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The hand calculations that include attractors/repulsors are due TBA

The final project submission is due TBA

1 Overview

In this project you will be modeling the motion of a projectile fired at a target. Air resistance plays a role in this

problem so the simple, exact solution does not apply. Furthermore, there will be several objects in your field of

fire that can attract and/or repel your projectile at it travels to the target. The initial speed of the projectile is

predetermined and your objective is to adjust the firing angle as quickly as possible to hit the target.

Although modeling projectile motion is simple enough, usually we consider the initial value problem of deter-

mining the projectile’s path based on its initial speed and direction. Aiming the projectile to hit a designated

target, on the other hand, is a boundary value problem where we require the solution to satisfy two spatial con-

ditions: it must start where we are, and it must end where the target is. Since we have a choice in the initial

direction, we are trying to solve an inverse problem: setting a parameter to result in a desired effect. Usually we

deal with the direct or forward problem: “What is the result of setting this parameter to some particular value? ”

2 The Mathematical Models

For the most simple case, the projectile’s path, r(t) = x(t) i+y(t) j relative to the firing position at the origin, can

be determined by solving the two-dimensional problem
∑

F = mr̈ where we account only for gravitational and

drag forces on the projectile. A second case will be considered in which one accounts for multiple objects in the

first quadrant that can attract or repel the projectile.

2.1 No attractors or repulsors

If we write the components of the projectile’s velocity v(t) = ṙ(t) = ẋ(t) i+ ẏ(t) j in polar form, then

ẋ = v cos(θ), ẏ = v sin(θ) (1)

where v(t) = |v| =
√
ẋ2 + ẏ2 is the speed of the projectile and θ(t) is the angle of its motion measured up from

horizontal, in which case comparison of the normal and tangential components of
∑

F = mr̈, along the projectile’s

path leads to the following relations

v̇ = −CD v2

m
− g sin(θ), θ̇ = −g

v
cos(θ) (2)

where m is the mass of the projectile, and g is the acceleration due to gravity. Finally, CD is the drag coefficient

such that the drag force is proportional to the square of the speed and acts in the opposite direction of the velocity

vector. The drag coefficient CD is a measurable constant. Remember that your job is to find the projectile’s

location at any time, so we need to solve (1) and (2) as a system of four coupled differential equations subject to

some appropriate initial conditions.

Typically when firing a weapon the initial speed (muzzle velocity), v0, is fixed, but the firing angle is chosen

by the user. Your objective is to choose a firing angle so that the projectile hits the target. If the firing angle

is chosen to be θ0, then the projectile’s path is uniquely determined by the initial value problem consisting of

equations (1) and (2) and the initial conditions

x(0) = 0, y(0) = 0, v(0) = v0, θ(0) = θ0 . (3)

Let’s define a distance, d(t), that measures the distance between the projectile and the target at any given

time. We are interested in how close the projectile comes to hitting the target, in other words, we are interested



in the minimum value of d, which we will call dmin. If we assume that dmin depends continuously on θ0, then we

can imagine plotting dmin as a function of θ0, in which case our goal is to find the correct firing angle, θ∗0, such

that dmin(θ
∗
0) = 0.

This problem reduces to a simple root finding problem. The difficulty is that the function dmin(θ0) is not at

all simple — its value is determined by the solution to a system of differential equations. However, in principle

dmin can be computed for any θ0, thus we can apply a numerical root–finding scheme to dmin in order to find the

optimal firing angle θ∗0.

Since equations (1) and (2) cannot be solved by hand, we must use a numerical integration method. However, we

do not really know how far to integrate. Rather than integrating to a known value of time, it is best to use a stopping

criterion. If the firing angle is close to correct, then a reasonable stopping criterion is when the distance between

the projectile and the target reaches a minimum. If we define the distance vector d(t) = (x(t)−xT ) i+(y(t)−yT ) j,

where (xT , yT ) is the location of the target, then the distance between the projectile and the target is d = |d|.
Since the distance is minimized if and only if the square of the distance is minimized, we look for the time when
d

dt
(d2) = 0. You might want to work out the details of this to arrive at a practice criterion for the stoping

condition.

Another reasonable stopping criterion is that the projectile has overshot the target. Thus, you might also

consider x(t) ≥ xT . There are several other possible stopping criterion. In any case, we can always determine

dmin for any given trajectory resulting from a given initial firing angle θ0.

