulators (superconductors), three of which are characterized by an integral (Z)

topological number, while the remaining two possess a binary (Z2) topological quantity
25

.

24
To be explicit, one has to move all the entries Z in table 2 into the locations indicated by the arrows, and replace

the column label d̄ by d = d̄ + 1. The result is table 3.

25
Note that while d = 0, 1, 2, 3-dimensional systems are of direct physical relevance, higher-dimensional

topological states might be of interest indirectly, because, for example, some of the additional components of

momentum in a higher-dimensional space may be interpreted as adiabatic parameters (external parameters on

which the Hamiltonian depends and which can be changed adiabatically, traversing closed paths in parameter

space—sometimes referred to as adiabatic ‘pumping processes’).

New Journal of Physics 12 (2010) 065010 (http://www.njp.org/)

Chiral Nonchiral

IQHE

singlet s.c.

3He B
p-wave s.c.
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d=2; Classes A, D, C 23

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 23

Green’s function

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 23

Green’s function

Inverse green’s function

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 23

Green’s function

Inverse green’s function

Construct the simplest topological invariant

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 23

Green’s function

Inverse green’s function

Construct the simplest topological invariant

G. Volovik, 1980s

zero mode

Domain wall

NL NR
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d=2; Classes A, D, C 24

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 24

Wigner transformed Green’s function

G. Volovik, 1980s

Domain wall

NL NR
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d=2; Classes A, D, C 24

Wigner transformed Green’s function

G. Volovik, 1980s

Gradient (Moyal product) expansion Domain wall

NL NR
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d=2; Classes A, D, C 24

Wigner transformed Green’s function

G. Volovik, 1980s

Gradient (Moyal product) expansion Domain wall

NL NR
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d=2; Classes A, D, C 24

Wigner transformed Green’s function

G. Volovik, 1980s

Gradient (Moyal product) expansion

4-dim vector,
space ω, px, ps, s

Domain wall

NL NR
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d=2; Classes A, D, C 24

Wigner transformed Green’s function

G. Volovik, 1980s

Gradient (Moyal product) expansion

4-dim vector,
space ω, px, ps, s

Domain wall

NL NR

#(zero modes) = NR −NL
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d=2; Classes A, D, C 24

G. Volovik, 1980s

Domain wall

NL NR

#(zero modes) = NR −NL
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d=1, classes AIII, BDI, CII 25

s
IRIL

Q(ω,ps, s) = G−1(ω,ps, s) Σ G(ω,ps, s)

I(s) =
1

16πi
tr

� ∞

0
dω

� ∞

−∞
dpsQ (∂ωQ∂psQ− ∂psQ∂ωQ)

I(L)− I(−L) =
1

16πi
lim
ω→0

tr
�

dxdk Q (∂xQ∂psQ− ∂psQ∂xQ)
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d=1, classes AIII, BDI, CII 25

s
IRIL

Q(ω,ps, s) = G−1(ω,ps, s) Σ G(ω,ps, s)

I(s) =
1

16πi
tr

� ∞

0
dω

� ∞

−∞
dpsQ (∂ωQ∂psQ− ∂psQ∂ωQ)

#(zero modes) = lim
ω→0

ω tr ΣK∂ωG

I(L)− I(−L) =
1

16πi
lim
ω→0

tr
�

dxdk Q (∂xQ∂psQ− ∂psQ∂xQ)
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d=1, classes AIII, BDI, CII 25

s
IRIL

Q(ω,ps, s) = G−1(ω,ps, s) Σ G(ω,ps, s)

I(s) =
1

16πi
tr

� ∞

0
dω

� ∞

−∞
dpsQ (∂ωQ∂psQ− ∂psQ∂ωQ)

#(zero modes) = lim
ω→0

ω tr ΣK∂ωG

I(L)− I(−L) =
1

16πi
lim
ω→0

tr
�

dxdk Q (∂xQ∂psQ− ∂psQ∂xQ)

gradient expansion

# (zero modes) = I(L)− I(−L)
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Other classes of topological insulators 26

1. All nonchiral classes in even d higher than 2: 
A.W.W. Ludwig, A. Essin, VG, 2010 (in preparation)

2. Chiral classes in odd d higher than 1. 
A. Essin, VG, 2010 (in preparation)

3. Z2 topological invariants,
A. Essin, VG, 2010 (in preparation)

Relationship between the edge states and the Green’s 
function topological invariant
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27

Topological invariants
in the presence of interactions
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The invariant at d=0, D=1 with interactions 28

VG, 2010

No interactions

VG, 2010
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The invariant at d=0, D=1 with interactions 28

In the presence of interactions

VG, 2010

No interactions

VG, 2010
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The invariant at d=0, D=1 with interactions 28

In the presence of interactions

poles of the Green’s function

zeroes of the Green’s function

VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)

No interactions

VG, 2010

No interactions

Matrix elements
M

atrix elem
ents

1
iω − �n

G = D
f

Dh
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The invariant at d=0, D=1 with interactions 28

In the presence of interactions

poles of the Green’s function

zeroes of the Green’s function

VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)

No interactions

VG, 2010
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)

G. Volovik, 2006
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

Poles and zeroes can emerge 
and disappear in pairs

VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)

G. Volovik, 2006
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

Poles and zeroes can emerge 
and disappear in pairs

parameter

energy

pole

VG, 2010

detG =
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�Dh

n=1 (iω − �n)

G. Volovik, 2006
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

Poles and zeroes can emerge 
and disappear in pairs
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The invariant at d=0, D=1 with interactions 29
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The invariant at d=0, D=1 with interactions 29

Switching on 
interactions

Poles and zeroes can emerge 
and disappear in pairs

parameter parameterparameter

energy

pole

parameter
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VG, 2010

detG =
�Dh−Df

n=1 (iω − rn)
�Dh

n=1 (iω − �n)

G. Volovik, 2006
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Fidkowski-Kitaev model (2010) 30

t1

t∗1

t2

t∗2

t1

t∗1

g

t1 t2

quartic
interactions

t1 = t2
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Fidkowski-Kitaev model (2010) 30

t1
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t2
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t1 t2
Phase transition

quartic
interactions

t1 = t2
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Fidkowski-Kitaev model (2010) 30

t1

t∗1

t2

t∗2

t1

t∗1

g

t1 t2
Phase transition

No phase transition

quartic
interactions

t1 = t2
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Fidkowski-Kitaev model (2010) 30

t1

t∗1

t2

t∗2

t1

t∗1

g

t1 t2
Phase transition

No phase transition
A. Essin, VG:

Green’s function has 
a zero at zero energy

quartic
interactions

t1 = t2
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Conclusions and open questions 31

1. Single particle Green’s functions - a powerful tool 
to understand topological insulators without or even 
with interactions.

2. Zeroes of the Green’s functions. What are they, 
when do they appear, how can they be detected, 
why are they important for interacting topological 
insulators?
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The end

32
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