
APPENDIX
EXISTENCE AND UNIQUENESS OF A COMPLETE ORDERED FIELD

This appendix is devoted to the proofs of Theorems 1.1 and 1.2, which together
assert that there exists a unique complete ordered field. Our construction of this
field will follow the ideas of Dedekind, which he presented in the late 1800’s.

DEFINITION. By a Dedekind cut, or simply a cut, we will mean a pair (A,B)
of nonempty (not necessarily disjoint) subsets of the set Q of rational numbers for
which the following two conditions hold.

(1) A ∪B = Q. That is, every rational number is in one or the other of these
two sets.

(2) For every element a ∈ A and every element b ∈ B, A ≤ b. That is, every
element of A is less than or equal to every element of B.

Recall that when we define the rational numbers as quotients (ordered pairs)
of integers, we faced the problem that two different quotients determine the same
rational number, e.g., 2/3 ≡ 6/9. There is a similar equivalence among Dedekind
cuts.

DEFINITION. Two Dedekind cuts (A1, b1) and (A2, B2) are called equivalent if
a1 ≤ b2 for all a1 ∈ A1 and all b2 ∈ B2, and a2 ≤ b1 for all a2 ∈ A2 and all b1 ∈ B1.
In such a case, we write (A1, B1) ≡ (A2, B2).

bf Exercise A.1. (a) Show that every rational number r determines three distinct
Dedekind cuts that are mutually equivalent.

(b) Let B be the set of all positive rational numbers r whose square is greater
than 2, and let A comprise all the rationals not in B. Prove that the pair (A,B) is
a Dedekind cut. Do you think this cut is not equivalent to any cut determined by
a rational number r as in part (a)? Can you prove this?

(c) Prove that the definition of equivalence given above satisfies the three con-
ditions of an equivalence relation. Namely, show that
(i) (Reflexivity) (A,B) is equivalent to itself.
(ii) (Symmetry) If (A1, B1) ≡ (A2, B2), then (A2, B2) ≡ (A1, B1).
(iii) (Transitivity) If (A1, B1) ≡ (A2, B2) and (A2, B2) ≡ (A3, B3), then (A1, B1) ≡
(A3, B3).

There are three relatively simple-sounding and believable properties of cuts, and
we present them in the next theorem. It may be surprising that the proof seems to
be more difficult than might have been expected.

THEOREM A.1. Let (A,B) be a Dedekind cut. Then
(1) If a ∈ A and a′ < a, then a′ ∈ A.
(2) If b ∈ B and b′ > b, then b′ ∈ B.
(3) Let ε be a positive rational number. Then there exists an a ∈ A and a b ∈ B

such that b− a < ε.

PROOF. Suppose a is an element of A, and let a′ < a be given. By way of
contradiction suppose that a′ does not belong to A. Then, by Condition (1) of
the definition of a cut, it must be that a′ ∈ B. But then, by Condition (2) of the
definition of a cut, we must have that a ≤ a′, and this is a contradiction, because
a′ < a. This proves part (1). Part (2) is proved in a similar manner.
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To prove part (3), let the rational number ε > 0 be given, and set r = ε/2.
Choose an element a0 ∈ A and an element b0 ∈ B. Such elements exist, because A
and B are nonempty sets. Choose a natural number N such that a0 + Nr > b0.
Such a natural number N must exist. For instance, just choose N to be larger than
the rational number (b0−a0)/r. Now define a sequence {ak} of rational numbers by
ak = a0 + kr, and let K be the first natural number for which aK ∈ B. Obviously,
such a number exists, and in fact K must be less than or equal to N. Now, aK−1

is not in B, so it must be in A. Set a = AK−1 and b = AK . Clearly, a ∈ A, b ∈ B,
and

b− a = aK − aK−1 = a0 +Kr − a0 − (K − 1)r = r =
ε

2
< ε,

and this proves part (3).

We will make a complete ordered field F whose elements are the set of equivalence
classes of Dedekind cuts. We will call this field the Dedekind field. To make this
construction, we must define addition and multiplication of equivalence classes of
cuts, and verify the six required field axioms. Then, we must define the set P that
is to be the positive elements of the Dedekind field F, and then verify the required
properties of an ordered field. Finally, we must prove that this field is a complete
ordered field; i.e., that every nonempty set that is bounded above has a least upper
bound. First things first.

