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Outline

e Condensed matter and atomic physics

e Early days: BEC (mid 90s)

* Big breakthrough: modeling condensed
matter physics with cold atoms
(1998-2003)

e Modern developments (2003 on)
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Condesed Matter Physics

e Solids, liquids, gases and phase transitions

e | iquid crystals

e Electron liquids and crystals (Fermi liquid, Wigner
crystal, CDW)

e Superfluids, superconductors

* Magnets (FM, AFM) =
* |nsulators (Band, Mott, Anderson)
e Quantum dots and quantum chaos =
e [ uttinger liquids- ‘

e Quantum Hall Effect and topological states of matter

»ﬁ:‘




Atomic Physics (naive view of a
condensed matter theorist)
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Atomic Physics (naive view of a
condensed matter theorist)
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® Drecision spectroscopy
® atomic collisions
® molecules

® |aser-atom Interactions
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Dilute atomic gases

Density ~ 1012 cmS & d~10% A, mfp = 1/(n @) ~ 10cm
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his Is but an ideal gas...



Degenerate atomic gases

d /"‘d/ cold

classical ideal degenerate quantum
Boltzmann gas gas
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Degenerate atomic gases

d /"‘4/ cold

classical ideal degenerate quantum
Boltzmann gas gas

h
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Electron gas in a metal: Tq ~ 10* K

AdB ~

Dilute atomic gas: Tq ~ 10° K



Cooling of atomic gases

For development of methods to trap and cool atoms with laser light




Cooling of atomic gases
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Steven Chu, Claude Cohen-Tannoudiji, Bill Phillips
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Laser (Doppler) cooling

300 K to 1 mK
~10° atoms
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Cooling of atomic gases

Evaporative cooling

1 mKto1luK
~108 — 106 atoms

Al

Steven Chu, Claude Cohen-Tannoudiji, Bill Phillips

—H h Cohen-Tannoudji,
t Phillips

Laser (Doppler) cooling

300 K to 1 mK
~10° atoms
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lmaging atomic gases

Time of flight measurements
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Time of flight measurements




lmaging atomic gases

Time of flight measurements

probing w/ resonant laser ‘I‘ ) :' '| shadow image
| n(r,t) = n; (hk = mr/t)



Degenerate (very) weakly interacting
gases 1" < Ty




Degenerate (very) weakly interacting
gases 1" < Ty

Bosons:

® |[nteger spin
® Symmetric wave function

Bose condensate

Bose Einstein




Degenerate (very) weakly interacting
gases 1" < Ty

Bosons: Fermions:

® |[nteger spin ® Half-integer spin
® Symmetric wave function ® Antisymmetric wave function

Bose condensate Degenerate Fermi gas: “Fermi
condensate”
: /

EF= kBTF

(two iso-spin states)

Fermi Dirac

Bose Einstein




First BEC (°’Rb)

A Y 7

Bose-Einstein Condensation of Rb 87
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BEC experiments, late 90s

Late 90s: “Dark ages” of cold
atoms (various BEC experiments)

Ketterle '97:

Will two ballistically expanding
BECs interfere”
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BEC experiments, late 90s

Late 90s: “Dark ages” of cold
atoms (various BEC experiments)

Ketterle 97
Will two ballistically expanding
BECs interfere?
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Superfluid - Mott insulator transition

S. Doniach, 1981
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Superfluid - Mott insulator transition

S. Doniach, 1981

Chemical potential

\<N>=O

-
Jo/ V J/V

Hopping strength

MPA Fisher, P Weichman, G Grinstein, DS Fisher, PRB (1988)



Cold atom realization of the
superconductor-Mott insulator transition

Theoretical proposal, D. Jaksch, et al (1998).
his transition can be observed if one puts some bosonic atoms
on an optical lattice

ac-Stark effect
NV /\-/WW AV (red-detuned, attractive)

Interfering laser beams




Cold atom realization of the
superconductor-Mott insulator transition

Experimental realization
M. Greiner, |. Bloch, T. Esslinger, T. Hansch (2001)




Cold atom realization of the
superconductor-Mott insulator transition

Experimental realization
M. Greiner, |. Bloch, T. Esslinger, T. Hansch (2001)

ime of flight measurement




Degenerate Fermi gas

D. Jin and B. DeMarco, Boulder, (1999)




Degenerate Fermi gas

I 58X D Jin and B. DeMarco, Boulder, (1999)

® Fermions do not interact at low T: difficult to cool
® Sympathetic cooling




Feshbach resonance (tunability of interactions)

