Single particle Green’s functions

 and
interacting topological insulators

Victor Gurarie

Nordita, Jan 2011

Topological insulators are free fermion systems characterized by topological invariants.

In this talk

1. All the invariants can be constructed out of single particle Green's functions of these insulators
2. It is generally believed that at the boundaries of topological insulators there must be zero energy "edge states". The Green's functions provide a very simple proof of this statement.
3. In the presence of interactions, edge states can disappear and get replaced by the "zeroes" of the Green's functions.

VG, arxiv:1011.2273
A. Essin, VG, work in progress

Discussions with A.W.W. Ludwig

Noninteracting topological insulators

Topological insulators

Topological insulators are free fermion systems

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j} \quad \begin{gathered}
\text { and annihilation } \\
\text { operators }
\end{gathered}
$$

which happen to be band insulators of a special type

Band insulators

x
$\hat{H}=t \sum_{x y}\left[\hat{a}_{x+1, y}^{\dagger} \hat{a}_{x, y}+\hat{a}_{x, y+1}^{\dagger} \hat{a}_{x, y}\right]+$ h. c.
$E\left(k_{x}, k_{y}\right)=-2 t \cos \left(k_{x}\right)-2 t \cos \left(k_{y}\right)$

Spectrum is essentially the same regardless of whether the boundary conditions in the y-direction periodic or hard wall.

Integer quantum Hall effect as a topogical insulator

Periodic boundary conditions in the y-direction

Same tight binding model but with
$2 \pi / 3$ magnetic flux through each plaquette

Integer quantum Hall effect as a topogical insulator

Hard wall boundary conditions in the y-direction

Same tight binding model but with
$2 \pi / 3$ magnetic flux through each plaquette

Integer quantum Hall effect as a topogical insulator

Hard wall boundary conditions in the y-direction

Same tight binding model but with
$2 \pi / 3$ magnetic flux through each plaquette

Laughlin's argument

Outward current deposits charge somewhere.
There must be zero energy edge states to absorb the charge

TKNN invariant

Thouless, Kohmoto, Nightingale, Den Nijs, 1982

$$
\sigma_{x y}=\underbrace{i e^{2}} 2 \underbrace{2 \pi h} d^{2} k \int d^{2} r\left(\frac{\partial u^{*}}{\partial k_{x}} \partial u k_{y}-\frac{\partial u^{*}}{\partial k_{y}} \frac{\partial u}{\partial k_{x}}\right)
$$

This is a topological invariant (always integer times 2пi)

Band structure topological invariant \rightarrow
quantized Hall conductance \rightarrow
Laughlin argument \rightarrow
edge states

Other topological insulators?

Other topological insulators?

1. $2 \mathrm{D} p_{x}+i p_{y}$ superconductor ("insulator" since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, 1991.
Read and Green, 2000.

Other topological insulators?

1. $2 \mathrm{D} p_{x}+i p_{y}$ superconductor ("insulator" since its Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, 1991.
Read and Green, 2000.
2. 4D quantum Hall effect.

Zhang, Hu, 2001

Other topological insulators?

1. $2 \mathrm{D} p_{x}+i p_{y}$ superconductor ("insulator" since its

Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, 1991.
Read and Green, 2000.
2. 4D quantum Hall effect.

Zhang, Hu, 2001
3. Solitons in 1D chains.

Su, Schrieffer, Heeger (1978)

Other topological insulators?

1. $2 \mathrm{D} p_{x}+i p_{y}$ superconductor ("insulator" since its

Bogoliubov quasiparticles have a gap in the spectrum). Kopnin, Salomaa, 1991.
Read and Green, 2000.
2. 4D quantum Hall effect.

Zhang, Hu, 2001
3. Solitons in 1D chains.