DEFINITION. If (A1, B1) and (A2, B2) are Dedekind cuts, define the sum of
(A1, B1) and (A2, B2) to be the cut (A3, B3) described as follows: B3 is the set of
all rational numbers b3 that can be written as b1 +b2 for some b1 ∈ B1 and b2 ∈ B2,
and A3 is the set of all rational numbers r such that r < b3 for all b3 ∈ B3.

Several things need to be checked. First of all, the pair (A3, B3) is again a
Dedekind cut. Indeed, it is clear from the definition that every element of A3 is
less than or equal to every element of B3, so that Condition (2) is satisfied. To see
that Condition (1) holds, let r be a rational number, and suppose that it is not in
A3. We must show that r belongs to B3. Now, since r /∈ A3, there must exist an
element b3 = b1 + b2 ∈ B3 for which r > b3. Otherwise, r would be in A3. But this
means that r − b2 > b1, and so by part (2) of Theorem A.1, we have that r − b2 is
an element b′1 of B1. Therefore, r = b′1 + b2, implying that r ∈ B3, as desired.

We define the 0 cut to be the pair A0 = {r : r ≤ 0} and B0 = {r : r > 0}. This
cut is one of the three determined by the rational number 0.
bf Exercise A.2. (a) Prove that addition of Dedekind cuts is commutative and
associative.

(b) Prove that if (A1, B1) ≡ (C1, D1) and (A2, B2) ≡ (C2, D2), then (A1, B1) +
(A2, B2) ≡ (C1, D1) + (C2, D2).

(c) Find an example of a cut (A,B) such that (A,B) + 0 6= (A,B).
(d) Prove that (A,B) + 0 ≡ (A,B) for every cut (A,B).

We define addition in the set F of all equivalence classes of Dedekind cuts as
follows:

DEFINITION. If x is the equivalence class of a cut (A, b) and y is the equivalence
class of a cut (C,D), then x+ y is the equivalence class of the cut (A,B) + (C,D).

It follows from the previous exercise, that addition in F is well-defined, commu-
tative, and associative. We are on our way.
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We define the element 0 of F to be the equivalence class of the 0 cut. The next
theorem establishes one of the important field axioms for F, namely, the existence
of an additive inverse for each element of F.

THEOREM A.2. If (A,B) is a Dedekind cut, then there exists a cut (A′, B′)
such that (A,B) + (A′, B′) is equivalent to the 0 cut. Therefore, if x is an element
of F, then there exists an element y of F such that x+ y = 0.

PROOF. Let A′ = −B, i.e., the set of all the negatives of the elements of B, and
let B′ = −A, i.e., the set of all the negatives of the elements of A. It is immediate
that the pair (A′, B′) is a Dedekind cut. Let us show that (A,B) + (A′, B′) is
equivalent to the zero cut. Let (C,D) = (A,B) + (A′, B′). Then, by the definition
of the sum of two cuts, we know that D consists of all the elements of the form
d = b + b′ = b − a, where b ∈ B and a ∈ A. Since a ≤ b for all a ∈ A and b ∈ B,
we see then that the elements of D are all greater than or equal to 0. To see that
(C,D) is equivalent to the 0 cut, it will suffice to show that D contains all the
positive rational numbers. (Why?) Hence, let ε > 0 be given, and choose an a ∈ A
and a b ∈ B such that b − a < ε. This can be done by Condition (3) of Theorem
A.1. Then, the number b− a ∈ D, and hence, by part (2) of Theorem A.1, ε ∈ D.
It follows then that the cut (C,D) is equivalent to the zero cut (A0, B0), as desired.

We will write −(A,B) for the cut (A′, B′) of the preceding proof.

bf Exercise A.3. (a) Suppose (A,B) is a cut, and let (C,D) be a cut for which
(A,B) + (C,D) is equivalent to the 0 cut. Show that (C,D) ≡ (A′, B′) = −(A,B).

(b) Prove that the additive inverse of an element x of the Dedekind field F is
unique.

The definition of multiplication of cuts, as well as multiplication in F, is a bit
more tricky. In fact, we will first introduce the notion of positivity among Dedekind
cuts.

DEFINITION. A Dedekind cut x = (A,B) is called positive if A contains at
least one positive rational number.

bf Exercise A.4. (a) Suppose (A,B) and (C,D) are equivalent cuts, and assume that
(A,B) is positive. Prove that (C,D) also is positive. Make the obvious definition
of positivity in the set F.

(b) Show that the sum of two positive cuts is positive. Conclude that the sum of
two positive elements of F, i.e., the sum of two equivalence classes of positive cuts,
is positive.

