
CHAPTER I
THE REAL AND COMPLEX NUMBERS

DEFINITION OF THE NUMBERS 1, i, AND
√

2

In order to make precise sense out of the concepts we study in mathematical
analysis, we must first come to terms with what the “real numbers” are. Everything
in mathematical analysis is based on these numbers, and their very definition and
existence is quite deep. We will, in fact, not attempt to demonstrate (prove) the
existence of the real numbers in the body of this text, but will content ourselves
with a careful delineation of their properties, referring the interested reader to an
appendix for the existence and uniqueness proofs.

Although people may always have had an intuitive idea of what these real num-
bers were, it was not until the nineteenth century that mathematically precise
definitions were given. The history of how mathematicians came to realize the
necessity for such precision in their definitions is fascinating from a philosophical
point of view as much as from a mathematical one. However, we will not pursue
the philosophical aspects of the subject in this book, but will be content to con-
centrate our attention just on the mathematical facts. These precise definitions are
quite complicated, but the powerful possibilities within mathematical analysis rely
heavily on this precision, so we must pursue them. Toward our primary goals, we
will in this chapter give definitions of the symbols (numbers) −1, i, and

√
2.

The main points of this chapter are the following:

(1) The notions of least upper bound (supremum) and greatest lower
bound (infimum) of a set of numbers,

(2) The definition of the real numbers R,
(3) the formula for the sum of a geometric progression (Theorem 1.9),
(4) the Binomial Theorem (Theorem 1.10), and
(5) the triangle inequality for complex numbers (Theorem 1.15).

THE NATURAL NUMBERS AND THE INTEGERS

We will take for granted that we understand the existence of what we call the
natural numbers, i.e., the set N whose elements are the numbers 1, 2, 3, 4, . . . . In-
deed, the two salient properties of this set are that (a) there is a frist element (the
natural number 1), and (b) for each element n of this set there is a “very next”
one, i.e., an immediate successor. We assume that the algebraic notions of sum and
product of natural numbers is well-defined and familiar. These operations satisfy
three basic relations:

BASIC ALGEBRAIC RELATIONS.

(1) (Commutativity) n+m = m+ n and n×m = m× n for all n,m ∈ N.
(2) (Associativity) n+ (m+ k) = (n+m) + k and n× (m× k) = (n×m)× k

for all n,m, k ∈ N.
(3) (Distributivity) n× (m+ k) = n×m+ n× k for all n,m, k ∈ N.

We also take as given the notion of one natural number being larger than an-
other one. 2 > 1, 5 > 3, n + 1 > n, etc. We will accept as true the axiom of
mathematical induction, that is, the following statement:

1



2 I. THE REAL AND COMPLEX NUMBERS

AXIOM OF MATHEMATICAL INDUCTION. Let S be a subset of the set
N of natural numbers. Suppose that

(1) 1 ∈ S.
(2) If a natural number k is in S, then the natural number k + 1 also is in S.

Then S = N. That is, every natural number n belongs to S.

REMARK. The axiom of mathematical induction is for our purposes frequently
employed as a method of proof. That is, if we wish to show that a certain proposition
holds for all natural numbers, then we let S denote the set of numbers for which
the proposition is true, and then, using the axiom of mathematical induction, we
verify that S is all of N by showing that S satisfies both of the above conditions.

Mathematical induction can also be used as a method of definition. That is,
using it, we can define an infinite number of objects {On} that are indexed by the
natural numbers. Think of S as the set of natural numbers for which the object
On is defined. We check first to see that the object O1 is defined. We check next
that, if the object Ok is defined for a natural number k, then there is a prescribed
procedure for defining the object Ok+1. So, by the axiom of mathematical induction,
the object is defined for all natural numbers. This method of defining an infinite set
of objects is often referred to as sl recursive definition, or definition by recursion.

As an example of recursive definition, let us carefully define exponentiation.

DEFINITION. Let a be a natural number. We define inductively natural num-
bers an as follows: a1 = a, and, whenever ak is defined, then ak+1 is defined to be
a× ak.

. The set S of all natural numbers for which an is defined is therefore all of N.
For, a1 is defined, and if ak is defined there is a prescription for defining ak+1. This
“careful” definition of an may seem unnecessarily detailed. Why not simply define
an as a× a× a× a . . .× a n times? The answer is that the . . . , though suggestive
enough, is just not mathematically precise. After all, how would you explain what
. . . means? The answer to that is that you invent a recursive definition to make
the intuitive meaning of the . . . mathematically precise. We will of course use the
symbol . . . to simplify and shorten our notation, but keep in mind that, if pressed,
we should be able to provide a careful definition.
Exercise 1.1. (a) Derive the three laws of exponents for the natural numbers:
an+m = an × am.
HINT: Fix a and m and use the axiom of mathematical induction.
an×m = (am)n.

HINT: Fix a and m and use the axiom of mathematical induction.
(a× b)n = an × bn.

HINT: Fix a and b and use the axiom of mathematical induction.
(b) Define inductively numbers {Si} as follows: S1 = 1, and if Sk is defined, then

Sk+1 is defined to be Sk + k + 1. Prove, by induction, that Sn = n(n+ 1)/2. Note
that we could have defined Sn using the . . . notation by Sn = 1 + 2 + 3 + . . .+ n.

(c) Prove that

1 + 4 + 9 + 16 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

(d) Make a recursive definition of n! = 1×2×3× . . .×n. n! is called n factorial.
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There is a slightly more general statement of the axiom of mathematical induc-
tion, which is sometimes of use.

GENERAL AXIOM OF MATHEMATICAL INDUCTION. Let S be a
subset of the set N of natural numbers, and suppose that S satisfies the following
conditions

(1) There exists a natural number k0 such that k0 ∈ S.
(2) If S contains a natural number k, then S contains the natural number k+1.

Then S contains every natural number n that is larger than or equal to k0.

From the fundamental set N of natural numbers, we construct the set Z of all
integers. First, we simply create an additional number called 0 that satisfies the
equations 0 +n = n for all n ∈ N and 0×n = 0 for all n ∈ N. The word “create” is,
for some mathematicians, a little unsettling. In fact, the idea of zero did not appear
in mathematics until around the year 900. It is easy to see how the so-called natural
numbers came by their name. Fingers, toes, trees, fish, etc., can all be counted,
and the very concept of counting is what the natural numbers are about. On the
other hand, one never needed to count zero fingers or fish, so that the notion of
zero as a number easily could have only come into mathematics at a later time,
a time when arithmetic was becoming more sophisticated. In any case, from our
twenty-first century viewpoint, 0 seems very understandable, and we won’t belabor
the fundamental question of its existence any further here.

Next, we introduce the so-called negative numbers. This is again quite reasonable
from our point of view. For every natural number n, we let −n be a number which,
when added to n, give 0. Again, the question of whether or not such negative
numbers exist will not concern us here. We simply create them.

In short, we will take as given the existence of a set Z, called the integers, which
comprises the set N of natural numbers, the additional number 0, and the set −N of
all negative numbers. We assume that addition and multiplication of integers satisfy
the three basic algebraic relations of commutativity, associativity, and distributivity
stated above. We also assume that the following additional relations hold:

(−n)× (−k) = n× k, and (−n)× k = n× (−k) = −(n× k)

for all natural numbers n and k.

THE RATIONAL NUMBERS

Next, we discuss the set Q of rational numbers, which we ordinarily think of as
quotients k/n of integers. Of course, we do not allow the “second” element n of the
quotient k/n to be 0. Also, we must remember that there isn’t a 1-1 correspondence
between the set Q of all rational numbers and the set of all such quotients k/n.
Indeed, the two distinct quotients 2/3 and 6/9 represent the same rational number.