Su, Schrieffer, Heeger (1978)
4. Modern 2D and 3D topological insulators. Kane and Mele (2005); Zhang, Hughes, Bernevig, (2006); Moore, Balents, (2007); Fu, Kane, Mele (2007)

Altland-Zirnbauer's tenfold way

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Altland-Zirnbauer's tenfold way Symmetries:
 $$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

1. Time-reversal $U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=$ either +1 or -1

Altland-Zirnbauer's tenfold way Symmetries:
 $$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

1. Time-reversal $U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=$ either +1 or -1
2. Particle-hole $U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \quad U_{C}^{*} U_{C}=$ either +1 or -1

Altland-Zirnbauer's tenfold way Symmetries:
 $$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

1. Time-reversal $U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=$ either +1 or -1
2. Particle-hole $U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \quad U_{C}^{*} U_{C}=$ either +1 or -1
3. Chiral (sublattice) $\Sigma^{\dagger} \mathcal{H} \Sigma=-\mathcal{H}$

Altland-Zirnbauer's tenfold way Symmetries:

1. Time-reversal $U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=$ either +1 or -1
2. Particle-hole $U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \quad U_{C}^{*} U_{C}=$ either +1 or -1
3. Chiral (sublattice) $\Sigma^{\dagger} \mathcal{H} \Sigma=-\mathcal{H}$

Cartan label	T	C	S
A (unitary)	0	0	0
AI (orthogonal)	+1	0	0
AII (symplectic)	-1	0	0
AIII (ch. unit.)	0	0	1
BDI (ch. orth.)	+1	+1	1
I			
CII (ch. sympl.)	-1	-1	1
D			
D (BdG)	0	+1	0
C (BGG)	0	-1	0
DIII (BdG)	-1	+1	1
CI (BdG)	+1	-1	1

Altland-Zirnbauer's tenfold way Symmetries:

1. Time-reversal $U_{T}^{\dagger} \mathcal{H}^{*} U_{T}=\mathcal{H} \quad U_{T}^{*} U_{T}=$ either +1 or -1
2. Particle-hole $U_{C}^{\dagger} \mathcal{H}^{*} U_{C}=-\mathcal{H} \quad U_{C}^{*} U_{C}=$ either +1 or -1
3. Chiral (sublattice) $\Sigma^{\dagger} \mathcal{H} \Sigma=-\mathcal{H}$

Cartan label	T	C	S

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

	d space dimensionality												
	0	1	2	3	4	5	6	7	8	9	10	11	
Cartan Complex case: IQHE A	\mathbb{Z} - 0 Z			$0 \quad \mathbb{Z}$		0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
QHE	0	\mathbb{Z}											
Su, Schrieffer Real ces.													
Heeger AT	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	
BDI	$\xrightarrow{4}$	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
AII	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\ldots
CII	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	
C	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	
CI	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	
symmetry classes							udw	g, Ry	$\begin{aligned} & \text { Kit } \\ & \text { u, Sc } \end{aligned}$	$\begin{aligned} & \text { tev, } \\ & \text { inyd } \end{aligned}$	$\begin{aligned} & \text { o9; } \\ & \text { r, Fu } \end{aligned}$	sak	2009

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Classification table of topological insulators and superconductors

Table from Ryu, Schnyder, Furusaki, Ludwig, 2010

Chiral symmetry

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma
$$

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Chiral symmetry

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma
$$

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Often realized as hopping on a bipartite lattice

Chiral symmetry

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma \quad \hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Often realized as hopping on a bipartite lattice

Properties of chiral systems
$\mathcal{H} \psi=E \psi \rightarrow \mathcal{H} \Sigma \psi=-E \Sigma \psi$ All levels come in pairs $\pm E$

Chiral symmetry

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma
$$

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Often realized as hopping on a bipartite lattice

Properties of chiral systems
$\mathcal{H} \psi=E \psi \rightarrow \mathcal{H} \Sigma \psi=-E \Sigma \psi$ All levels come in pairs $\pm E$

$$
\text { If } \mathcal{H} \psi=0 \text { then } \begin{cases}\Sigma \psi=\psi & \text { right zero modes } \\ \Sigma \psi=-\psi & \text { left zero modes }\end{cases}
$$

Chiral symmetry

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma
$$

$$
\hat{H}=\sum_{i j} \mathcal{H}_{i j} \hat{a}_{i}^{\dagger} \hat{a}_{j}
$$

Often realized as hopping on a bipartite lattice

Properties of chiral systems
$\mathcal{H} \psi=E \psi \rightarrow \mathcal{H} \Sigma \psi=-E \Sigma \psi$ All levels come in pairs $\pm E$
If $\mathcal{H} \psi=0$ then $\begin{cases}\Sigma \psi=\psi & \text { right zero modes } \\ \Sigma \psi=-\psi & \text { left zero modes }\end{cases}$
$\#_{R^{-}} \#_{L}$ is a topological invariant (index theorem)