2.2 Wind

Derive the four working coupled equations ODEs and BCs for the problem with a wind blowing with velocity

Vw = α i+ β j. Just derive them. Don’t solve them. Don’t move on to the next part until you know you have this

part correct. The correct ODEsn (but not their derivation) will be added here shortly. Stay tuned.

2.3 Attractors and repulsors (but no wind)

Once you have your basic code working, modify it to account for several stationary objects located somewhere

in the first quadrant that can attract or repel your projectile. Your projectile is outfitted with a sensor that,

upon first being fired, can detect objects and determine their attractive or repulsive properties. Specifically, your

sensors can measure how many objects exist, the (x, y) coordinates of each objects, the strength of the attractive

or repulsive forces for each object, and of course whether they attract or repel your projectile.

You may assume that the attractive/repulsive force, Fi(t), of the ith object on your projectile at any given

time is described by

Fi(t) =
αi

|r(t)− ri|2
ni(t) ,

where ri = xi i+ yi j is the position vector of the ith object relative to the origin, and ni(t) is the unit vector from

the current projectile position to the position of the ith attractor/repulsor. If αi > 0 then the object attracts,

while if αi < 0 the object repels. The magnitude of αi determines the strength of the attraction/repulsion. In

your report, you will need to clearly show how equations (1) and (2) are modified to account for the attractive

and repulsive objects.

3 Coding Procedures

1. Write an integration script that uses MatLab’s ode45 integrating routine to solve (1) and (2) for some

given set of initial conditions, (3), integrating over an appropriate time interval. You may hard–code the

parameters g = 9.81 m/s2, CD/m = 0.002 m−1, and v0 = 1500 m/s into your program.

2. Early on in your code, you will want to call a script named Sensors.m that returns an array, the columns

of which will contain values of αi/m, xi, yi for each attractive/repulsive object detected. Each row of the



returned array will correspond to a different attractor/repulsor. The objects will not move or change strength

while your projectile is in flight so there is no need to re-call the Sensors file while your projectile is in flight.

When we test your program, we will deposit our own Sensors.m file into your folder. The script Sensors.m

has no input arguments, only output values.

3. You should seriously consider using a stopping condition with your integration scheme. Note that you will

need to make sure that both your ODE definition file and your stopping criterion file have exactly the same

argument list. By default, your script could integrate over an “infinite” period, but in practice integration

will stop when your stopping criterion is achieved.

4. Turn your integration script into a function file that takes the target location, and the firing angle as

arguments and returns the distance by which the target was missed, dmin. Then you can use your bisection

routine to find the root of dmin(θ0). Note that because distance is always non-negative, you will need to

modify your returned dmin value such that its sign indicates whether the target was an over or undershot.

This will allow your bisection method to actually find a root. You must use your own “home-brew” bisection

program.

5. Finally, you will need to create a function file named Target.m that calls your bisection routine. This file

will need to determine reasonable initial guesses for θ∗0 without any input from the user. The input values

for Target.m will be the target coordinates, (xT , yT ). The returned value should be the proper firing angle,

θ0 (in radians!), required to hit the target. We will call your Target.m file with the something similar to the

following commands:

tic

coord = [20000, 1000];

Target(coord)

toc

(of course with different target coordinates) and expect that your program will return the proper firing angle

to hit the target as quickly as possible.

4 Things To Consider

� You must work in groups of two or three.

� You may assume that the target is in the first quadrant.

� The location and strength of the attractors/repulsors will not change while your projectile is in flight.

� You might want to explicitly address the case where the target is in the first quadrant, but is out of range.

� We will need your answer for θ, in radians, to five significant figures with four places after the decimal. That

is, θ = x.xxxx. Clearly, for the basic targets in the first quadrant, 0 ≤ θ ≤ π/2.

� This will be a timed competition (using tic toc) and extra credit will be awarded to the top three groups.

� Try to avoid performing more calculations than necessary — if a calculated value is used repeatedly, calculate

it once and save the value. Pay attention to expensive calculations that are performed multiple times and

make them as efficient as possible.

� How did your file Target.m determine your initial guesses for θ∗0 in the bisection method? Why?

� Is it possible for your stopping criterion to be met even though the projectile is not as close as it will come

to the target? Will this cause a problem for your root-finding algorithm?



� Experiment with the accuracy settings for MatLab’s ode45 integrator. Justify your final choice.

� What other factors should your model consider to be truly state-of-the-art?