Exploits the natural tendency of alkaline atoms to try to form
molecules
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Feshbach resonance (tunability of interactions)

Exploits the natural tendency of alkaline atoms to try to form
molecules

U(r)

Magnetic
field




Feshbach resonance (tunability of
interactions)
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Ketterle (1998)
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Feshbach resonance (tunability of
interactions)
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Ketterle (1998)
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Feshbach resonance (tunability of
interactions)
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Ketterle (1998)

(= Ubg (L BA—%O )

,<jf”Eﬁannel

\ \ 7/ 5
open
channel




Feshbach resonance (tunability of

interactions)
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Modern developments

® Spinor condensates

e Confining atoms to 1D and creating
Luttinger liquids

® Fermions on the lattice (modeling high Tc
superconductors) - major project funded by

DA

q

PA

* Modeling strongly paired superconductors
* Modeling guantum magnetism




Attractively interacting Fermi gases

BCS-BEC crossover
(Eagles 69, Leggett '80)

Fermi gases with attractive interactions:

superconductors




Attractively interacting Fermi gases

BCS-BEC crossover
(Eagles 69, Leggett '80)
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Attractively interacting Fermi gases

BCS-BEC crossover
(Eagles 69, Leggett '80)

BCS superconductor

attraction strength




Attractively interacting Fermi gases

BCS-BEC crossover
(Eagles 69, Leggett '80)
Bose-Einstein condesnate
of diatomic molecules

BCS superconductor

attraction strength




Attractively interacting Fermi gases

BCS-BEC crossover
(Eagles 69, Leggett '80)
Bose-Einstein condesnate
of diatomic molecules

BCS superconductor

attraction strength

atom 0 \ / -
atom / \ qi

Unitary point

Unitary point: Unitary point is universal:
interactions are limited interactions drop out from
by unitarity Opnaseshitt = = any physical quantity




EXperimental observation of the
Crossover

D. Jin, M. Greiner, C. Regal,
'‘03-04




RG picture of the BCS-BEC crossover

I} Sachdev, '06
Radzihovsky, ‘06

Molecular BEC 1 BCS

\ / Fermi liquid
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RG picture of the BCS-BEC crossover

I} Sachdev, '06
Radzihovsky, ‘06

Molecular BEC 1 BCS

\ Crossover / Fermi liquid
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Unitary Noninteracting
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|
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RG picture of the BCS-BEC crossover

U Sachdev, '06
Radzihovsky, ‘06

Molecular BEC T
\ Crossover Fermi liquid

Interaction

strength
u

Unitary Noninteracting

critical point Vacuum  remi gas fixed
' point
¢~ 0.3 —0.45

Nicolic, Sachdev, '07
Veillette, Sheehy, Radzihovsky, ‘07

At unitarity u = &

Universal critical amplitude



EXotic superconductors

Common superconductors:
atoms in two different
internal states form pairs. Pairs
do not spin.

“s-wave” superconductor
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atoms In identical
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‘p-wave” superconductor
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EXxotic superconductors

Common superconductors: :
atoms in two different ?
internal states form pairs. Pairs ? :

do not spin.
“s-wave” superconductor

Exotic superconductors: C '
atoms In identical
iInternal states: pairs must spin.
‘p-wave” superconductor




p-wave superconductors in cold gases

¢ [ake advantage of p-wave (angular
momentum 1) Feshbach resonances

e Have a number of distinct phases, phase
diagram has been worked out.

¢ One of the more common phases has
topological order and particles with non-

Abellan statistics.
VG, A. Andreev, L. Radzihovsky, 2005




EXperiments

PRL 98, 200403 (2007) PHYSICAL REVIEW LETTERS

week ending
18 MAY 2007

p-Wave Feshbach Molecules

J.P. Gaebler,™ J. T. Stewart, J. L. Bohn, and D.S. Jin

JILA, Quantum Physics Division, National Institute of Standards and Technology

and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
(Received 2 March 2007; published 16 May 2007)
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Origin of instabillity: 3 body recombination

Re Is the so-called van der Waals length
(the typical interaction range)
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Origin of instabillity: 3 body recombination

@1 Re ~ 25 —50a.u.