Chiral vs nonchiral systems

Non-chiral systems

Chiral systems

can be characterized by an integer topological invariant in odd spacial dimensions only

Chiral vs nonchiral systems

Cartan	d											
	0	1	2	3	4	5	6	7	8	9	10	1

Complex case:

A	\mathbb{Z}	0	\longleftarrow										
\rightarrow AIII	0	\mathbb{Z}											
Real case: AI	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	
$\rightarrow \mathrm{BDI}$	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	
D	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	
\rightarrow DIII	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	
AII	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	
$\rightarrow \mathrm{CII}$	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	
C	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	
$\rightarrow \mathrm{CI}$	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	

Nonchiral

Topological invariants

 via single particle Green's functionsTopological invariants for nonchiral insulators

Topological invariants for nonchiral insulators
d even; $D=d+1$ odd
space-time \uparrow space

Topological invariants for nonchiral insulators
d even; $D=d+1$ odd
space-time \uparrow space

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Topological invariants for nonchiral insulators
d even; $D=d+1$ odd
space-time $\xrightarrow[\sim]{~} \xrightarrow{d}$ space

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Translational invariance

$$
G_{i j}(\omega) \rightarrow G_{a b}(\omega, \mathbf{k})
$$

Topological invariants for nonchiral insulators
$\underset{\text { space-time }}{d \text { even; }} \underset{ }{D}=\underset{\text { space }}{d+1 \text { odd }}$

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Translational invariance

$$
G_{i j}(\omega) \rightarrow G_{a b}(\omega, \mathbf{k})
$$

$\operatorname{map} \underbrace{\omega, \mathbf{k}} \rightarrow G$
$\pi_{D}(G L(\mathcal{N}, \mathbb{C}))=\mathbb{Z}$
D-dim space-time

Topological invariants for nonchiral insulators

$\underset{\text { space-time }}{d \text { even; }} \underset{ }{D}=\underset{ }{d}+1$ odd space

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Translational invariance

$$
G_{i j}(\omega) \rightarrow G_{a b}(\omega, \mathbf{k})
$$

$\operatorname{map} \underbrace{\omega, \mathbf{k} \rightarrow G}$

$$
\pi_{D}(G L(\mathcal{N}, \mathbb{C}))=\mathbb{Z}
$$

D-dim space-time

$$
\begin{array}{r}
N_{D} \sim \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}} \epsilon_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}} \operatorname{tr} \int \frac{d \omega d^{d} k}{(2 \pi)^{D}}\left[G^{-1} \partial_{k_{\alpha_{1}}} G\right]\left[G^{-1} \partial_{k_{\alpha_{2}}} G\right] \ldots\left[G^{-1} \partial_{k_{\alpha_{D}}} G\right] \\
k_{0} \equiv \omega
\end{array}
$$

Notes:

1. d must be even. If $d=2$ this coincides with the TKNN invariant Niu, Thouless, Wu (1985)
2. Subsequently used by Volovik in a variety of contexts (80's and 90's)

The meaning of the invariant at $d=0, D=1$

$$
N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \ln \operatorname{det} G
$$

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1} \quad \operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}
$$

$$
N_{1}=\sum_{n} \operatorname{sign} \epsilon_{n}
$$

As long as the system remains gapful, N_{1} is an invariant

Topological invariants for chiral insulators
$\underset{\text { space-time }}{d \text { odd } ; ~} D=d+1$ even

$$
\mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma
$$

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

VG, 2010

Topological invariants for chiral insulators
d odd; $D=d+1$ even $\quad \mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma$
space-time $\boldsymbol{\sim} \boldsymbol{\imath}$ space

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Translational invariance

$$
G_{i j}(\omega) \rightarrow G_{a b}(\omega, \mathbf{k})
$$

$$
Q(\omega, \mathbf{k})=G^{-1}(\omega, \mathbf{k}) \Sigma G(\Omega, \mathbf{k}) \quad Q^{2}=1
$$