To be precise, the set Q is a collection of equivalence classes of ordered pairs (k, n)
of integers, for which the second component of the pair is not 0. The equivalence
relation among these ordered pairs is this:

(k, n) ≡ (k′, n′) if k × n′ = n× k′.

We will not dwell on this possibly subtle definition, but will rather accept the
usual understanding of the rational numbers and their arithmetic properties. In
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particular, we will represent them as quotients rather than as ordered pairs, and, if
r is a rational number, we will write r = k/n, instead of writing r as the equivalence
class containing the ordered pair (k, n). As usual, we refer to the first integer in the
quotient k/n as the numerator and the second (nonzero) integer in the quotient k/n
as the denominator of the quotient. The familiar definitions of sum and product
for rational numbers are these:

k

n
+
k′

n′
=
kn′ + nk′

nn′

and
k

n
× k′

n′
=
kk′

nn′
.

Addition and multiplication of rational numbers satisfy the three basic algebraic
relations of commutativity, associativity and distributivity stated earlier.

We note that the integers Z can be identified in an obvious way as a subset of the
rational numbers Q. Indeed, we identify the integer k with the quotient k/1. In this
way, we note that Q contains the two numbers 0 ≡ 0/1 and 1 ≡ 1/1. Notice that
any other quotient k/n that is equivalent to 0/1 must satisfy k = 0, and any other
quotient k/n that is equivalent to 1/1 must satisfy k = n. Remember, k/n ≡ k′/n′
if and only if kn′ = k′n.

The set Q has an additional property not shared by the set of integers Z. It is
this: For each nonzero element r ∈ Q, there exists an element r′ ∈ Q for which
r × r′ = 1. Indeed, if r = k/n 6= 0, then k 6= 0, and we may define r′ = n/k.
Consequently, the set Q of all rational numbers is what is known in mathematics
as a field.

DEFINITION. A field is a nonempty set F on which there are defined two binary
operations, addition (+) and multiplication (×), such that the following six axioms
hold:

(1) Both addition and multiplication are commutative and associative.
(2) Multiplication is distributive over addition; i.e.,

x× (y + z) = x× y + x× z

for all x, y, z ∈ F.
(3) There exists an element in F, which we will denote by 0, that is an identity

for addition; i.e., x+ 0 = x for all x ∈ F.
(4) There exists a nonzero element in F, which we will denote by 1, that is an

identity for multiplication; i.e., x× 1 = x for all x ∈ F.
(5) If x ∈ F, then there exists a unique element y ∈ F such that x+y = 0. This

element y is called the additive inverse of x and is denoted by −x.
(6) If x ∈ F and x 6= 0, then there exists a unique element y ∈ F such that

x × y = 1. This element y is called the multiplicative inverse of x and is
denoted by x−1.

REMARK. There are many examples of fields. (See the exercise below.) They all
share certain arithmetic properties, which can be derived from the axioms above.

If x is an element of a field F, then according to one of the axioms above, we
have that 1 × x = x. (Note that this “1” is the multiplicative identity of the field
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F and not the natural number 1.) However, it is tempting to write x+ x = 2× x
in the field F. The “2” here is not à priori an element of F, so that the equation
x + x = 2 × x is not really justified. This is an example of a situation where a
careful recursive definition can be useful.

DEFINITION. If x is an element of a field F, define inductively elements n ·x ≡
nx of F by 1 · x = x, and, if k · x is defined, set (k + 1) · x = x + k · x. The set
S of all natural numbers n for which n · x is defined is therefore, by the axiom of
mathematical induction, all of N.

Usually we will write nx instead of n · x. Of course, nx is just the element of F
obtained by adding x to itself n times: nx = x+ x+ x+ . . .+ x.

Exercise 1.2. (a) Justify for yourself that the set Q of all rational numbers is a
field. That is, carefully verify that all six of the axioms hold.

(b) Let F7 denote the seven elements {0, 1, 2, 3, 4, 5, 6}. Define addition and mul-
tiplication on F7 as ordinary addition and multiplication mod 7. Prove that F7 is
a field. (You may assume that axioms (1) and (2) hold. Check only conditions
(3)–(6).) Show in addition that 7x = 0 for every x ∈ F7.

(c) Let F9 denote the set consisting of the nine elements {0, 1, 2, 3, 4, 5, 6, 7, 8}.
Define addition and multiplication on F9 to be ordinary addition and multiplication
mod 9. Show that F9 is not a field. Which of the axioms fail to hold?

(d) Show that the set N of natural numbers is not a field. Which of the field
axioms fail to hold? Show that the set Z of all integers is not a field. Which of the
field axioms fail to hold?
Exercise 1.3. Let F be any field. Verify that the following arithmetic properties
hold in F.

(a) 0× x = 0 for all x ∈ F.
HINT: Use the distributive law and the fact that 0 = 0 + 0.

(b) If x and y are nonzero elements of F, then x × y is nonzero. And, the
multiplicative inverse of x× y satisfies (x× y)−1 = x−1 × y−1.

(c) (−1)× x = (−x) for all x ∈ F.
(d) (−x)× (−y) = x× y for all x, y ∈ F.
(e) x× x− y × y = (x− y)× (x+ y).
(f) (x+ y)× (x+ y) = x× x+ 2 · x× y + y × y.

DEFINITION. Let F be a field, and let x be a nonzero element of F.
For each natural number n, we define inductively an element xn in F as follows:

x1 = x, and, if xk is defined, set xk+1 = x × xk. Of course, xn is just the product
of n x’s.

Define x0 to be 1.
For each natural number n, define x−n to be the multiplicative inverse (xn)−1

of the element xn.
Finally, we define 0m to be 0 for every positive integer m, and we leave 0−n and

00 undefined.

We have therefore defined xm for every nonzero x and every integer m ∈ Z.
Exercise 1.4. Let F be a field. Derive the following laws of exponents:

(a) xn+m = xn × xm for all nonzero elements x ∈ F and all integers n and m.
HINT: Fix x ∈ F and m ∈ Z and use induction to derive this law for all natural
numbers n. Then use the fact that in any field (x× y)−1 = x−1 × y−1.
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(b) xn×m = (xm)n for all nonzero x ∈ F and all n,m ∈ Z.
(c) (x× y)n = xn × yn for all nonzero x, y ∈ F and all n ∈ Z.

From now on, we will indicate multiplication in a field by juxtaposition; i.e., x×y
will be denoted simply as xy. Also, we will use the standard fractional notation to
indicate multiplicative inverses. For instance,

xy−1 = x
1
y

=
x

y
.

THE REAL NUMBERS

What are the real numbers? From a geometric point of view (and a historical
one as well) real numbers are quantities, i.e., lengths of segments, areas of surfaces,
volumes of solids, etc. For example, once we have settled on a unit of length,
i.e., a segment whose length we call 1, we can, using a compass and straightedge,
construct segments of any rational length k/n. In some obvious sense then, the
rational numbers are real numbers. Apparently it was an intellectual shock to
the Pythagoreans to discover that there are some other real numbers, the so-called
irrational ones. Indeed, the square root of 2 is a real number, since we can construct
a segment the square of whose length is 2 by making a right triangle each of whose
legs has length 1. (By the Pythagorean Theorem of plane geometry, the square of
the hypotenuse of this triangle must equal 2.) And, Pythagoras proved that there
is no rational number whose square is 2, thereby establishing that there are real
numbers tha are not rational. See part (c) of Exercise 1.9.