(c) Let (A,B) be a Dedekind cut. Show that one and only one of the following
three properties holds for (A,B). (i) (A,B) is a positive cut, (ii) −(A,B) is a
positive cut, or (iii) (A,B) is equivalent to the 0 cut.

(d) Establish the law of tricotomy for F : That is, show that one and only one
of the following three properties holds for an element x ∈ F. (i) x is positive, (ii)
−x is positive, or (iii) x = 0.

We first define multiplication of cuts when one of them is positive.

DEFINITION. Let (A1, B1) and (A2, B2) be two Dedekind cuts, and suppose
that one of these cuts is a positive cut. We define the product (A3, B3) of (A1, B1)
and (A2, B2) as follows: Set B3 equal to the set of all b3 that can be written as
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b1b2 for some b1 ∈ B1 and b2 ∈ B2. Then set A3 to be all the rational numbers r
for which r < b3 for all b3 ∈ B3.

Again, things need to be checked.
bf Exercise A.5. (a) Show that the pair (A3, B3) of the preceding definition for the
product of positive cuts is in fact a Dedekind cut.

(b) Prove that multiplication of Dedekind cuts, when one of them is positive, is
commutative.

(c) Suppose (A1, B1) is a positive cut. Prove that

(A1, B1)((A2, B2) + (A3, B3)) = (A1, B1)(A2, B2) + (A1, B1)(A3, B3)

for any cuts (A2, B2) and (A3, B3).
(d) Show that, if (A1, B1) ≡ (A2, B2) and (C1, D1) ≡ (C2, D2) and (a1, B1) and

(A2, B2) are positive cuts, then (A1, B1)(C1, D1) ≡ (A2, B2)(C2, D2).
(e) Show that the product of two positive cuts is again a positive cut.

We are ready to define multiplication in F.

DEFINITION. Let x and y be elements of F.
If either x or y is positive, define the product x × y to be the equivalence class

of the cut (A,B)(C,D), where x is the equivalence class of (A,B) and y is the
equivalence class of (C,D).

If either x or y is 0, define x× y to be 0.
If both x and y are negative, i.e., both −x and −y are positive, define x × y =

(−x)× (−y).

The next exercise is tedious. It amounts to checking a bunch of cases.
bf Exercise A.6. (a) Prove that multiplication in F is commutative.

(b) Prove that multiplication in F is associative.
(c) Prove that multiplication in F is distributive over addition.
(d) Prove that the product of two positive elements of F is again positive.

We define the element 1 of F to be the equivalence class of the cut (A1, B1),
where A1 = {r : r ≤ 1} and B1 = {r : r > 1}.
bf Exercise A.7. (a) Prove that the elements 0 and 1 of F are not equal.

(b) Prove that x× 1 = x for every element x ∈ F.
(c) Use the associative law and part (b) to prove that if xy = 1 and xz = 1, then

y = z.

THEOREM A.3. With respect to the operations of addition and multiplication
defined above, together with the definition of positive elements, F is an ordered field.

PROOF. The first five axioms for a field, given in Chapter I, have been established
for F in the preceding exercises, so that we need only verify axiom 6 to complete
the proof that F is a field. Thus, let x ∈ F be a nonzero element. We must show
the existence of an element y of F for which x × y = 1. Suppose first that x is a
positive element of F. Then x is the equivalence class of a positive cut (A,B), and
therefore A contains some positive rational numbers. Let a0 be a positive number
that is contained in A. It follows then that every element of B is greater than or
equal to a0 and hence is positive. Define B̂ to be the set of all rational numbers r
for which r ≥ 1/b for every b ∈ B. Then define Â to be the set of all rationals r for
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which r ≤ b̂ for every b̂ ∈ B̂. It follows directly that the pair (Â, B̂) is a Dedekind
cut.

Let (C,D) = (A,B)× (Â, B̂), and note that every element d ∈ D is of the form
d = bb̂, and hence is greater than or equal to 1. We claim that (C,D) is equivalent
to the cut (A1, B1) that determines the element 1 of F. To see this we must verify
that D contains every rational number r that is greater than 1. Thus, let r > 1 be
given, and set ε = a0(r− 1). From Condition (3) of Theorem A.1, choose an a′ ∈ A
and a b′ ∈ B such that b′ − a′ < ε. Without loss of generality, we may assume that
a′ ≥ a0. Finally, set b̂ = 1/a′. Clearly b̂ ≥ 1/b for all b ∈ B, so that b̂ ∈ B̂. Also
d = b′b̂ ∈ D, and

d = b′b̂ =
b′

a′
=
a′ + b′ − a′

a′
< 1 +

ε

a′
≤ 1 +

ε

a0
= r,

implying that r ∈ D. Therefore, (C,D) is equivalent to the cut (A1, B1), implying
that (A,B)× (Â, B̂) is equivalent to the cut (A1, B1). Therefore, if y is the element
of F that is the equivalence class of the cut (Â, B̂), then x× y = 1, as desired.