$I_{D} \sim \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}} \epsilon_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}} \operatorname{tr} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \int \frac{d^{d} k}{(2 \pi)^{d}} Q \partial_{k_{\alpha_{1}}} Q \partial_{k_{\alpha_{2}}} Q \ldots \partial_{k_{\alpha_{D}}} Q$

VG, 2010

Topological invariants for chiral insulators

$$
I_{2} \sim \int_{\rightarrow 2} d x d y \vec{n} \cdot \nabla_{\alpha} \vec{n} \times \nabla_{\beta} \vec{n}
$$

$$
\vec{n}^{2}=1 \quad \text { Skyrmion number }
$$

Topological invariants for chiral insulators

d odd; $D=d+1$ even $\quad \mathcal{H}=-\Sigma^{\dagger} \mathcal{H} \Sigma$
space-time $\boldsymbol{\imath} \boldsymbol{\imath}$ _ space

$$
G_{i j}(\omega)=\left[i \omega-\mathcal{H}_{i j}\right]^{-1}
$$

Translational invariance

$$
G_{i j}(\omega) \rightarrow G_{a b}(\omega, \mathbf{k})
$$

$$
Q(\omega, \mathbf{k})=G^{-1}(\omega, \mathbf{k}) \Sigma G(\Omega, \mathbf{k}) \quad Q^{2}=1
$$

$I_{D} \sim \sum_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{D}} \epsilon_{\alpha_{1}, \alpha_{2} \ldots, \alpha_{D}} \operatorname{tr} \int_{0}^{\infty} \frac{d \omega}{2 \pi} \int \frac{d^{d} k}{(2 \pi)^{d}} Q \partial_{k_{\alpha_{1}}} Q \partial_{k_{\alpha_{2}}} Q \ldots \partial_{k_{\alpha_{D}}} Q$

VG, 2010

$I_{2} \sim \int d x d y \vec{n} \cdot \nabla_{\alpha} \vec{n} \times \nabla_{\beta} \vec{n}$
$\vec{n}^{2}=1 \quad$ Skyrmion number

The meaning of the invariant at $D=0$

$$
I_{0}=\operatorname{tr} Q=\operatorname{tr} \Sigma=\#_{R}-\#_{L}
$$

Properties of chiral systems
$\mathcal{H} \psi=E \psi \rightarrow \mathcal{H} \Sigma \psi=-E \Sigma \psi$ All levels come in pairs $\pm E$

$$
\text { If } \mathcal{H} \psi=0 \text { then } \begin{cases}\Sigma \psi=\psi & \text { right zero modes } \\ \Sigma \psi=-\psi & \text { left zero modes }\end{cases}
$$

$\#_{R}-\#_{L}$ is a topological invariant (index theorem)

Simplest $d=1$ chiral topological insulator

$$
\hat{H}=\sum_{x \text { even }}\left[t_{1} \hat{a}_{x+1}^{\dagger} \hat{a}_{x}+t_{2} \hat{a}_{x+2}^{\dagger} \hat{a}_{x+1}\right]+h . c .
$$

Simplest $d=1$ chiral topological insulator

$$
\hat{H}=\sum_{x \text { even }}\left[t_{1} \hat{a}_{x+1}^{\dagger} \hat{a}_{x}+t_{2} \hat{a}_{x+2}^{\dagger} \hat{a}_{x+1}\right]+h . c .
$$

$$
I_{2} \sim \int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)
$$

$$
I_{2}=1
$$

$$
t_{1}<t_{2}
$$

Simplest $d=1$ chiral topological insulator

$$
\hat{H}=\sum_{x \text { even }}\left[t_{1} \hat{a}_{x+1}^{\dagger} \hat{a}_{x}+t_{2} \hat{a}_{x+2}^{\dagger} \hat{a}_{x+1}\right]+h . c .
$$

$$
I_{2} \sim \int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)
$$

$$
I_{2}=0
$$

$$
t_{1}>t_{2}
$$

Simplest $d=1$ chiral topological insulator

$$
\hat{H}=\sum_{x \text { even }}\left[t_{1} \hat{a}_{x+1}^{\dagger} \hat{a}_{x}+t_{2} \hat{a}_{x+2}^{\dagger} \hat{a}_{x+1}\right]+h . c .
$$

$$
I_{2} \sim \int_{-\pi}^{\pi} \frac{d k}{2 \pi i} \partial_{k} \ln \left(t_{1}+t_{2} e^{i k}\right)
$$