Re Is the so-called van der Waals length
(the typical interaction range)

sS-wave p-wave

i
Protected ¢ O

oy the Pauli
orinciple

By having opposite angular
momenta, p-wave fermions beat
the Pauli principle
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Lifetime calculations

Interatomic distance

atomic mass

N

mr< r
Lifetime = ~ 20ms

h R,
~

van der Waals length

Probably, their life is too short!
J. Levinsen, N. Cooper, VG, 07-08




Lifetime calculations

Interatomic distance

atomic mass

N

mr< r
Lifetime = ~ 20ms

h R,
~

van der Waals length

Probably, their life is too short!
J. Levinsen, N. Cooper, VG, 07-08

Optical lattices may provide a way to overcome short lifetimes...
P. Zoller et al, 09
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topological magnets




topological magnets

X.-G. Wen F. Wilczek A. Zee

1989
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topological magnets

Heisenberg antiferromagnet

H=1J) 5;-5
<@J>\

Nearest neighbors

Néel state




topological magnets

Heisenberg antiferromaagnet

H=J) §;-5
<z‘j>K
Nearest neighbors

Néel state

Chiral spin liguid (CSL)

Think of spin as ij’ fir3 f;l» fiy
attached to particles V \Va

H

SpiN-up spin-down

=J > flafisf]sli

<i3>,0,0=T,]




29

topological magnets

Heisenberg antiferromaagnet

H=J) §;-5
<z‘j>K
Nearest neighbors

LT

Néel state

Think of spin as

Chiral spin liguid (CSL)

f@Taszaleale

attached to particles V \Va

H

sSpin-up Spi

N-down

_ T
o @f’l,ﬁf]ﬁ
,5 Tl

Jj.e

<1)>,x

What if Y (flofia) =ty H=J > tmf*ﬁfg,a

<17>,0

_|_

“tight-binding Hamiltonian”
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topological magnets

Heisenberg antiferromagnet Chlral SD|n ||QU|d (CSL)

HJ;‘S\S | Think of spin as sz’ firs f il
Nearest neighbors attaChed 10 par’[ICIGS V V

ﬁ Spin-up  spin-down
H = @fz ﬁf]L f],a

Néel state <1)>,0 6 T,1

What if Y (flofia) =ty H=J > tzgfjﬁfjﬁ_F

<17>,0

“tight-binding Hamiltonian”

But what if f; correspond to a constant magnetic field”
his is CSL (or a topological magnet), by analogy with QH




topological magnets

20 years and 552 citations later,
nobody could still point out the

Hamiltonian for which this scenario
would work.




A proposal to generalize spin from SU(2) to
to SU(N)

A Y r 4

Generalize the usual spin to SU(N) spin by using alkaline-
earth atoms. Their nuclear spin does not interact and

behaves like an electron spin, only larger.

"he spin I can be as large as 9/2 (for 8/Sr).
‘hen N=2I+1 is as large as 10.

A.-M. Rey (2009)

A. Gorshkov, M. Hermele, VG, C. Xu, P. Julienne, J. Ye, P. Zoller, E. Demler, M. Lukin and A.M. Rey
(2009)




SU(N) antiferromagnets in optical lattices

- L4

Interfering laser beams




SU(N) antiferromagnets in optical lattices
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8’Sr atoms




SU(N) antiferromagnets in optical lattices

A Y 7
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Atom exchange leads to

/ /
/ Y,
\ ” antiferromagnetic interactions

(for nuclear spin).

8’Sr atoms




SU(N) antiferromagnets in optical lattices

A Y 7

Atom exchange leads to
antiferromagnetic interactions
(for nuclear spin).

8’Sr atoms

Such SU(N) spins have a hard time ordering: too many
directions nearby spins can point to while still being
“opposite” to each other (minimize .S; - .S;)

M. Hermele (2009)




Topological SU(N) antiferromagnet

t turns out, for N=5, the ground state is a chiral spin
lquid (that is, a topological magnet), exactly of the type
oroposed by Wen, Wilczek and Zee.

M. Hermele, VG, A.-M. Rey, (2009)




Topological SU(N) antiferromagnet

t turns out, for N=5, the ground state is a chiral spin
iquid (that is, a topological magnet), exactly of the type
oroposed by Wen, Wilczek and Zee.

M. Hermele, VG, A.-M. Rey, (2009)

To show that, we employed the large N technigues:

N
H = JZ%’ (f;r,afj,a T hc) T Z ti5]°

<1)>

N 2
S = N'Irlog [57;3'] + i Z ‘tij‘
<>
+ saddle point in t
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Anyons and non-Abelions

Lowering the potential at one
site localizes a fractional or
non-Abelian particle at that

site.
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Anyons and non-Abelions

Lowering the potential at one
site localizes a fractional or
non-Abelian particle at that

site.

Experimental detection? Too soon to tell...



This is but the beginning...

We will see new remarkable experiments
which will to build artificial “materials”™ with
novel properties out of cold atoms...