Similarly, the area of a circle of radius 1 should be a real number; i.e., π should
be a real number. It wasn’t until the late 1800’s that Hermite showed that π is
not a rational number. One difficulty is that to define π as the area of a circle of
radius 1 we must first define what is meant by the “ area” of a circle, and this turns
out to be no easy task. In fact, this naive, geometric approach to the definition of
the real numbers turns out to be unsatisfactory in the sense that we are not able
to prove or derive from these first principles certain intuitively obvious arithmetic
results. For instance, how can we multiply or divide an area by a volume? How can
we construct a segment of length the cube root of 2? And, what about negative
numbers?

Let us begin by presenting two properties we expect any set that we call the real
numbers ought to possess.

Algebraic Properties
We should be able to add, multiply, divide, etc., real numbers. In short, we

require the set of real numbers to be a field.

Positivity Properties
The second aspect of any set we think of as the real numbers is that it has some

notion of direction, some notion of positivity. It is this aspect that will allow us to
“compare” numbers, e.g., one number is larger than another. The mathematically
precise way to discuss this notion is the following.

DEFINITION. A field F is called an ordered field if there exists a subset P ⊆ F
that satisfies the following two properties:

(1) If x, y ∈ P, then x+ y and xy are in P.
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(2) If x ∈ F, then one and only one of the following three statements is true.
(i) x ∈ P, (ii) −x ∈ P, and (iii) x = 0. (This property is known as the law
of tricotomy .)

The elements of the set P are called positive elements of F, and the elements x for
which −x belong to P are called negative elements of F.

As a consequence of these properties of P, we may introduce in F a notion of
order.

DEFINITION. If F is an ordered field, and x and y are elements of F, we say
that x < y if y − x ∈ P. We say that x ≤ y if either x < y or x = y.

We say that x > y if y < x, and x ≥ y if y ≤ x.

An ordered field satisfies the familiar laws of inequalities. They are consequences
of the two properties of the set P.

Exercise 1.5. Using the positivity properties above for an ordered field F, together
with the axioms for a field, derive the familiar laws of inequalities:

(a) (Transitivity) If x < y and y < z, then x < z.
(b) (Adding like inequalities) If x < y and z < w, then x+ z < y + w.
(c) If x < y and a > 0, then ax < ay.
(d) If x < y and a < 0, then ay < ax.
(e) If 0 < a < b and 0 < c < d, then ac < bd.
(f) Verify parts (a) through (e) with < replaced by ≤ .
(g) If x and y are elements of F, show that one and only one of the following

three relations can hold: (i) x < y, (ii) x > y, (iii) x = y.
(h) Suppose x and y are elements of F, and assume that x ≤ y and y ≤ x. Prove

that x = y.

Exercise 1.6. (a) If F is an ordered field, show that 1 ∈ P ; i.e., that 0 < 1.
HINT: By the law of tricotomy, only one of the three possibilities holds for 1. Rule
out the last two.

(b) Show that F7 of Exercise 1.2 is not an ordered field; i.e., there is no subset
P ⊆ F7 such that the two positivity properties can hold.
HINT: Use part (a) and positivity property (1).

(c) Prove that Q is an ordered field, where the set P is taken to be the usual set
of positive rational numbers. That is, P consists of those rational numbers a/b for
which both a and b are natural numbers.

(d) Suppose F is an ordered field and that x is a nonzero element of F. Show
that for all natural numbers n nx 6= 0.

(e) Show that, in an ordered field, every nonzero square is positive; i.e., if x 6= 0,
then x2 ∈ P.

We remarked earlier that there are many different examples of fields, and many
of these are also ordered fields. Some fields, though technically different from each
other, are really indistinguishable from the algebraic point of view, and we make
this mathematically precise with the following definition.

DEFINITION. Let F1 and F2 be two ordered fields, and write P1 and P2 for the
set of positive elements in F1 and F2 respectively. A 1-1 correspondence J between
F1 and F2 is called an isomorphism if

(1) J(x+ y) = J(x) + J(y) for all x, y ∈ F1.
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(2) J(xy) = J(x)J(y) for all x, y ∈ F1.
(3) x ∈ P1 if and only if J(x) ∈ P2.

REMARK. In general, if A1 and A2 are two algebraic systems, then a 1-1 corre-
spondence between A1 and A2 is called an isomorphism if it converts the algebraic
structure on A1 into the corresponding algebraic structure on A2.

Exercise 1.7. (a) Let F be an ordered field. Define a function J : N → F by
J(n) = n·1. Prove that J is an isomorphism of N onto a subset Ñ of F. That is, show
that this correspondence is one-to-one and converts addition and multiplication in
N into addition and multiplication in F. Give an example to show that this result
is not true if F is merely a field and not an ordered field.

(b) Let F be an ordered field. Define a function J : Q → F by J(k/n) =
k ·1× (n ·1)−1. Prove that J is an isomorphism of the ordered field Q onto a subset
Q̃ of the ordered field F. Conclude that every ordered field F contains a subset that
is isomorphic to the ordered field Q.

REMARK. Part (b) of the preceding exercise shows that the ordered field Q is the
smallest possible ordered field, in the sense that every other ordered field contains
an isomorphic copy of Q. However, as mentioned earlier, the ordered field Q cannot
suffice as the set of real numbers. There is no rational number whose square is 2,
and we want the square root of 2 to be a real number. See Exercise 1.9 below.

What extra property is there about an ordered field F that will allow us to
prove that numbers like

√
2, π, and so on are elements of F? It turns out that

the extra property we need is related to a quite subtle point concerning upper and
lower bounds of sets. It gives us some initial indication that the known-to-be subtle
concept of a limit may be fundamental to our very notion of what the real numbers
are.

DEFINITION. If S is a subset of an ordered field F, then an element x ∈ F is
called an upper bound for S if x ≥ y for every y ∈ S. An element z is called a lower
bound for S if z ≤ y for every y ∈ S.

A subset S of an ordered field F is called bounded above if it has an upper
bound; it is called bounded below if it has a lower bound; and it is called bounded
if it has both an upper bound and a lower bound.

An element M is called the least upper bound or supremum of a set S if it is an
upper bound for S and if M ≤ x for every other upper bound x of S. That is, M
is less than or equal to any other upper bound of S.

Similarly, an element m is called the greatest lower bound or infimum of S if it
is a lower bound for S and if z ≤ m for every other lower bound z of S. That is, m
is greater than or equal to any other lower bound of S.

Clearly, the supremum and infimum of a set S are unique. For instance, if M
and M ′ are both least upper bounds of a set S, then they are both upper bounds of
S. We would then have M ≤ M ′ and M ′ ≤ M. Therefore, by part (h) of Exercise
1.5, M = M ′.

It is important to keep in mind that an upper bound of a set S need not be
an element of S, and in particular, the least upper bound of S may or may not
actually belong to S.

If M is the supremum of a set S, we denote M by supS. If m is the infimum of
a set S, we denote it by inf S.
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Exercise 1.8. (a) Suppose S is a nonempty subset of an ordered field F and that
x is an element of F. What does it mean to say that “x is not an upper bound for
S?′′

(b) Let F be an ordered field, and let S be the empty set, thought of as a subset
of F. Prove that every element x ∈ F is an upper bound for S and that every
element y ∈ F is a lower bound for S.
HINT: If not, then what?

(c) If S = ∅, show that S has no least upper bound and no greatest lower bound.

REMARK. The preceding exercise shows that peculiar things about upper and
lower bounds happen when S is the empty set. One point is that just because a
set has an upper bound does not mean it has to have a least upper bound. That
is, no matter which upper bound we choose, there is always another one that is
strictly smaller. This is a very subtle point, and it is in fact quite difficult to give
a simple concrete example of this phenomenon. See the remark following Theorem
1.6. However, part (d) of the next exercise contains the seed of an example.