If x is negative, then −x is positive. If we write z for the multiplicative inverse
of the positive element −x, then −z is the multiplicative inverse of the element x.
Indeed, by the definition of the product of two negative elements of F, x× (−z) =
(−x)× z = 1.

The properties that guarantee that F is an ordered field also have been estab-
lished in the preceding exercises, so that the proof of this theorem is complete.

So, the Dedekind field is an ordered field, but we have left to prove that it is
complete. This means we must examine upper bounds of sets, and that requires us
to understand when one cut is less than another one. We say that a cut (A,B) is
less than or equal to a cut C,D) if a ≤ d for every a ∈ A and d ∈ D. We say that
an element x in the ordered field F is less than or equal to an element y if y − x is
either positive or 0.

THEOREM A.4. Let x and y be elements of F, and suppose x is the equivalence
class of the cut (A,B() and y is the equivalence class of the cut (C,D). Then x ≤ y
if and only if (A,B) ≤ (C,D).

PROOF. We have that x ≤ y if and only if the element y − x = y +−x is positive
or 0. Writing, as before, (A′, B′) for the cut −(A,B), we have that y − x is the
equivalence class of the cut (C, d) − (A,B) = (C,D) + (A′, B′), so we need to
determine when the cut (G,H) = (C,D) + (A′, B′) is a positive cut or the 0 cut;
which is the case when the set H only contains nonnegative numbers. By definition
of addition, the set H contains all numbers of the form h = d+ b′ for some d ∈ D
and some b′ ∈ B′. Since B′ = −A, this means that H consists of all elements of the
form h = d − a for some d ∈ D and a ∈ A. Now these numbers h are all greater
than or equal to 0 if and only if each a ∈ A is less than or equal to each d ∈ D, i.e.,
if and only if (A,B) ≤ (C,D). This proves the theorem

We are now ready to present the first of the two main theorems of this appendix,
that is Theorem 1.1 in Chapter I.

THEOREM A.5. There exists a complete ordered field. Indeed, the Dedekind
field F is a complete ordered field.
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PROOF. Let S be a nonempty subset of F, and suppose that there exists an upper
bound for S; i.e., an element M of F such that x ≤ M for all x ∈ S. Write (A,B)
for a cut such that M is the equivalence class of (A,B). We must show that there
exists a least upper bound for S.

For each x ∈ S, let (Ax, Bx) be a Dedekind cut for which x is the equivalence
class of (Ax, Bx), and note that ax ≤ b for all ax ∈ Ax and all b ∈ B. Let A0 be the
union of all the sets Ax for x ∈ S. Let B0 be the set of all rational numbers r for
which r ≥ a0 for every a0 ∈ A0. we claim first that the pair (A0, B0) is a Dedekind
cut. Both sets are nonempty; A0 because it is the union of nonempty sets, and B0

because it contains all the elements of the nonempty set B. Clearly Condition (2)
for a cut holds from the very definition of this pair. To see Condition (1), let r be
a rational number that is not in B0. We must show that it is in A0. Now, since r is
not in B0, there must exist some a0 ∈ A0 for which r < a0. But a0 ∈ ∪x∈SAx, so
that there must exist an x ∈ S such that a0 ∈ Ax, and hence r is also in Ax. But
then r ∈ A0, and this proves that (A0, B0) is a Dedekind cut.

Let M0 be the equivalence class determined by the cut (A0, B0). Since each
Ax ⊆ A0, we see that ax ≤ b0 for every ax ∈ Ax and every b0 ∈ B0. Hence,
(Ax, Bx) ≤ (A0, B0) for every x ∈ S, and therefore, by Theorem A.4, x ≤ M0 for
all x ∈ S. This shows that M0 is an upper bound for S.