Zero mode (edge state) satisfy

$$
\begin{aligned}
& t_{1} \psi_{x}+t_{2} \psi_{x+2}=0 \\
& \psi_{x}=\left(-\frac{t_{1}}{t_{2}}\right)^{\frac{x}{2}} \text { If } x>0, \text { exist only if } t_{1}<t_{2}
\end{aligned}
$$

$$
I_{2}=0
$$

$$
t_{1}>t_{2}
$$

Topological invariants

 andthe edge states

d=2; Classes A, D, C

	d											
Cartan	0	1	2	3	4	5	6	7	8	9	10	11

Complex case:

A	IQHE	\mathbb{Z}	0										
\cdots													
AIII	0	\mathbb{Z}	\cdots										

Real case:

AI	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0
BDI	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
D p-wave s.c.	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0
$\mathbf{~ D I I I ~}{ }^{3} \mathrm{He} \mathrm{B}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}
AII	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}
$\mathbf{C I I}$	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}
C	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0	0	$2 \mathbb{Z}$	0
\mathbf{C}	CI	singlet s.c.	0	0	0	$2 \mathbb{Z}$	0	\mathbb{Z}_{2}	\mathbb{Z}_{2}	\mathbb{Z}	0	0
0	0	$2 \mathbb{Z}$										

d=2; Classes A, D, C

d=2; Classes A, D, C

Green's function $G\left(\omega ; p_{x} ; s_{1}, s_{2}\right)$

Construct the simplest topological invariant
$N_{1}\left(p_{x}\right)=\int \frac{d s_{1} d s_{2} d \omega}{\pi i} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) \partial_{\omega} G\left(\omega ; p_{x} ; s_{2}, s_{1}\right)=\left.\sum_{n} \operatorname{sign} \epsilon_{n}\right|_{p_{x}}$

d=2; Classes A, D, C

Green's function

$$
G\left(\omega ; p_{x} ; s_{1}, s_{2}\right)
$$

Inverse green's function

$$
\int d s_{2} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) G\left(\omega ; p_{x} ; s_{2}, s_{3}\right)=\delta\left(s_{1}-s_{3}\right)
$$

Domain wall

Construct the simplest topological invariant

$$
\begin{gathered}
N_{1}\left(p_{x}\right)=\int \frac{d s_{1} d s_{2} d \omega}{\pi i} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) \partial_{\omega} G\left(\omega ; p_{x} ; s_{2}, s_{1}\right)=\left.\sum_{n} \operatorname{sign} \epsilon_{n}\right|_{p_{x}} \\
\quad \# \text { (zero modes) }=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right] \xrightarrow[-\Lambda]{\text { zero mode }} \xrightarrow{-} p_{x}
\end{gathered}
$$

d=2; Classes A, D, C G. Volovik, 1980s

Domain wall

$$
\#(\text { zero modes })=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]
$$

$$
G\left(\omega ; p_{x} ; p_{s}, s\right)=\int d r e^{-i p_{s} r} G\left(\omega ; p_{x} ; s+\frac{r}{2}, s-\frac{r}{2}\right)
$$

Domain wall

$$
\#(\text { zero modes })=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]
$$

$d=2$; Classes A, D, C \quad G. Volovik, 1980s

$$
N_{L}
$$

$$
N_{R}
$$

$$
\begin{aligned}
& G\left(\omega ; p_{x} ; p_{s}, s\right)=\int d r e^{-i p_{s} r} G\left(\omega ; p_{x} ; s+\frac{r}{2}, s-\frac{r}{2}\right) \\
& G^{-1}\left(\omega ; p_{x} ; p_{s}, s\right) \equiv \frac{1}{G\left(\omega ; p_{x} ; p_{s}, s\right)} \quad \text { \#(zero modes) }=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]
\end{aligned}
$$

Gradient (Moyal product) expansion
Domain wall
$K\left(\omega ; p_{x} ; p_{s}, s\right)=G^{-1}+\frac{1}{2 i} G^{-1}\left(\partial_{s} G G^{-1} \partial_{p_{s}} G-\partial_{p_{s}} G G^{-1} \partial_{s} G\right) G^{-1}+\ldots$