Exercise 1.9. A natural number a is called even if there exists a natural number
c such that a = 2c, and a is called odd if there exists a natural number c such that
a = 2c+ 1.

(a) Prove by induction that every natural number is either odd or even.
(b) Prove that a natural number a is even if and only if a2 = a× a is even.
(c) Prove that there is no element x of Q whose square is 2. That is, the square

root of 2 is not a rational number.
HINT: Argue by contradiction. Suppose there is a rational number k/n for which
k2/n2 = 2, and assume, as we may, that the natural numbers k and n have no
common factor. Observe that k must be even, and then observe that n also must
be even.

(d) Let S be the set of all positive rational numbers x for which x2 = x× x < 2.
Prove that S has an upper bound and a lower bound. Can you determine whether
or not S has a least upper bound?

The existence of least upper bounds and greatest lower bounds of bounded sets
turns out to be the critical idea in defining the real numbers. It is precisely the
existence of such suprema and infimas that enables us to define as real numbers
quantities such as

√
2, π, e, and so on.

DEFINITION. An ordered field F is called complete if every nonempty subset
S of F that has an upper bound has a least upper bound.

REMARK. Although Q is an ordered field, we will see that it is not a complete
ordered field. In fact, the answer to part (d)( of Exercise 1.9 is no. The set
described there, though bounded above, has no least upper bound. In fact, it
was one of nineteenth century mathematicians’ major achievements to prove the
following theorem.

THEOREM 1.1. There exists a complete ordered field.

We leave the proof of this theorem to the appendix.
Perhaps the most reassuring result along these lines is the following companion

theorem, whose proof we also leave to the appendix.
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THEOREM 1.2. If F1 and F2 are two complete ordered fields, then they are
isomorphic.

Taken together, the content of the two preceding theorems is that, up to isomor-
phism, there exists one and only one complete ordered field. For no other reason
that that, this special field should be an important object in mathematics. Our
definition of the real numbers is then the following:

DEFINITION. By the set R of real numbers we mean the (unique) complete
ordered field.

PROPERTIES OF THE REAL NUMBERS

THEOREM 1.3. The set R contains a subset that is isomorphic to the ordered
field Q of rational numbers, and hence subsets that are isomorphic to N and Z.

REMARK. The proof of Theorem 1.3 is immediate from part (b) of Exercise 1.7.
In view of this theorem, we will simply think of the natural numbers, the integers,
and the rational numbers as subsets of the real numbers.

Having made a definition of the set of real numbers, it is incumbent upon us now
to verify that this set R satisfies our intuitive notions about the reals. Indeed, we
will show that

√
2 is an element of R and hence is a real number (as plane geometry

indicates it should be), and we will show in later chapters that there are elements
of R that agree with our intuition about e and π. Before we can proceed to these
tasks, we must establish some special properties of the field R. The first, the next
theorem, is simply an analog for lower bounds of the least upper bound condition
that comes from the completeness property.

THEOREM 1.4. If S is a nonempty subset of R that is bounded below, then there
exists a greatest lower bound for S.

PROOF. Define T to be the set of all real numbers x for which −x ∈ S. That is,
T is the set −S. We claim first that T is bounded above. Thus, let m be a lower
bound for the set S, and let us show that the number −m is an upper bound for
T. If x ∈ T, then −x ∈ S. So, m ≤ −x, implying that −m ≥ x. Since this is true
for all x ∈ T, the number −m is an upper bound for T.

Now, by the completeness assumption, T has a least upper bound M0. We claim
that the number −M0 is the greatest lower bound for S. To prove this, we must
check two things. First, we must show that −M0 is a lower bound for S. Thus, let
y be an element of S. Then −y ∈ T, and therefore −y ≤ M0. Hence, −M0 ≤ y,
showing that −M0 is a lower bound for S.

Finally, we must show that −M0 is the greatest lower bound for S. Thus, let m
be a lower bound for S. We saw above that this implies that −m is an upper bound
for T. Hence, because M0 is the least upper bound for T, we have that −m ≥M0,
implying that m ≤ −M0, and this proves that −M0 is the infimum of the set S.

The following is the most basic and frequently used property of least upper
bounds. It is our first glimpse of “ limits.” Though the argument is remarkably
short and sweet, it will provide the mechanism for many of our later proofs, so
master this one.
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THEOREM 1.5. Let S be a nonempty subset of R that is bounded above, and Let
M0 denote the least upper bound of S; i.e., M0 = supS. Then, for any positive real
number ε there exists an element t of S such that t > M0 − ε.

PROOF. Let ε > 0 be given. Since M0 − ε < M0, it must be that M0 − ε is not an
upper bound for S. (M0 is necessarily less than or equal to any other upper bound
of S.) Therefore, there exists an element t ∈ S for which t > M0− ε. This is exactly
what the theorem asserts.

Exercise 1.10. (a) Let S be a nonempty subset of R which is bounded below, and
let m0 denote the infimum of S. Prove that, for every positive δ, there exists an
element s of S such that s < m0 + δ. Mimic the proof to Theorem 1.5.

(b) Let S be any bounded subset of R, and write −S for the set of negatives of
the elements of S. Prove that sup(−S) = − inf S.

(c) Use part (b) to give an alternate proof of part (a) by using Theorem 1.5 and
a minus sign.

Exercise 1.11. (a) Let S be the set of all real numbers x for which x < 1. Give
an example of an upper bound for S. What is the least upper bound of S? Is supS
an element of S?

(b) Let S be the set of all x ∈ R for which x2 ≤ 4. Give an example of an upper
bound for S. What is the least upper bound of S? Does supS belong to S?

We show now that R contains elements other than the rational numbers in Q.
Of course this holds for any complete ordered field. The next theorem makes this
quite explicit.

THEOREM 1.6. If x is a positive real number, then there exists a positive real
number y such that y2 = x. That is, every positive real number x has a positive
square root in R. Moreover, there is only one positive square root of x.

PROOF. Let S be the set of positive real numbers t for which t2 ≤ x. Then S is
nonempty Indeed, If x > 1, then 1 is in S because 12 = 1× 1 < 1× x = x. And, if
x ≤ 1, then x itself is in S, because x2 = x× x ≤ 1× x = x.

Also, S is bounded above. In fact, the number 1 + x/2 is an upper bound of S.
Indeed, arguing by contradiction, suppose there were a t in S such that t > 1+x/2.
Then

x ≥ t2 > (1 + x/2)2 = 1 + x+ x2/4 > x,

which is a contradiction. Therefore, 1 + x/2 is an upper bound of S, and so S is
bounded above.

Now let y = supS. We wish to show that y2 = x. We show first that y2 ≤ x,
and then we will show that y2 ≥ x. It will then follow from the tricotomy law that
y2 = x. We prove both these inequalities by contradiction.

So, assume first that y2 > x, and write α for the positive number y2 − x. Let ε
be the positive number α/(2y), and, using Theorem 1.5, choose a t ∈ S such that
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t > y − ε. Then y + t ≤ (2y), and y − t < ε = α/2y. So,

α = y2 − x
= y2 − t2 + t2 − x
≤ y2 − t2

= (y + t)(y − t)
≤ 2y(y − t)
< 2yε

< 2y × α

2y
= α,

which is a contradiction. Therefore y2 is not greater than x.
Now we show that y2 is not less than x. Again, arguing by contradiction, suppose

it is, and let ε be the positive number x − y2. Choose a positive number δ that is
less than y and also less than ε/(3y). Let s = y + δ. Then s is not in S, whence
s2 > x, so that we must have

ε = x− y2

= x− s2 + s2 − y2

≤ s2 − y2

= (s+ y)(s− y)

= (2y + δ)δ

< 3yδ

< ε,

which again is a contradiction.
This completes the proof that y2 = x; i.e., that x has a positive square root.
Finally, if y′ were another positive number for which y′

2 = x, we show that
y = y′ by ruling out the other two cases: y < y′ and y > y′. For instance, if y < y′,

then we would have that y2 < y′
2
, giving that

x = y2 < y′
2 = x,

implying that x < x, and this is a contradiction.