Finally, suppose M ′ is another upper bound for S, and let (A′, B′) be a cut for
which M ′ is the equivalence class of (A′, B′). Then ax ≤ b′ for every ax ∈ Ax and
every b′ ∈ B′, implying that a0 ≤ b′ for every a0 ∈ A0 and every b′ ∈ B′. Therefore,
(A0, B0) ≤ (A′, B′), implying that M0 ≤M ′. This shows that M0 is the least upper
bound for S, and the theorem is proved.

We come now to the second major theorem of this appendix, i.e., Theorem 1.2 of
Chapter I. This one asserts the uniqueness, up to isomorphism, of complete ordered
fields.

THEOREM A.6. Let F̂ be a complete ordered field. Then there exists an isomor-
phism of F̂ onto the Dedekind field F. That is, there exists a one-to-one function
J : F̂ → F that is onto all of F, and that satisfies

(1) J(x+ y) = J(x) + J(y).
(2) J(xy) = J(x)J(y).
(3) If x > 0, then J(x) > 0.

PROOF. We know from Chapter I that, inside any ordered field, there is a subset
that is isomorphic to the field Q of rational numbers. We will therefore identify
this special subset of F̂ with Q.

If x is an element of F̂ , let Ax = {r ∈ Q : r ≤ x} and let Bx = {r ∈ Q : r > x}.
We claim first that the pair (Ax, Bx) is a Dedekind cut. Indeed, from the definition
of Ax and Bx, we see that Condition (2), i.e., that each ax ∈ Ax is less than or
equal to each bx ∈ Bx, holds. To see that Condition (1) also holds, let r be a
rational number in F̂ . Then, because F̂ is an ordered field, either r ≤ x or r > x,
i.e., r ∈ Ax or r ∈ Bx. Hence, (Ax, Bx) is a Dedekind cut.

We define a function J from F̂ into F by setting J(x) equal to the equivalence
class determined by the cut (Ax, Bx). We must check several things.

First of all, J is one-to-one. Indeed, let x and y be elements of F̂ that are not
equal. Assume without loss of generality that x < y. Then, according to Theorem
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1.8, which is a theorem about complete ordered fields and hence applicable to F̂ ,,
there exist two rational numbers r1 and r2 such that x < r1 < r2 < y, which implies
that r1 ∈ Bx and r2 ∈ Ay. Since r2 > r1, the cut (Ay, By) is not equivalent to the
cut (Ax, Bx), and therefore J(x) 6= J(y).

Next, we claim that the function J is onto all of the Dedekind field F. Indeed, let
z be an element of F, and let (A,B) be a Dedekind cut for which z is the equivalence
class determined by (A,B). Think of A as a subset of the complete ordered field
F̂ . Then A is nonempty and is bounded above. In fact, every element of B is an
upper bound of A. Let x = supA. (Here is another place where we are using the
completeness of the field F̂ .) We claim that the cut (A,B) is equivalent to the cut
(Ax, Bx), which will imply that J(x) = z. Thus, if ax ∈ Ax, then ax ≤ x, and x ≤ b
for every b ∈ B, because x is the least upper bound of A. Similarly, if a ∈ A, then
a ≤ x, and x < bx for every bx ∈ Bx. This proves that the cuts (A,B) and (Ax, Bx)
are equivalent, as desired.

If x and y are elements of F̂ , and bx ∈ Bx and by ∈ By, then bx > x and by > y,
so that bx + by > x + y, and therefore bx + by ∈ Bx+y for every bx ∈ Bx and
by ∈ By. On the other hand, if r ∈ Bx+y, then r > x + y. Therefore, r − x > y,
implying, again by Theorem 1.8, that there exists an element by ∈ By such that
y < by < r − x. But then r − by > x, which means that r − by = bx for some
bx ∈ Bx. So, r = bx + by, and this shows that Bx+y = bx + By. It follows from
this that the cuts (Ax+y, Bx+y) and (Ax, Bx) + (Ay, By) are equal, and therefore
J(x+y) = J(x)+J(y). A consequence of this is that J(−x) = −J(x) for all x ∈ F̂ .

If x and y are two positive elements of F̂ , then an argument just like the one in the
preceding paragraph shows that J(xy) = J(x)J(y). Then, since J(−x) = −J(x),
the fact that J(xy) = J(x)J(y) for all x, y ∈ F̂ follows.

Finally, if x is a positive element of F̂ , then the set Ax must contain some positive
rationals, and hence the cut (Ax, Bx) is a positive cut, implying that J(x) > 0.

We have verified all the requirements for an isomorphism between the two fields
F̂ and F, and the theorem is proved.