$d=2$; Classes A, D, C \quad G. Volovik, 1980s

$$
\begin{aligned}
& G\left(\omega ; p_{x} ; p_{s}, s\right)=\int d r e^{-i p_{s} r} G\left(\omega ; p_{x} ; s+\frac{r}{2}, s-\frac{r}{2}\right) \\
& G^{-1}\left(\omega ; p_{x} ; p_{s}, s\right) \equiv \frac{1}{G(\omega \cdot n \cdot n \cdot s)} \quad \text { \#(zero modes) }=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]
\end{aligned}
$$

Gradient (Moyal product) expansion
Domain wall

$$
\begin{aligned}
& K\left(\omega ; p_{x} ; p_{s}, s\right)=G^{-1}+\frac{1}{2 i} G^{-1}\left(\partial_{s} G G^{-1} \partial_{p_{s}} G-\partial_{p_{s}} G G^{-1} \partial_{s} G\right) G^{-1}+\ldots \\
& N_{1}\left(p_{x}\right)=\int \frac{d s_{1} d s_{2} d \omega}{\pi i} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) \partial_{\omega} G\left(\omega ; p_{x} ; s_{2}, s_{1}\right)
\end{aligned}
$$

$\mathrm{d}=2$; Classes A, D, C

$$
G\left(\omega ; p_{x} ; p_{s}, s\right)=\int d r e^{-i p_{s} r} G\left(\omega ; p_{x} ; s+\frac{r}{2}, s-\frac{r}{2}\right)
$$

$G^{-1}\left(\omega ; p_{x} ; p_{s}, s\right) \equiv \frac{1}{G\left(\omega ; p_{x} ; p_{s}, s\right)}$

Gradient (Moyal product) expansion
$\#($ zero modes $)=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]$

$$
K\left(\omega ; p_{x} ; p_{s}, s\right)=G^{-1}+\frac{1}{2 i} \underline{G^{-1}\left(\partial_{s} G G^{-1} \partial_{p_{s}} G-\partial_{p_{s}} G G^{-1} \partial_{s} G\right) G^{-1}}+\ldots
$$

$$
N_{1}\left(p_{x}\right)=\int \frac{d s_{1} d s_{2} d \omega}{\pi i} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) \partial_{\omega} G\left(\omega ; p_{x} ; s_{2}, s_{1}\right)
$$

$$
n_{\alpha}=\sum_{\beta, \gamma, \delta} \epsilon_{\alpha \beta \gamma \delta} G^{-1} \partial_{\beta} G G^{-1} \partial_{\gamma} G G^{-1} \partial_{\delta} G \quad \begin{gathered}
\text { 4-dim vector, } \\
\text { space } \omega, p_{x}, p_{s}, s
\end{gathered}
$$

$$
\#(\text { zero modes })=\int d S_{\alpha} n_{\alpha}
$$

$\mathrm{d}=2$; Classes A, D, C

$$
G\left(\omega ; p_{x} ; p_{s}, s\right)=\int d r e^{-i p_{s} r} G\left(\omega ; p_{x} ; s+\frac{r}{2}, s-\frac{r}{2}\right)
$$

$G^{-1}\left(\omega ; p_{x} ; p_{s}, s\right) \equiv \frac{1}{G\left(\omega ; p_{x} ; p_{s}, s\right)}$

Gradient (Moyal product) expansion
$\#($ zero modes $)=\frac{1}{2}\left[N_{1}(\Lambda)-N_{1}(-\Lambda)\right]$

$$
K\left(\omega ; p_{x} ; p_{s}, s\right)=G^{-1}+\frac{1}{2 i} \underline{G^{-1}\left(\partial_{s} G G^{-1} \partial_{p_{s}} G-\partial_{p_{s}} G G^{-1} \partial_{s} G\right) G^{-1}}+\ldots
$$

$$
N_{1}\left(p_{x}\right)=\int \frac{d s_{1} d s_{2} d \omega}{\pi i} K\left(\omega ; p_{x} ; s_{1}, s_{2}\right) \partial_{\omega} G\left(\omega ; p_{x} ; s_{2}, s_{1}\right)
$$