DEFINITION. If x is a positive real number, then the symbol
√
x will denote

the unique positive number y for which y2 = x. Of course,
√

0 denotes the number
0.

REMARK. Part (c) of Exercise 1.9 shows that the field Q contains no number
whose square is 2, and Theorem 1.6 shows that the field R does contain a number
whose square is 2. We have therefore “proved” that the real numbers is a larger set
than the rational numbers. It may come as a surprise to learn that we only now
have been able to prove that. Look back through the chapter to be sure. It follows
also that Q itself is not a complete ordered field. If it were, it would be isomorphic
to R, by Theorem 1.2, so that it would have to contain a square root of 2, which it
does not.
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DEFINITION. A real number x that is not a rational number, i.e., is not an
element of the subset Q of R, is called an irrational number.

Exercise 1.12. (a) Prove that every positive real number has exactly 2 square
roots, one positive (

√
x) and the other negative (−

√
x).

(b) Prove that if x is a negative real number, then there is no real number y such
that y2 = x.

(c) Prove that the product of a nonzero rational number and an arbitrary irra-
tional number must be irrational. Show by example that the sum and product of
irrational numbers can be rational.

INTERVALS AND APPROXIMATION

We introduce next into the set of real numbers some geometric concepts, namely,
a notion of distance between numbers. Of course this had to happen, for geometry
is the very basis of mathematics.

DEFINITION. The absolute value of a real number x is denoted by |x| and is
defined as follows:

(i) |0| = 0.
(ii) If x > 0 then |x| = x.
(iii) If x < 0 (−x > 0) then |x| = −x.
We define the distance d(x, y) between two real numbers x and y by d(x, y) =

|x− y|.

Obviously, such definitions of absolute value and distance can be made in any
ordered field.
Exercise 1.13. Let x and y be real numbers.

(a) Show that |x| ≥ 0, and that x ≤ |x|.
(b) Prove the Triangle Inequality for absolute values.

|x+ y| ≤ |x|+ |y|.

HINT: Check the three cases x+ y > 0, x+ y < 0, and x+ y = 0.
(c) Prove the so-called ‘ ‘ backward” triangle inequality.

|x− y| ≥ ||x| − |y||.

HINT: Write |x| = |(x− y) + y|, and use part (b).
(d) Prove that |xy| = |x||y|.
(e) Prove that |x| =

√
x2 for all real numbers x.

(f) Prove the Triangle Inequality for the distance function. That is, show that

d(x, y) ≤ d(x, z) + d(z, y)

for all x, y, z ∈ R.
Exercise 1.14. (a) Prove that x = y if |x− y| < ε for every positive number ε.
HINT: Argue by contradiction. Suppose x 6= y, and take ε = |x− y|/2.

(b) Prove that x = y if and only if x− y ≤ ε and y − x ≤ ε for every positive ε.
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DEFINITION. Let a and b be real numbers for which a < b. By the open interval
(a,b) we mean the set of all real numbers x for which a < x < b, and by the closed
interval [a,b] we mean the set of all real numbers x for which a ≤ x ≤ b.

By (a,∞) we mean the set of all real numbers x for which a < x, and by [a,∞)
we mean the set of all real numbers x for which a ≤ x.

Analogously, we define (−∞, b) and (−∞, b] to be respectively the set of all real
numbers x for which x < b and the set of all real numbers x for which x ≤ b.

Exercise 1.15. (a) Show that the intersection of two open intervals either is the
empty set or it is again an open interval.

(b) Show that (a, b) = (−∞, b) ∩ (a,∞).
(c) Let y be a fixed real number, and let ε be a positive number. Show that the

inequality |x− y| < ε is equivalent to the pair of inequalities

y − ε < x andx < y + ε;

i.e., show that x satisfies the first inequality if and only if it satisfies the two latter
ones. Deduce that |x− y| < ε if and only if x is in the open interval (y − ε, y + ε).

Here is one of those assertions that seems like an obvious fact. However, it
requires a proof which we only now can give, for it depends on the completeness
axiom, and in fact is false in some ordered fields.

THEOREM 1.7. Let N denote the set of natural Numbers, thought of as a subset
of R. Then N is not bounded above.

PROOF. Suppose false. Let M be an upper bound for the nonempty set N, and
let M0 be the least upper bound for N. Taking ε to be the positive number 1/2,
and applying Theorem 1.5, we have that there exists an element k of N such that
M0−1/2 < k. But then M0−1/2+1 < k+1, or, M0 +1/2 < k+1. So M0 < k+1.
But M0 ≥ k + 1 because M0 is an upper bound for N. We have thus arrived at a
contradiction, and the theorem is proved.

REMARK. As mentioned above, there do exist ordered fields F in which the subset
N is bounded above. Such fields give rise to what is called “nonstandard analysis,”
and they were first introduced by Abraham Robinson in 1966. The fact that R is
a complete ordered field is apparently crucial to be able to conclude the intuitively
clear fact that the natural numbers have no upper bound.

The next exercise presents another intuitively obvious fact, and this one is in
some real sense the basis for many of our upcoming arguments about limits. It
relies on the preceding theorem, is in fact just a corollary, so it has to be considered
as a rather deep property of the real numbers; it is not something that works in
every ordered field.

Exercise 1.16. Prove that if ε is a positive real number, then there exists a natural
number N such that 1/N < ε.

The next theorem and exercise show that the set Q of rational numbers is “ev-
erywhere dense” in the field R. That is, every real number can be approximated
arbitrarily closely by rational numbers. Again, we point out that this result holds
in any complete ordered field, and it is the completeness that is critical.
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THEOREM 1.8. Let a < b be two real numbers. Then there exists a rational
number r = p/q in the open interval (a, b). In fact, there exist infinitely many
rational numbers in the interval (a, b).

PROOF. If a < 0 and b > 0, then taking r = 0 satisfies the first statement of the
theorem. Assume first that a ≥ 0 and b > a. Let n be a natural number for which
1/n is less than the positive number b− a. (Here, we are using the completeness of
the field, because we are referring to Theorem 1.7, where completeness was vital.)
If a = 0, then b = b− a. Setting r = 1/n, we would have that a < r < b. So, again,
the first part of the theorem would be proved in that case.

Suppose then that a > 0, and choose the natural number q to be such that 1/q
is less than the minimum of the two positive numbers a and b − a. Now, because
the number aq is not an upper bound for the set N, we may let p be the smallest
natural number that is larger than aq. Set r = p/q.

We have first that aq < p, implying that a < p/q = r. Also, because p is the
smallest natural number larger than aq, we must have that p− 1 ≤ aq. Therefore,
(p−1)/q < a, or (p/q)−(1/q) < a, implying that r = p/q ≤ a+1/q < a+(b−a) = b.
Hence, a < r and r < b, and the first statement of the theorem is proved when both
a and b are nonnegative.

If both a and b are nonpositive, then both −b and −a are nonnegative, and, using
the first part of the proof, we can find a rational number r such that −b < r < −a.
So, a < −r < b, and the first part of the theorem is proved in this case as well.