$$
n_{\alpha}=\sum_{\beta, \gamma, \delta} \epsilon_{\alpha \beta \gamma \delta} G^{-1} \partial_{\beta} G G^{-1} \partial_{\gamma} G G^{-1} \partial_{\delta} G \quad \begin{gathered}
\text { 4-dim vector, } \\
\text { space } \omega, p_{x}, p_{s, s}
\end{gathered}
$$

$$
\#(\text { zero modes })=\int d S_{\alpha} n_{\alpha} \quad \#(\text { zero modes })=N_{R}-N_{L}
$$

d=2; Classes A, D, C G. Volovik, 1980s

Domain wall

$$
\#(\text { zero modes })=N_{R}-N_{L}
$$

d=1, classes Alll, BDI, CII

$$
Q\left(\omega, \mathbf{p}_{s}, s\right)=G^{-1}\left(\omega, \mathbf{p}_{s}, s\right) \Sigma G\left(\omega, \mathbf{p}_{s}, s\right)
$$

$$
I(s)=\frac{1}{16 \pi i} \operatorname{tr} \int_{0}^{\infty} d \omega \int_{-\infty}^{\infty} d p_{s} Q\left(\partial_{\omega} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{\omega} Q\right)
$$

$$
I(L)-I(-L)=\frac{1}{16 \pi i} \lim _{\omega \rightarrow 0} \operatorname{tr} \int d x d k Q\left(\partial_{x} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{x} Q\right)
$$

d=1, classes Alll, BDI, CII

$$
Q\left(\omega, \mathbf{p}_{s}, s\right)=G^{-1}\left(\omega, \mathbf{p}_{s}, s\right) \Sigma G\left(\omega, \mathbf{p}_{s}, s\right)
$$

$$
I(s)=\frac{1}{16 \pi i} \operatorname{tr} \int_{0}^{\infty} d \omega \int_{-\infty}^{\infty} d p_{s} Q\left(\partial_{\omega} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{\omega} Q\right)
$$

$I(L)-I(-L)=\frac{1}{16 \pi i} \lim _{\omega \rightarrow 0} \operatorname{tr} \int d x d k Q\left(\partial_{x} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{x} Q\right)$
$\#($ zero modes $)=\lim _{\omega \rightarrow 0} \omega \operatorname{tr} \Sigma K \partial_{\omega} G$

d=1, classes Alll, BDI, CII

$$
\begin{aligned}
& Q\left(\omega, \mathbf{p}_{s}, s\right)=G^{-1}\left(\omega, \mathbf{p}_{s}, s\right) \Sigma G\left(\omega, \mathbf{p}_{s}, s\right) \\
& I(s)=\frac{1}{16 \pi i} \operatorname{tr} \int_{0}^{\infty} d \omega \int_{-\infty}^{\infty} d p_{s} Q\left(\partial_{\omega} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{\omega} Q\right) \\
& I(L)-I(-L)=\frac{1}{16 \pi i} \lim _{\omega \rightarrow 0} \operatorname{tr} \int d x d k Q\left(\partial_{x} Q \partial_{p_{s}} Q-\partial_{p_{s}} Q \partial_{x} Q\right)
\end{aligned}
$$

$\#($ zero modes $)=\lim _{\omega \rightarrow 0} \omega \operatorname{tr} \Sigma K \partial_{\omega} G$
gradient expansion
$\#($ zero modes $)=I(L)-I(-L)$

Other classes of topological insulators

Relationship between the edge states and the Green's function topological invariant

1. All nonchiral classes in even d higher than 2 :
A.W.W. Ludwig, A. Essin, VG, 2010 (in preparation)
2. Chiral classes in odd d higher than 1.
A. Essin, VG, 2010 (in preparation)
3. Z_{2} topological invariants, A. Essin, VG, 2010 (in preparation)

Topological invariants

 in the presence of interactionsThe invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
No interactions

$$
N_{1}=\sum_{n} \operatorname{sign} \epsilon_{n}
$$

$$
\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}
$$

The invariant at $d=0, D=1$ with interactions

VG, 2010

$$
N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G
$$

No interactions

$$
N_{1}=\sum_{n} \operatorname{sign} \epsilon_{n}
$$

$$
\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}
$$

In the presence of interactions

$$
G_{i j}(\omega)=\sum_{n, \epsilon_{n}>0} \frac{\langle 0| \hat{a}_{i}|n\rangle\langle n| \hat{a}_{j}^{\dagger}|0\rangle}{i \omega-\epsilon_{n}}+\sum_{n, \epsilon_{n}<0} \frac{\langle 0| \hat{a}_{j}^{\dagger}|n\rangle\langle n| \hat{a}_{i}|0\rangle}{i \omega-\epsilon_{n}}
$$

The invariant at $d=0, D=1$ with interactions
$G=\stackrel{\downarrow}{D_{h}}$

In the presence of interactions

$$
G_{i j}(\omega)=\sum_{n, \epsilon_{n}>0} \frac{\langle 0| \hat{a}_{i}|n\rangle\langle n| \hat{a}_{j}^{\dagger}|0\rangle}{i \omega-\epsilon_{n}}+\sum_{n, \epsilon_{n}<0} \frac{\langle 0| \hat{a}_{j}^{\dagger}|n\rangle\langle n| \hat{a}_{i}|0\rangle}{i \omega-\epsilon_{n}}
$$

$\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right) \longleftarrow \text { zeroes of the Green's function }}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right) \longleftarrow \text { poles of the Green's function }}$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
No interactions
$N_{1}=\sum_{n} \operatorname{sign} \epsilon_{n}$

$$
\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}
$$

In the presence of interactions
$G_{i j}(\omega)=\sum_{n, \epsilon_{n}>0} \frac{\langle 0| \hat{a}_{i}|n\rangle\langle n| \hat{a}_{j}^{\dagger}|0\rangle}{i \omega-\epsilon_{n}}+\sum_{n, \epsilon_{n}<0} \frac{\langle 0| \hat{a}_{j}^{\dagger}|n\rangle\langle n| \hat{a}_{i}|0\rangle}{i \omega-\epsilon_{n}}$
$\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right) \longleftarrow \text { zeroes of the Green's function }}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right) \longleftarrow \text { poles of the Green's function }}$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$

$$
\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}
$$

Switching on interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$

$$
\begin{aligned}
& \operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}} \\
& \text { witching on } \\
& \text { teractions }
\end{aligned}
$$

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$
G. Volovik, 2006

Poles and zeroes can emerge and disappear in pairs

$$
\begin{aligned}
& \quad \operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}} \\
& \text { Switching on }
\end{aligned}
$$

interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$
G. Volovik, 2006

Poles and zeroes can emerge and disappear in pairs

Switching on interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$
G. Volovik, 2006

Poles and zeroes can emerge and disappear in pairs
$\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}$
Switching on interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$
G. Volovik, 2006

Poles and zeroes can emerge and disappear in pairs
$\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}$ Switching on interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

The invariant at $d=0, D=1$ with interactions
$N_{1}=\operatorname{tr} \int_{-\infty}^{\infty} \frac{d \omega}{\pi i} G^{-1} \partial_{\omega} G=\int_{-\infty}^{\infty} \frac{d \omega}{\pi i} \partial_{\omega} \operatorname{det} G$
$N_{1}=\sum \operatorname{sign} \epsilon_{n}-\sum \operatorname{sign} r_{n}$
G. Volovik, 2006

Poles and zeroes can emerge and disappear in pairs
$\operatorname{det} G=\prod_{n} \frac{1}{i \omega-\epsilon_{n}}$ Switching on interactions

$$
\operatorname{det} G=\frac{\prod_{n=1}^{D_{h}-D_{f}}\left(i \omega-r_{n}\right)}{\prod_{n=1}^{D_{h}}\left(i \omega-\epsilon_{n}\right)}
$$

Fidkowski-Kitaev model (2010)

Fidkowski-Kitaev model (2010)

Fidkowski-Kitaev model (2010)

Fidkowski-Kitaev model (2010)

A. Essin, VG:

Green's function has a zero at zero energy

Conclusions and open questions

1. Single particle Green's functions - a powerful tool to understand topological insulators without or even with interactions.
2. Zeroes of the Green's functions. What are they, when do they appear, how can they be detected, why are they important for interacting topological insulators?

The end