Clearly, we may replace b by r and repeat the argument to obtain another rational
r1 such that a < r1 < r < b. Then, replacing b by r1 and repeating the argument,
we get a third rational r2 such that a < r2 < r1 < r < b. Continuing this procedure
would lead to an infinite number of rationals, all between a and b. This proves the
second statement of the theorem.

Exercise 1.17. (a) Let ε > 0 be given, and let k be a nonnegative integer. Prove
that there exists a rational number p/q such that

kε < p/q < (k + 1)ε.

(b) Let x be a positive real number and let ε be a positive real number. Prove
that there exists a rational number p/q such that x− ε < p/q < x. State and prove
an analogous result for negative numbers x.
Exercise 1.18. (a) If a and b are real numbers with a < b, show that there is an
irrational number x (not a rational number) between a and b, i.e., with a < x < b.

HINT: Apply Theorem 1.8 to the numbers a
√

2 and b
√

2.
(b) Conclude that within every open interval (a, b) there is a rational number and

an irrational number. Are there necessarily infinitely many rationals and irrationals
in (a, b)?

The preceding exercise shows the “denseness” of the rationals and the irrationals
in the reals. It is essentially clear from this that every real number is arbitrarily
close to a rational number and an irrational one.

THE GEOMETRIC PROGRESSION AND THE BINOMIAL THEOREM

There are two special algebraic identities that hold in R (in fact in any field F
whatsoever) that we emphasize. They are both proved by mathematical induction.
The first is the formula for the sum of a geometric progression.
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THEOREM 1.9. (Geometric Progression) Let x be a real number, and let n be
a natural number. Then,

(1) If x 6= 1, then
n∑
j=0

xj =
1− xn+1

1− x
.

(2) If x = 1, then
n∑
j=0

xj = n+ 1.

PROOF. The second claim is clear, since there are n + 1 summands and each is
equal to 1.

We prove the first claim by induction. Thus, if n = 1, then the assertion is true,
since

1∑
j=0

xj = x0 + x1 = 1 + x = (1 + x)
1− x
1− x

=
1− x2

1− x
.

Now, supposing that the assertion is true for the natural number k, i.e., that

k∑
j=0

xj =
1− xk+1

1− x
,

let us show that the assertion holds for the natural number k + 1. Thus

k+1∑
j=0

xj =
k∑
j=0

xj + xk+1

=
1− xk+1

1− x
+ xk+1

=
1− xk+1 + xk+1 − xk+2

1− x

=
1− xk+1+1

1− x
,

which completes the proof.

The second algebraic formula we wish to emphasize is the Binomial Theorem.
Before stating it, we must introduce some useful notation.

DEFINITION. Let n be a natural number. As earlier in this chapter, we define
n! as follows:

n! = n× (n− 1)× (n− 2)× . . .× 2× 1.

For later notational convenience, we also define 0! to be 1.
If k is any integer for which 0 ≤ k ≤ n, we define the binomial coefficient

(
n
k

)
by(

n

k

)
=

n!
k!(n− k)!

=
n× (n− 1)× (n− 2)× . . .× (n− k + 1)

k!
.
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Exercise 1.19. (a) Prove that
(
n
0

)
= 1,

(
n
1

)
= n and

(
n
n

)
= 1.

(b) Prove that

(
n

k

)
≤ 2nk

2k

for all natural numbers n and all integers 0 ≤ k ≤ n.

(c) Prove that

(
n+ 1
k

)
=
(
n

k

)
+
(

n

k − 1

)

for all natural numbers n and all integers 1 ≤ k ≤ n.

THEOREM 1.10. (Binomial Theorem) If x, y ∈ R and n is a natural number,
then

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

PROOF. We shall prove this theorem by induction. If n = 1, then the assertion is
true, for (x+ y)1 = x+ y and

1∑
k=0

(
1
k

)
xky1−k =

(
1
0

)
x0y1 +

(
1
1

)
x1y0 = x+ y.

Now, assume that the assertion holds for the natural number j; i.e.,

(x+ y)j =
j∑

k=0

(
j

k

)
xkyj−k,

and let us prove that the assertion holds for the natural number j+1. We will make
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use of part (c) of Exercise 1.19. We have that

(x+ y)j+1 = (x+ y)(x+ y)j

= (x+ y)
j∑

k=0

(
j

k

)
xkyj−k

= x

j∑
k=0

(
j

k

)
xkyj−k + y

j∑
k=0

(
j

k

)
xkyj−k

=
j∑

k=0

(
j

k

)
xk+1yj−k +

j∑
k=0

(
j

k

)
xkyj+1−k

=
j−1∑
k=0

(
j

k

)
xk+1yj−k +

(
j

j

)
xj+1y0

+
j∑

k=1

(
j

k

)
xkyj+1−k +

(
j

0

)
x0yj+1

= xj+1 +
j∑

k=1

(
j

k − 1

)
xkyj+1−k

+
j∑

k=1

(
j

k

)
xkyj+1−k + yj+1

= xj+1 +
j∑

k=1

(
(

j

k − 1

)
+
(
j

k

)
)xkyj+1−k + yj+1

= xj+1 +
j∑

k=1

(
j + 1
k

)
xkyj+1−k + yj+1

=
(
j + 1
j + 1

)
xj+1y0 +

j∑
k=1

(
j + 1
k

)
xkyj+1−k +

(
j + 1

0

)
x0yj+1

=
j+1∑
k=0

(
j + 1
k

)
xkyj+1−k,

which shows that the assertion of the theorem holds for the natural number j + 1.
This completes the proof.

The next exercise is valid in any ordered field, but, since we are mainly interested
in the order field R, we state everything in terms of that field.
Exercise 1.20. (a) If x and y are positive real numbers, and if n and k are natural
numbers with k ≤ n, show that (x+ y)n ≥

(
n
k

)
xkyn−k.

(b) For any positive real number x and natural number n, show that (1 + x)n ≥
1 + nx.

(c) For any real number x > −1 and natural number n, prove that (1 + x)n ≥
1 + nx.
HINT: Do not try to use the binomial theorem as in part (b); it won’t work because
the terms are not all positive; prove this directly by induction.
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There is one more important algebraic identity, which again can be proved by
induction. It is actually just a corollary of the geometric progression formula.

THEOREM 1.11. If x, y ∈ R and n is a natural number, then

xn − yn = (x− y)(
n−1∑
j=0

xjyn−1−j .

PROOF. If n = 1 the theorem is clear. Suppose it holds for a natural number k,
and let us prove the identity for the natural number k + 1. We have

xk+1 − yk+1 = xk+1 − xky + xky − yk+1

= (x− y)xk + y(xk − yk)

= (x− y)xk + y(x− y)(
k−1∑
j=0

xjyk−1−j)

= (x− y)xk + (x− y)(
k−1∑
j=0

xjyk−j

= (x− y)(xkyk−k +
k−1∑
j=0

xjyk−j)

= (x− y)(
k∑
j=0

xjyk−j),

which shows that the assertion holds for the natural number k+1. So, by induction,
the theorem is proved.

Exercise 1.21. Let x and y be real numbers.
(a) Let n be an odd natural number; i.e., n = 2k + 1 for some natural number

k. Show that

xn + yn = (x+ y)(
n−1∑
j=0

(−1)jxjyn−1−j .

HINT: Write xn + yn = xn − (−y)n.
(b) Show that x2 + y2 can not be factored into a product of the form (ax +

by)(cx+ dy) for any choices of real numbers a, b, c, and d.

Using the Binomial Theorem together with the preceding theorem, we may now
investigate the existence of nth roots of real numbers. This next theorem is def-
initely not valid in any ordered field, for it again depends on the completeness
property.

THEOREM 1.12. Let n be a natural number and let x be a positive real number.
Then there exists a unique positive real number y such that yn = x; i.e., x has a
unique positive nth root.

PROOF. Note first that if 0 ≤ t < s, then tn < sn. (To see this, argue by induction,
and use part (e) of Exercise 1.5.) Using this, we mimic the proof of Theorem 1.6.
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Thus, let S be the set of all positive real numbers t for which tn ≤ x. Then S is
nonempty and bounded above. Indeed, if x ≥ 1, then 1 ∈ S, while if x < 1, then
x itself is in S. Therefore, S is nonempty. Also, using part (b) of Exercise 1.20, we
see that 1 + (x/n) is an upper bound for S. For, if t > 1 + x/n, then

tn > (1 + (x/n))n ≥ 1 + n(x/n) > x.

Now let y = supS, and let us show that yn = x. We rule out the other two
possibilities. First, if yn > x, let ε be the positive number yn − x, and define ε′ to
be the positive number ε/(nyn−1). Then, using Theorem 1.5, choose t ∈ S so that
y − ε′ < t ≤ y. (Theorem 1.5 is where the completeness of the ordered field R is
crucial.) We have

ε = yn − x
= yn − tn + tn − x
≤ yn − tn

= (y − t)(
n−1∑
j=0

yjtn−1−j)

≤ (y − t)(
n−1∑
j=0

yjyn−1−j)

= (y − t)(
n−1∑
j=0

yn−1

< ε′nyn−1

= ε,

and this is a contradiction. Therefore, yn is not greater than x.

Now, if yn < x, let ε be the positive number x − yn, and choose a δ > 0 such
that δ < 1 and δ < ε/(y + 1)n. Then, using the Binomial Theorem, we have that

(y + δ)n =
n∑
k=0

(
n

k

)
ykδn−k

= yn +
n−1∑
k=0

(
n

k

)
ykδn−k

= yn + δ

n−1∑
k=0

(
n

k

)
ykδn−1−k

< yn + δ
n∑
k=0

(
n

k

)
yk1n−k

= yn + δ(y + 1)n

= x− ε+ δ(y + 1)n

< x− ε+ ε

= x,
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implying that y+ δ ∈ S. But this is a contradiction, since y = supS. Therefore, yn

is not less than x, and so yn = x.
We have shown the existence of a positive nth root of x. To see the uniqueness,

suppose y and y′ are two positive nth roots of x. Then

0 = yn − y′n

= (y − y′)(
n−1∑
j=0

yjy′
n−j−1

,

which implies that either y − y′ = 0 or
∑n−1
j=0 y

jy′
n−j−1 = 0. Since this latter sum

consists of positive terms, it cannot be 0, whence y = y′. This shows that there is
but one positive nth root of x, and the theorem is proved.

Exercise 1.22. (a) Show that if n = 2k is an even natural number, then every
positive real number has exactly two distinct nth roots.

(b) If n = 2k + 1 is an odd natural number, show that every real number has
exactly one nth root.

(c) If n is a natural number greater than 1, prove that there is no rational number
whose nth power equals 2, i.e., the nth root of 2 is not a rational number.

THE COMPLEX NUMBERS

It is useful to build from the real numbers another number system called the
complex numbers. Although the real numbers R have many of the properties we
expect, i.e., every positive number has a positive square root, every number has a
cube root, and so on, there are somewhat less prominent properties that R fails to
possess. For instance, negative numbers do not have square roots. This is actually
a property that is missing in any ordered field, since every square is positive in an
ordered field. See part (e) of Exercise 1.6. One way of describing this shortcoming
on the part of the real numbers is to note that the equation 1 + x2 = 0 has no
solution in the real numbers. Any solution would have to be a number whose
square is −1, and no real number has that property. As an initial extension of the
set of real numbers, why not build a number system in which this equation has a
solution?

We faced a similar kind of problem earlier on. In the set N there is no element
j such that j + n = n for all n ∈ N. That is, there was no element like 0 in
the natural numbers. The solution to the problem in that case was simply to
“create” something called zero, and just adjoin it to our set N. The same kind of
solution exists for us now. Let us invent an additional number, this time denoted
by i, which has the property that its square i2 is −1. Because the square of any
nonzero real number is positive, this new number i was traditionally referred to as
an “imaginary” number. We simply adjoin this number to the set R, and we will
then have a number whose square is negative, i.e., −1. Of course, we will require
that our new number system should still be a field; we don’t want to give up our
basic algebraic operations. There are several implications of this requirement: First
of all, if y is any real number, then we must also adjoin to R the number y× i ≡ yi,
for our new number system should be closed under multiplication. Of course the
square of iy will equal i2y2 = −y2, and therefore this new number iy must also be
imaginary, i.e., not a real number. Secondly, if x and y are any two real numbers,
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we must have in our new system a number called x + yi, because our new system
should be closed under addition.

DEFINITION. Let i denote an object whose square i2 = −1. Let C be the set
of all objects that can be represented in the form z = x + yi, where both x and y
are real numbers.

Define two operations + and × on C as follows:

(x+ yi) + (x′ + y′i) = x+ x′ + (y + y′)i,

and

(x+ iy)(x′ + iy′) = xx′ + xiy′ + iyx′ + iyiy′ = xx′ − yy′ + (xy′ + yx′)i.

THEOREM 1.13.
(1) The two operations + and × defined above are commutative and associative,

and multiplication is distributive over addition.
(2) Each operation has an identity: (0 + 0i) is the identity for addition, and

(1 + 0i) is the identity for multiplication.
(3) The set C with these operations is a field.

PROOF. We leave the proofs of Parts (1) and (2) to the following exercise. To see
that C is a field, we need to verify one final condition, and that is to show that if
z = x+yi 6= 0 = 0+0i, then there exists a w = u+vi such that z×w = 1 = 1+0i.
Thus, suppose z = x + yi 6= 0. Then at least one of the two real numbers x and y
must be nonzero, so that x2 + y2 > 0. Define a complex number w by

w =
x

x2 + y2
+

−y
x2 + y2

i.

We then have

z × w = (x+ yi)× (
x

x2 + y2
+

−y
x2 + y2

i

=
x2

x2 + y2
− −y2

x2 + y2
+ (x

−y
x2 + y2

+ y
x

x2 + y2
)i

=
x2 + y2

x2 + y2
+

0
x2 + y2

i

= 1 + 0i

= 1,

as desired.

Exercise 1.23. Prove parts (1) and (2) of Theorem 1.13.

One might think that these kinds of improvements of the real numbers will go
on and on. For instance, we might next have to create and adjoin another object
j so that the number i has a square root; i.e., so that the equation i − z2 = 0 has
a solution. Fortunately and surprisingly, this is not necessary, as we will see when
we finally come to the Fundamental Theorem of Algebra in Chapter VII.
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The subset of C consisting of the pairs x + 0i is a perfect (isomorphic) copy of
the real number system R. We are justified then in saying that the complex number
system extends the real number system, and we will say that a real number x is
the same as the complex number x + 0i. That is, real numbers are special kinds
of complex numbers. The complex numbers of the form 0 + yi are called purely
imaginary numbers. Obviously, the only complex number that is both real and
purely imaginary is the number 0 = 0 + 0i. The set C can also be regarded as
a 2-dimensional space, a plane, and it is also helpful to realize that the complex
numbers form a 2-dimensional vector space over the field of real numbers.

DEFINITION. If z = x+ yi, we say that the real number x is the real part of z
and write x = <(z). We say that the real number y is the imaginary part of z and
write y = =(z).

If z = x + yi is a complex number, define the complex conjugate z̄ of z by
z̄ = x− yi.

The complex number i satisfies i2 = −1, showing that the negative number −1
has a square root in C, or equivalently that the equation 1 + z2 = 0 has a solution
in C. We have thus satisfied our initial goal of extending the real numbers. But
what about other complex numbers? Do they have square roots, cube roots, nth
roots? What about solutions to other kinds of equations than 1 + z2?

Exercise 1.24. (a) Prove that every complex number has a square root.
HINT: Let z = a+ bi. Assume w = x+ yi satisfies w2 = z, and just solve the two
equations in two unknowns that arise.

(b) Prove that every quadratic equation az2 + bz+ c = 0, for a, b, and c complex
numbers, has a solution in C.
HINT: If a = 0, it is easy to find a solution. If a 6= 0, we need only find a solution
to the equivalent equation

z2 +
b

a
z +

c

a
= 0.

Justify the following algebraic manipulations, and then solve the equation.

z2 +
b

a
z +

c

a
= z2 +

b

a
z +

b2

4a2
− b2

4a2
+
c

a

= (z +
b

2a
)2 − b2

4a2
+
c

a
.

What about this new field C? Does every complex number have a cube root, a
fourth root, does every equation have a solution in C? A natural instinct would
be to suspect that C takes care of square roots, but that it probably does not
necessarily have higher order roots. However, the content of the Fundamental
Theorem of Algebra, to be proved in Chapter VII, is that every equation of the
form P (z) = 0, where P is a nonconstant polynomial, has a solution in C. This
immediately implies that every complex number c has an nth root, for any solution
of the equation zn − c = 0 would be an nth root of c.

The fact that the Fundamental Theorem of Algebra is true is a good indication
that the field C is a “good” field. But it’s not perfect.
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THEOREM 1.14. In no way can the field C be made into an ordered field. That
is, there exists no subset P of C that satisfies the two positivity axioms.

PROOF. Suppose C were an ordered field, and write P for its set of positive el-
ements. Then, since every square in an ordered field must be in P (part (e) of
Exercise 1.6), we must have that −1 = i2 must be in P. But, by part (a) of Exercise
1.6, we also must have that 1 is in P, and this leads to a contradiction of the law of
tricotomy. We can’t have both 1 and −1 in P. Therefore, C is not an ordered field.

Although we may not define when one complex number is smaller than another,
we can define the absolute value of a complex number and the distance between
two of them.

DEFINITION. If z = x+ yi is in C, we define the absolute value of z by

|z| =
√
x2 + y2.

We define the distance d(z, w) between two complex numbers z and w by
d(z, w) = |z − w|.

If c ∈ C and r > 0, we define the open disk of radius r around c, and denote it
by Br(c), by

Br(c) = {z ∈ C : |z − c| < r}.

The closed disk of radius r around c is denoted by Br(c) and is defined by

Br(c) = {z ∈ C : |z − c| ≤ r}.

We also define open and closed punctured disks B′r(c) and B
′
r(c) around c by

B′r(c) = {z : 0 < |z − c| < r}

and
B
′
r(c) = {z : 0 < |z − c ≤ r}.

These punctured disks are just like the regular disks, except that they do not contain
the central point c.

More generally, if S is any subset of C, we define the open neighborhood of radius
r around S, denoted by Nr(S), to be the set of all z such that there exists a w ∈ S
for which |z − w| < r. That is, Nr(S) is the set of all complex numbers that are
within a distance of r of the set S. We define the closed neighborhood of radius r
around S, and denote it by Nr(S), to be the set of all z ∈ C for which there exists
a w ∈ S such that |z − w| ≤ r.

Exercise 1.25. (a) Prove that the absolute value of a complex number z is a
nonnegative real number. Show in addition that |z|2 = zz̄.

(b) Let x be a real number. Show that the absolute value of x is the same
whether we think of x as a real number or as a complex number.

(c) Prove that max(|<(z)|, |=(z)|) ≤ |z| ≤ |<(z)| + |=(z)|. Note that this just
amounts to verifying that

max(|x|, |y|) ≤
√
x2 + y2 ≤ |x|+ |y|
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for any two real numbers x and y.
(d) For any complex numbers z and w, show that z + w = z̄+ w̄, and that z = z.
(e) Show that z + z̄ = 2<(z) and z − z̄ = 2i=(z).
(f) If z = a+ bi and w = a′ + b′i, prove that |zw| = |z||w|.

HINT: Just compute |(a+ bi)(a′ + b′i)|2.

The next theorem is in a true sense the most often used inequality of mathemat-
ical analysis. We have already proved the triangle inequality for the absolute value
of real numbers, and the proof was not very difficult in that case. For complex
numbers, it is not at all simple, and this should be taken as a good indication that
it is a deep result.

THEOREM 1.15. (Triangle Inequality) If z and z′ are two complex numbers,
then

|z + z′| ≤ |z|+ |z′|

and
|z − z′| ≥ ||z| − |z′||.

PROOF. We use the results contained in Exercise 1.25.

|z + z′|2 = (z + z′)(z + z′)

= (z + z′)(z̄ + z̄′)

= zz̄ + z′z̄ + zz̄′ + z′z̄′

= |z|2 + z′z̄ + z′z̄ + |z′|2

= |z|2 + 2<(z′z̄) + |z′|2

≤ |z|2 + 2|<(z′z̄)|+ |z′|2

≤ |z|2 + 2|z′z̄|+ |z′|2

= |z|2 + 2|z′||z|+ |z′|2

= (|z|+ |z′|)2.

The Triangle Inequality follows now by taking square roots.

REMARK. The Triangle Inequality is often used in conjunction with what’s called
the “add and subtract trick.” Frequently we want to estimate the size of a quantity
like |z−w|, and we can often accomplish this estimation by adding and subtracting
the same thing within the absolute value bars:

|z − w| = |z − v + v − w| ≤ |z − v|+ |v − w|.

The point is that we have replaced the estimation problem of the possibly unknown
quantity |z − w| by the estimation problems of two other quantities |z − v| and
|v − w|. It is often easier to estimate these latter two quantities, usually by an
ingenious choice of v of course.
Exercise 1.26. (a) Prove the second assertion of the preceding theorem.

(b) Prove the Triangle Inequality for the distance function. That is, prove that

d(z, w) ≤ d(z, v) + d(v, w)
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for all z, w, v ∈ C.
(c) Use mathematical induction to prove that

|
n∑
i=1

ai| ≤
n∑
i=1

|ai|.

It may not be necessary to point out that part (b) of the preceding exercise
provides a justification for the name “triangle inequality.” Indeed, part (b) of that
exercise is just the assertion that the length of one side of a triangle in the plane is
less than or equal to the sum of the lengths of the other two sides. Plot the three
points z, w, and v, and see that this interpretation is correct.

DEFINITION. A subset S of C is called Bounded if there exists a real number
M such that |z| ≤M for every z in S.

Exercise 1.27. Let S be a subset of C. Let S1 be the subset of R consisting of the
real parts of the complex numbers in S, and let S2 be the subset of R consisting of
the imaginary parts of the elements of S. Prove that S is bounded if and only if S1

and S2 are both bounded.
HINT: Use Part (c) of Exercise 1.25.

(b) Let S be the unit circle in the plane, i.e., the set of all complex numbers
z = x+ iy for which |z| = 1. Compute the sets S1 and S2 of part (a).
Exercise 1.28. (a) Verify that the formulas for the sum of a geometric progression
and the binomial theorem (Theorems 1.9 and 1.10) are valid for complex numbers
z and z′.
HINT: Check that, as claimed, the proofs of those theorems work in any field.

(b) Prove Theorem 1.11 for complex numbers z and z′.


